• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Learning the State of Patient Care and Opportunities for Improvement from Electronic Health Record Data with Applications in Breast Cancer Patients

    Harrell, Morgan Rachel
    : https://etd.library.vanderbilt.edu/etd-03272017-150059
    http://hdl.handle.net/1803/11550
    : 2017-04-17

    Abstract

    Patient care is complex and imperfect. Understanding and improving patient care requires clinical datasets and scientific methodology. We designed a set of methods to characterize the state of patient care and identify opportunities for improvement from electronic health record (EHR) data. The state of patient care is the distribution of patients throughout a clinical workflow. An opportunity for improvement is a means to shift patient distribution away from suboptimal states. We tested our methods within Vanderbilt University Medical Center’s (VUMC) EHR system and the adjuvant endocrine therapy domain. Our methods divide into three aims: 1) Determine sufficiency of the data, 2) Characterize the state of care, and 3) Identify opportunities for improvement. Data sufficiency is the rise and persistence of data in an EHR system. We built metrics for data sufficiency that can be used in cohort and data selection. We find that despite inconsistent and missing data, we can leverage EHR data for studies on patient care. To characterize the state of patient care, we built a state diagram for adjuvant endocrine therapy at VUMC, and used EHR data to determine the distribution of patient across states. We measured drug choice frequencies, rates of adverse events, and recurrence rates. We also determined the extent to which EHR data can characterize complete patient care. To identify an opportunity for patient care improvement, we identified a suboptimal state (failure to follow-up) among VUMC adjuvant endocrine therapy patients and framed a classification problem using EHR data. We used supervised machine learning to predict follow-up and identify significant predictors that may inform on improvement. Patients that fail to follow-up may receive the majority of their care outside of VUMC. Follow-up could be improved by 1) referral to VUMC primary care provider or 2) documenting where patients follow-up to reduce ambiguity of care. These methods characterized the state of patient care and opportunities for improvement among an adjuvant endocrine therapy patient population using VUMC’s EHR data. We believe these methods are extensible to other EHR systems and other healthcare domains. These methods are valuable for drawing new clinical knowledge from clinical datasets.
    Show full item record

    Files in this item

    Icon
    Name:
    MHarrell.pdf
    Size:
    1.053Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy