• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Novel Nanoporous Composite Materials for Light Gas Adsorption

    Furtado, Amanda M. B.
    : https://etd.library.vanderbilt.edu/etd-03262012-120949
    http://hdl.handle.net/1803/11404
    : 2012-04-11

    Abstract

    This research addresses the synthesis and development of biphasic, nanoporous composite materials for use in single pass filters of various types for the removal of light acidic and basic gases from humid air. Potential applications of the new adsorbent materials range from military and first responder protective masks to industrial filters. Research into several different composite materials is considered, including mesoporous silica impregnated with metal salts, a metal organic phase, carbonaceous phases, and organoalkoxysilanes. The research also includes an organoalkoxysilane-modified zirconium hydroxide composite. The materials are characterized using a plethora of analytical techniques including nitrogen isotherms, BET surface areas, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. They are also tested for light gas capacities of ammonia and sulfur dioxide using a breakthrough apparatus. Of the materials reviewed in this work, the organoalkoxysilane-modified composites exhibit the highest single pass capacities for sulfur dioxide, a representative acidic gas, and ammonia, a representative basic gas. A siliceous MCM-41 support provides high capacity for ammonia, and a zirconium hydroxide support provides high capacity for sulfur dioxide. Functional groups including carbonyls and amines grafted onto the supports provide ammonia and sulfur dioxide capacity, respectively. Two organoalkoxysilane molecules have also been grafted onto the supports to optimize the capacities. For example, MCM-41 has been grafted with 3-aminopropyltriethoxysilane, which contains an amine functional group, as well as 3-triethoxypropylsilyl isocyanate, which contains a carbonyl group, to produce an adsorbent with high capacities for both sulfur dioxide and ammonia. The resulting biphasic materials have high adsorption capacities for these gases, and the adsorbents can be easily tuned to capture a predominant amount of either gas.
    Show full item record

    Files in this item

    Icon
    Name:
    Dissertation_main.pdf
    Size:
    3.182Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy