• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Subspace Segmentation and High-Dimensional Data Analysis

    Sekmen, Ali Safak
    : https://etd.library.vanderbilt.edu/etd-04022012-093720
    http://hdl.handle.net/1803/11935
    : 2012-04-18

    Abstract

    This thesis developed theory and associated algorithms to solve subspace segmentation problem. Given a set of data W={w_1,...,w_N} in R^D that comes from a union of subspaces, we focused on determining a nonlinear model of the form U={S_i}_{i in I}, where S_i is a set of subspaces, that is nearest to W. The model is then used to classify W into clusters. Our first approach is based on the binary reduced row echelon form of data matrix. We prove that, in absence of noise, our approach can find the number of subspaces, their dimensions, and an orthonormal basis for each subspace S_i. We provide a comprehensive analysis of our theory and determine its limitations and strengths in presence of outliers and noise. Our second approach is based on nearness to local subspaces approach and it can handle noise effectively, but it works only in special cases of the general subspace segmentation problem (i.e., subspaces of equal and known dimensions). Our approach is based on the computation of a binary similarity matrix for the data points. A local subspace is first estimated for each data point. Then, a distance matrix is generated by computing the distances between the local subspaces and points. The distance matrix is converted to the similarity matrix by applying a data-driven threshold. The problem is then transformed to segmentation of subspaces of dimension 1 instead of subspaces of dimension d. The algorithm was applied to the Hopkins 155 Dataset and generated the best results to date.
    Show full item record

    Files in this item

    Icon
    Name:
    Sekmen_PhD_Dissertation.pdf
    Size:
    1.518Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy