• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Infrared neural stimulation of thalamocortical brain slices in vitro

    Cayce, Jonathan Matthew
    : https://etd.library.vanderbilt.edu/etd-03312008-114140
    http://hdl.handle.net/1803/11818
    : 2008-05-05

    Abstract

    Neural stimulation using infrared light has recently been characterized as a novel method to stimulate peripheral nerves without touching, causing damage, or inducing an electrical stimulation artifact. Infrared neural stimulation (INS) has not been previously achieved in the brain due to the complexity of the neuronal networks. The purpose of this study was to show feasibility of INS in the central nervous system, and determine the optimal parameters for INS in a thalamocortical brain slice model. Wavelength was the first parameter identified since previous studies showed penetration depth of light in tissue determined the threshold radiant energies needed to evoke an action potential in the peripheral nervous system. The wavelength of 3.65 µm was determined to be the optimal wavelength. Next repetition rate was investigated using the optimal wavelength of 3.65 µm. Lower threshold radiant energies were observed for higher repetition rates. The final parameter investigated was spot size using light at 3.65 µm and 30 Hz, and a third order power fit relationship was observed where a larger spot size required less energy to evoke action potentials in a TC slice. A small set of experiments were performed to show intracellular electrical recordings could be used to detect INS evoked signals. The results from this study prove feasibility of INS in CNS, and provide the basis for future in vivo experiments.
    Show full item record

    Files in this item

    Icon
    Name:
    Master_Thesis.pdf
    Size:
    341.0Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy