• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Cardiovascular and Neuropsychiatric Consequences of a Genetic Loss of the High-Affinity Choline Transporter (CHT)

    English, Brett Alan
    : https://etd.library.vanderbilt.edu/etd-03302010-130918
    http://hdl.handle.net/1803/11766
    : 2010-04-12

    Abstract

    Acetylcholine (ACh) was one of the first neurotransmitters discovered and has been implicated in regulating a number of physiologic processes within the CNS and the periphery. Cholinergically-mediated physiology requires continuous turnover of ACh by the biosynthesis machinery to maintain cholinergic tone. High-affinity choline uptake (HACU), mediated by CHT in cholinergic terminals is pivotal for efficient ACh production and release. Cardiovascular function relies on a balanced integration of noradrenergic and cholinergic innervation of the heart. The cardiovascular impact of diminished CHT expression has not been directly examined, due to the transporter’s inaccessibility in vivo. We describe findings from cardiovascular studies using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (-/-) exhibit early postnatal lethality, heterozygous (CHT+/-) mice survive, exhibiting normal spontaneous behaviors. However, the CHT+/- mouse heart displays significantly reduced levels of HACU, accompanied by reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice reveal basal tachycardia and hypertension. After treadmill exercise, CHT+/- mice exhibit slower heart rate recovery, consistent with diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Functional studies revealed an age-dependent decrease in fractional shortening and increased ventricular fibrosis, consistent with progressive ventricular dysfunction. Lastly, we show that the hypomorphic allele (Ile89Val) in human CHT is associated with overall symptom severity in patients with major depressive disorder (MDD) and was shown to be selectively overtransmitted in the combined subtype of attention-deficit hyperactivity disorder (ADHD). The identification of cardiovascular phenotypes in mice with deficits in CHT may provide potential biomarkers for the identification of autonomic dysfunction in a number of cardiovascular and neuropsychiatric disorders. Autonomic dysfunction has been indentified in a number of neuropsychiatric disorders contributing to morbidity and mortality. The increased allele frequency and selective transmission of the hypomorphic CHT allele in patients with psychiatric disorders demonstrates the importance of CHT not only in regulating CNS processes, but in regulating autonomic processes in patients with these disorders. Further studies examining the role of CHT in regulating autonomic imbalance may provide potential targets for novel therapeutics.
    Show full item record

    Files in this item

    Icon
    Name:
    ENGLISHThesisFinal.pdf
    Size:
    9.638Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy