• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Physical immobilization of photosystem I (PSI) at self-assembled monolayers on gold: directed adsorption, electron transfer, and biomimetic entrapment

    Kincaid, Helen Anne
    : https://etd.library.vanderbilt.edu/etd-03312006-124046
    http://hdl.handle.net/1803/11807
    : 2006-04-12

    Abstract

    This dissertation examines fundamental aspects towards the incorporation of Photosystem I (PSI) into a photoelectrochemical device. Previous research at Vanderbilt University demonstrated that PSI adsorbs to high-energy surfaces as opposed to low-energy surfaces, which allowed for directed adsorption on a micropatterned surface constructed through microcontact printing of self-assembled monolayers (SAMs). The presence of PSI on patterned substrates was verified by scanning electrochemical microscopy (SECM). The direct electrochemistry of PSI, in the dark, on hydroxyl-terminated SAMs of various chain lengths was examined. Direct electron transfer occurred when the hydroxyl-terminated monolayer was of intermediate chain length (n = 6 to 8 methylene units), but not when the monolayer was short (n = 2, 4) due to monolayer disorder or long (n = 11) due to increased distances for electron tunneling. The electrochemistry of PSI, in the light, demonstrated the transfer of electrons through PSI on a substrate to the solution-phase electron acceptor methyl viologen, providing approximately 3 to 6 nA per cm squared of current. In order to suppress the amount of background current and entrap PSI on the substrate, mimicking the thylakoid membrane of plants, PSI atop HOC6S/Au was backfilled by exposure to a solution containing a long-chain alkanethiol from both organic and aqueous micellar solvents. The incoming alkanethiol filled the interprotein spaces providing hydrophobic stabilization of the physically adsorbed PSI. The integral membrane protein, PSI, was resistant to denaturation even upon exposure to organic solvents. Disorganized hydroxyl-terminated SAMs were designed by adsorbing partially fluorinated disulfides to the gold surface and then hydrolytically cleaving away the fluorocarbon tail group. The use of hydroxyl-terminated surfaces with different packing densities did not enhance PSI adsorption; however, varying the packing density of the hydroxyl-terminated monolayer did provide an enhanced rate of backfilling by docosanethiol. The amount of PSI adsorbed onto hydroxyl-terminated surfaces was enhanced as the chain length of the alkanethiol was reduced, reflecting the likely importance of van der Waals interactions between PSI and the gold substrate through the intervening SAM.
    Show full item record

    Files in this item

    Icon
    Name:
    HA_KINCAID_DISSERTATION.pdf
    Size:
    3.871Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy