• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Determining the Role of the Perivascular Microenvironment on Reproductive Function in an Organ-on-Chip Model of the Human Endometrium

    Gnecco, Juan Sebastian
    : https://etd.library.vanderbilt.edu/etd-03262018-230902
    http://hdl.handle.net/1803/11474
    : 2018-04-12

    Abstract

    The endometrium is the tissue lining the inner cavity of the uterus in which nidation and pregnancy maintenance occurs. To date, there are no physiological models that recapitulate the human endometrial microenvironment; thus, our understanding of the role of the vasculature in regulating endometrial reproductive processes remains largely unknown. “Organs-on-a-Chip” (OoC) models are compartmentalized microfluidic cultures of heterotypic cells that better approximate the human in vivo conditions. Herein, we engineered and established an OoC model of the human endometrial perivascular stroma to test the hypothesis that the endometrial vascular endothelium plays a role in regulating both normal reproduction function and disease pathogenesis. We examined the crosstalk between prolonged cultures of human endometrial endothelial cells and stromal fibroblasts under hormonal and physiological signals. Our studies demonstrated that shear stress-induced secretion of specific endothelial cell-derived prostaglandins enhances perivascular response to progesterone via a paracrine mechanism. Altogether, these translational findings show that the endometrial vascular endothelium plays a key physiologic role during the initiation of perivascular decidualization in the human endometrium. Furthermore, vascular dysfunction alters the immune-endocrine inflammatory axis of the endometrium and contributes to the pathogenesis of endometrial disorders. Specifically, endocrine disruptors such as the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) promoted an enhanced immune cell recruitment. Identification of specific inflammatory mediators necessary during endometrial reproductive processes may have clinical utility as therapeutic targets for reproductive disorders such as infertility, endometriosis, preeclampsia and poor pregnancy outcomes.
    Show full item record

    Files in this item

    Icon
    Name:
    Gnecco.pdf
    Size:
    7.538Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy