• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Synthetic Routes to Hybrid Nanoparticles of Gold and Copper Sulfides

    Arrowood, Summer Laurel
    : https://etd.library.vanderbilt.edu/etd-04062016-103619
    http://hdl.handle.net/1803/12035
    : 2016-04-07

    Abstract

    The rational design of hybrid nanoparticles is a powerful tool in harnessing nanoscale properties of several different materials in a single whole. The first portion of this work describes the synthesis of dual-plasmonic hybrid gold-copper sulfide nanoparticles for application in the enhancement of second harmonic generation of light. Established synthetic methods were applied to create hybrid nanoparticle systems that contained two separate localized surface plasmon resonances. The second portion of this work describes the synthesis of gold sulfide nanoparticles via a cation exchange procedure with copper sulfide nanoplatelets. The growing significance of the copper sulfides as a nontoxic alternative to commercially significant quantum dot materials such as PbS and CdS has led to a proliferation of work studying these materials. However, Au2S, a material with potential for many of the same applications as Cu2S, remains relatively ignored. The inherent difficulty of direct synthesis of gold (I) sulfide in the nanocrystalline form as well as the metastable nature of the material once synthesized are significant obstacles to the study of Au2S. We report an indirect synthesis of Au2S nanocrystals and Au2S—Cu2-xS hybrid nanoparticles via cation exchange, and the insights into this material transformation gained in this study.
    Show full item record

    Files in this item

    Icon
    Name:
    Arrowood.pdf
    Size:
    2.736Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy