• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    A novel gene-environment interaction: the Huntington mutation suppresses manganese accumulation and toxicity

    Williams, Brooke Blairanne
    : https://etd.library.vanderbilt.edu/etd-03292010-105231
    http://hdl.handle.net/1803/11692
    : 2010-04-10

    Abstract

    ABSTRACT Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder predominantly afflicting the striatum. It is clear that an expansion of a glutamine encoding CAG triplet-repeat in the Huntingtin (HTT) gene causes HD. However, the molecular basis of the selective pathology has not been elucidated. The wild-type HD protein has recently been discovered to play a role in iron homeostasis and associates with copper. Like HD, copper (Cu), iron (Fe), and manganese (Mn) neurotoxicity is associated with basal ganglia dysfunction. Environmental overexposure to the essential metal Mn leads to accumulation of Mn in the basal ganglia and a parkinsonian-like condition called manganism. Recognizing the pathophysiological similarities between HD and the neurotoxicity of these metals, we hypothesized that metals may exhibit gene-environment interactions with the HD gene, HTT. To determine the contribution of specific physiological and pathological processes to selective neuropathology in HD, we tested various metals that influence similar neuronal populations to identify modifications in cellular functions of the normal or disease-causing HD protein. Using a cellular model of HD, we have found that expression of the mutant HTT protein induces a resistance specifically to Mn toxicity. To understand the cellular basis of this phenotype, we investigated the possibility that HTT may alter Mn transport. We found that net accumulation of Mn is substantially decreased in cells expressing mutant HTT under standard culture conditions and after Mn exposure. Given previous reports linking HTT with iron homeostasis, we examined a role for Fe transport in this phenotype. Our data indicate that functional differences in Fe homeostasis only partially contribute to the Mn transport deficit. Assessment of other known Mn transporters (e.g. Divalent metal transporter 1 (DMT1) and the Zip8 family) failed to reveal a significant contribution for these pathways. To corroborate the Mn transport defects in vivo, we exposed the YAC128Q mouse model of HD to Mn and found that mutant HTT selectively impairs net Mn transport in the striatum, the brain region most vulnerable to HD. Therefore, we conclude that mutant HTT alters Mn homeostatic control and has the potential to contribute to selective degeneration.
    Show full item record

    Files in this item

    Icon
    Name:
    BWilliamsdissertation.pdf
    Size:
    1.406Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy