• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Understanding the impact of bulk traps on GaN HEMT DC and RF characteristics

    Kalavagunta, Aditya
    : https://etd.library.vanderbilt.edu/etd-03302009-175508
    http://hdl.handle.net/1803/11752
    : 2009-04-27

    Abstract

    The demand for high power high frequency semiconductor devices has led to the development of microwave power devices using GaN and SiC. AlGaN/GaN HEMTs have shown power densities of 9.8 W/mm at 8 GHz. Although these results are very encouraging, significant work needs to be done to improve performance. It is generally recognized that trapping effects limit the performance of these devices. In this dissertation we study the impact of bulk traps on three distinct characteristics of these devices. These 3 mechanisms are: degradation in the IV characteristics, self-heating and gate-lag. Displacement-damage induced degradation in AlGaN/AlN/GaN HEMTs with polarization charge induced 2DEGs is examined using simulations and experiments. Carrier removal in the unintentionally doped AlGaN layer changes the space charge in the structure and this changes the band bending. The band bending decreases the 2DEG density, which in turn reduces the drain current in the device. The effect of the defect energy levels on the 2DEG density is also studied. The interplay between band bending, mobility degradation, and the charged defects is analyzed and quantified. Experiments and TCAD simulations are used to study the relationship between bulk traps, self-heating and mobility degradation in AlGaN/AlN/GaN HEMTs. Bulk traps in the GaN channel region and other regions of the device degrade the 2DEG density and the mobility in the device. This in turn degrades the performance of the device. Mobility degradation is closely coupled with the self-heating in the device. The interplay between bulk traps, mobility degradation and self-heating is analyzed and quantified. Experiments and simulations showing the impact of proton irradiation induced bulk traps on gate lag in AlGaN/AlN/GaN HEMTs are analyzed. Pre-existing donor-like surface traps in the gate-drain and source-gate access regions cause the majority of the gate-lag in the device. The simulations indicate that these traps at the AlGaN/Nitride surface are very close to the valence band. Gate lag increases with increased bulk traps. This is due to the reduction in the 2DEG density as a result of band bending and mobility degradation. The experiments and simulations did not indicate any substantial hot electron induced current collapse due to bulk traps.
    Show full item record

    Files in this item

    Icon
    Name:
    Finaldraft.pdf
    Size:
    6.962Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy