• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Fluids and polymer composites comprising detonation nanodiamond

    Branson, Blake Tucker
    : https://etd.library.vanderbilt.edu/etd-03262010-131940
    http://hdl.handle.net/1803/11386
    : 2010-04-10

    Abstract

    Ultra-dispersed Diamond (UDD) is synthetically produced by the detonation of carbon-containing explosives in an oxygen-deficient atmosphere. UDD, comprised of 5-nm diamond particles, is an attractive nanomaterial because of diamond’s outstanding thermal, chemical, and mechanical properties. Application of UDD additives in fluid and polymer materials has been limited by the strong tendency for the primary diamond nanoparticles to aggregate into structures with sizes ranging from hundreds of nanometers to microns. In this work, a method to separate the UDD aggregates into primary nanodiamond (ND) nanoparticles is demonstrated. De-aggregation processing techniques are coupled with surface functionalization strategies to disperse ND into fluids and polymeric materials. Nanofluids containing ND exhibit excellent nanoparticle stability and enhanced thermal conductivity. Multiple functionalization strategies are explored to achieve particle dispersion in polar and non-polar solvents as well as to elucidate how different surface functional groups may affect the thermal conductivity enhancement of nanofluid systems. Functionalized ND is incorporated into both thermoplastic and thermosetting polymer matrices for enhancement of mechanical properties. An assortment of surface functionalization strategies is employed to achieve high-quality dispersions and to examine how various interfacial phenomenon can affect macroscopic material properties.
    Show full item record

    Files in this item

    Icon
    Name:
    BRANSON_PhD_Dissertation.pdf
    Size:
    2.464Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy