• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Hybrid Silicon-Vanadium Dioxide Photonic Devices for Optical Modulation

    Miller, Kevin Joseph
    : https://etd.library.vanderbilt.edu/etd-03262018-180125
    http://hdl.handle.net/1803/11470
    : 2018-03-27

    Abstract

    The integration of optical components with silicon complementary metal–oxide–semiconductor (CMOS) technology may lead to the increase in information carrying capacity and reduction in power consumption necessary to continue the scaling the performance of microelectronic devices historically predicted by Moore’s law. Silicon photonic structures that can guide light are well suited for such integration. However, the indirect band gap and relatively weak electro-optic responses of silicon provide challenges for chip-based lasing and modulation, two key functions necessary for an integrated photonic platform. For this reason, incorporation of materials possessing superior optical properties to silicon is actively being explored on silicon photonic platforms. The focus of this dissertation is to advance the scientific understanding and performance metrics of silicon-based optical modulators through hybridization with the actively tunable optical phase change material, vanadium dioxide (VO2). First, integration of VO2 onto a silicon ring resonator photonic platform and the subsequent electro-optic modulation of this hybrid structure are demonstrated. A tradeoff between extinction ratio and device response times is found when different VO2 patch lengths are utilized. Second, a platform in which VO2 is embedded within a silicon waveguide is realized. This embedded geometry increases interaction between the guided mode and VO2 in comparison to a geometry in which VO2 is placed on top of the silicon waveguide. Theoretical and experimental characterization through finite-difference time-domain analysis and temperature-dependent transmission measurements, respectively, demonstrates the tradeoff between extinction ratio and insertion loss as a function of VO2 patch length. Finally, the potential implementation of the hybrid silicon/VO2 embedded waveguide as an all-optical modulator with in-plane excitation is considered and its expected performance is compared to state-of-the-art all-optical modulators.
    Show full item record

    Files in this item

    Icon
    Name:
    KJMiller.pdf
    Size:
    26.52Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy