• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Investigating the cognitive processing of experience for decision making in robots: accounting for internal states and appraisals

    Gordon, Stephen Michael
    : https://etd.library.vanderbilt.edu/etd-03272009-113539
    http://hdl.handle.net/1803/11497
    : 2009-04-09

    Abstract

    Real-time search techniques have been used extensively in the areas of task planning and decision making. In order to be effective, however, these techniques require task-specific domain knowledge in the form of heuristic or utility functions. These functions can either be embedded by the programmer, or learned by the system over time. Unfortunately, many of the reinforcement learning techniques that might be used to acquire this knowledge generally demand static feature vector representations defined a priori. Current neurobiological research offers key insights into how the cognitive processing of experience may be used to alleviate dependence on pre-programmed heuristic functions as well as on static feature representations. Research also suggests that emotion-based appraisals are influenced by such processing and that these appraisals integrate with the cognitive decision-making process, providing a range of useful and adaptive control signals that focus, inform, and mediate deliberation. While the integration of emotion and cognition may limit an agent’s ability to find the most optimal solution, it is argued here that many real-world tasks only require adequate solutions, so long as those solutions can be identified quickly. This dissertation investigates how experience, stored within episodic memory, may be processed to develop a set of emotion-based appraisals that can then be used as a guide for future deliberation. These appraisals include techniques for identifying relevant information, estimating utility, predicting and adjusting for urgency, and checking fit. When derived from experience, each appraisal should contribute uniquely to deliberation and enable robotic systems to quickly determine acceptable solutions for complex tasks.
    Show full item record

    Files in this item

    Icon
    Name:
    etd.pdf
    Size:
    2.444Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy