• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Using In situ Neutron and Gamma-ray Spectroscopy to Characterize Asteroids

    Bodnarik, Julia Gates
    : https://etd.library.vanderbilt.edu/etd-04012013-115436
    http://hdl.handle.net/1803/11903
    : 2013-04-17

    Abstract

    Asteroids are remnants of the formation of the Solar System and provide insight into its formation, evolution and how life may have begun. An important issue is determining which meteorite composition is representative of which asteroid class and type. In situ composition measurements would be one way to resolve this issue. This dissertation contributes toward developing and testing of a neutron/gamma-ray spaceflight instrument for subsurface regolith composition measurements for landed asteroid missions. The Probing In situ with Neutrons and Gamma rays (PING) instrument was tested at an outdoor test facility on well-characterized granite, basalt, and asteroid simulant monuments with a variety of different layering configurations. PING utilizes a 14 MeV pulsed neutron generator to probe the subsurface, and uses neutron and gamma-ray spectrometers to detect the resulting moderated neutrons and gamma rays. The neutron and gamma-ray energy spectra are used to determine bulk properties and the material composition. We compared our experimental spectra both to Monte Carlo simulations and to independently verified elemental assays in order to establish a benchmarked Monte Carlo model. This comparison shows that PING can quantitatively determine bulk asteroid properties, but more sophisticated MCNPX models are needed to properly model PING experiments. The benchmarked Monte Carlo model can then simulate PING measurements on asteroids, which could be used to determine bulk asteroid properties, differentiate between asteroid types, and thus strengthen their connection to meteorite compositions. This research firmly establishes that PING can obtain important geochemical information on asteroids from neutron transport and elemental analysis. A future asteroid mission with PING will have substantially increased science return providing a direct subsurface regolith description, without needing to drill or disrupt the surface. We have demonstrated that compositions for specific asteroid types can be fabricated in large volume structures on Earth permitting experiments, with a benchmarked Monte Carlo program, to predict mission responses to optimize the science return prior to launch.
    Show full item record

    Files in this item

    Icon
    Name:
    Bodnarik_PhD_Thesis_2013.pdf
    Size:
    12.59Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy