• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Advancing accelerometry-based physical activity monitors: quantifying measurement errors and improving energy expenditure prediction

    Rothney, Megan Pearl
    : https://etd.library.vanderbilt.edu/etd-03272007-072536
    http://hdl.handle.net/1803/11485
    : 2007-04-10

    Abstract

    As the rate of obesity increases in the western world, the interest in understanding the process of maintaining healthy body weight has become an increasingly important public health priority. Because physical activity is the most variable component of energy expenditure both intra- and inter-individual, it has become a key factor in both individual weight loss prescriptions and public health recommendations. In spite of its widely recognized importance, the ability to accurately quantify patterns of physical activity has been limited by measurement technology that is often unable to render accurate predictions of energy expenditure over the course of days or weeks. One popular measurement tool for quantifying physical activity intensity is the accelerometer. Though the physical basis of the measurement would suggest that accelerometers can predict energy expenditure with a high degree of accuracy, to date, this promise has not been realized. This thesis addresses several critical gaps in our understanding of energy expenditure predictions using accelerometers. Three commercially available, single site accelerometers were coupled with seven regression equations from the literature to predict energy expenditure in a heterogeneous sample of healthy adult volunteers. We explored errors in energy expenditure prediction by both examining the accelerometer hardware as well as by proposing an analytical approach to energy expenditure prediction incorporating high frequency (32 Hz) data collection and artificial neural network modeling. Results of these experiments highlighted limitations in the single site accelerometers both in clinical data and in data collected using mechanically generated accelerations. Additionally we demonstrated improvements in energy expenditure prediction relative to single site accelerometers as well as a multi-site accelerometer array by using an artificial neural network approach for predicting energy expenditure. Results from these studies will be used to better understand the capabilities of accelerometers to assess physical activity in the field environment, which serves to improve our understanding of energy balance and obesity.
    Show full item record

    Files in this item

    Icon
    Name:
    thesis_mpr03372007.pdf
    Size:
    1.485Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy