• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    A Machine Learning-Based Information Retrieval Framework for Molecular Medicine Predictive Models

    Wehbe, Firas Hazem
    : https://etd.library.vanderbilt.edu/etd-03282011-223440
    http://hdl.handle.net/1803/11612
    : 2011-04-16

    Abstract

    Molecular medicine encompasses the application of molecular biology techniques and knowledge to the prevention, diagnosis and treatment of diseases and disorders. Statistical and computational models can predict clinical outcomes, such as prognosis or response to treatment, based on the results of molecular assays. For advances in molecular medicine to translate into clinical results, clinicians and translational researchers need to have up-to-date access to high-quality predictive models. The large number of such models reported in the literature is growing at a pace that overwhelms the human ability to manually assimilate this information. Therefore the important problem of retrieving and organizing the vast amount of published information within this domain needs to be addressed. The inherent complexity of this domain and the fast pace of scientific discovery make this problem particularly challenging. This dissertation describes a framework for retrieval and organization of clinical bioinformatics predictive models. A semantic analysis of this domain was performed. The semantic analysis informed the design of the framework. Specifically, it allowed the development of a specialized annotation scheme of published articles that can be used for meaningful organization and for indexing and efficient retrieval. This annotation scheme was codified using an annotation form and accompanying guidelines document that were used by multiple human experts to annotate over 1000 articles. These datasets were then used to train and test support vector machine (SVM) machine learning classifiers. The classifiers were designed to provide a scalable mechanism to replicate human experts’ ability (1) to retrieve relevant MEDLINE articles and (2) to annotate these articles using the specialized annotation scheme. The machine learning classifiers showed very good predictive ability that was also shown to generalize to different disease domains and to datasets annotated by independent experts. The experiments highlighted the need for providing unambiguous operational definitions of the complex concepts used for semantic annotations. The impact of the semantic definitions on the quality of manual annotations and on the performance of the machine learning classifiers was discussed.
    Show full item record

    Files in this item

    Icon
    Name:
    Firas_Wehbe_Dissertation_20110 ...
    Size:
    3.623Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy