• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Not Just for Pulling Chromosomes: The Role of Kinetochore-Microtubules in Enforcing Bipolarity of the Human Mitotic Spindle

    Gayek, Anna Sophia
    : https://etd.library.vanderbilt.edu/etd-03282016-121934
    http://hdl.handle.net/1803/11635
    : 2016-03-30

    Abstract

    Two processes influence the success of mitosis, the process by which eukaryotic cells divide their replicated genome into two new daughter cells. First, the cell must build a bipolar array of microtubules called the mitotic spindle, which is accomplished by microtubule sliding by the Kinesin-5 Eg5; second, a subset of those microtubules, called kinetochore-microtubules (K-MTs), must attach correctly to each chromosome. The stability of these K-MT attachments to the chromosome influences whether chromosomes will segregate correctly in anaphase, but an influence of K-MT stability on the ability of cells to build or maintain bipolar spindles had not been recognized. Here we show that human cell lines with high K-MT stability are better able to maintain bipolar spindles when Eg5 is inhibited compared to cell lines with low K-MT stability. Artificially stabilizing K-MTs promoted bipolarity maintenance, while destabilizing K-MTs undermined the maintenance of bipolarity. In addition, inhibition of the mitotic master-regulator cyclin-dependent kinase-1 (CDK-1) in the G2 phase of the cell cycle stabilized K-MTs after CDK-1 inhibition was relieved, which promoted bipolar spindle maintenance without Eg5 but undermined mitotic fidelity. These results indicate that the dynamics of K-MTs play a previously unappreciated role in determining the overall geometry of the mitotic spindle.
    Show full item record

    Files in this item

    Icon
    Name:
    Gayek.pdf
    Size:
    3.209Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy