• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Evaluation of thermally enhanced soil vapor extraction using electrical resistance heating for chlorinated solvent remediation in the vadose zone

    Hendricks, Ashley Erin
    : https://etd.library.vanderbilt.edu/etd-04032006-105123
    http://hdl.handle.net/1803/11955
    : 2006-04-17

    Abstract

    Soil vapor extraction (SVE) is the most popular technology for removing volatile contaminants from the vadose zone. However, SVE is limited by the contaminant vapor pressure, hydraulic conductivity and gas permeability of the vadose stratigraphy. Concentration reductions greater than 90% are hard to achieve with traditional SVE. Thermal enhancement is establishing itself as a viable method to increase the applicability and effectiveness of SVE. Heating methods include steam injection, radiowave, microwave, and electrical resistance. The appropriate method depends on site geology, soil and contaminant parameters and the maximum temperature required. Electrical resistance heating (ERH) is one promising enhancement method. ERH has been demonstrated at more than 30 sites. However, little is known about the mechanisms occurring during the heating process. Existing models are limited in scope, neglecting important aspects of heat and mass transfer. The purpose of the research presented is to develop the basis for a general mass transfer model to simulate the SVE process during remediation of chlorinated solvents using thermally enhanced SVE in the vadose zone. A conceptual model detailing the processes occurring during vapor extraction with soil heating by electrical resistance is proposed. The conceptual model is then used to derive a set of governing equations for a general multiphase multicomponent system with an applied heat flux. This approach allows the model developed here to be extended to other thermal treatments.
    Show full item record

    Files in this item

    Icon
    Name:
    ASHLEYHENDRICKS.pdf
    Size:
    745.6Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy