• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Myocardial Strain Analysis and Heart Rate Variability as Measures of Cardiomyopathy in Duchenne Muscular Dystrophy

    Mendoza, John Ernesto
    : https://etd.library.vanderbilt.edu/etd-03272017-095050
    http://hdl.handle.net/1803/11535
    : 2017-03-27

    Abstract

    Duchenne muscular dystrophy (DMD) is a progressive myopathy caused by mutations in the dystrophin gene, leading to contraction-induced damage, inflammation, and necrosis in skeletal and cardiac muscles. Reliable methods of characterizing DMD cardiomyopathy are essential for effective pharmacological therapy. Myocardial circumferential strain (εcc) measured via harmonic phase (HARP) analysis is commonly used to measure cardiomyopathy. Heart rate variability (HRV) data can be used to quantify autonomic compensation in diseased patients, potentially providing an additional method of disease characterization. In this retrospective investigation, we hypothesized that 1) our custom HARP algorithm would be correlated with equivalent results from standard clinical software, and 2) that the εcc results would be correlated with HRV parameters. Twenty-eight boys with DMD were studied (ages 8-21). Cardiac MRI data included spatial modulation of magnetization (SPAMM)-tagged images, acquired throughout the cardiac cycle. HARP analysis was used to calculate peak Lagrangian εcc. Forty-eight-hour Holter monitoring data were acquired. Parasympathetic input-associate power (PIAP) was determined by spectral analysis of R-R intervals observed during sleep to determine the proportion of total power in the high-frequency band. The εcc results from our HARP algorithm were correlated with clinically-used values (r=0.79, p<1.0x10-7). PIAP measurements from two randomly sampled periods did not differ significantly (p=0.51) and had high reliability (intraclass correlation=0.923, p<0.001; n=28). However, PIAP did not prove to be a significant measure of disease characterization. Though promising patterns exist, key study limitations must be addressed in order to conclude that HRV parameters can provide an alternate method of assessing DMD.
    Show full item record

    Files in this item

    Icon
    Name:
    JohnMendoza.pdf
    Size:
    1.010Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy