• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Subgroups and Quotients of Fundamental Groups

    Corson, Samuel Mark
    : https://etd.library.vanderbilt.edu/etd-03252016-151756
    http://hdl.handle.net/1803/11351
    : 2016-04-09

    Abstract

    We explore the descriptive set theory of subgroups of fundamental groups, giving theorems regarding dichotomies on cardinality. In paticular, we show that the quotient of the fundamental group of a path connected, locally path connected Polish space by a normal subgroup which is sufficiently eay to describe topologically (of ``nice' pointclass having the property of Baire) is either countable or of cardinality continuum. In case the space is compact, countability of the quotient implies the quotient is finitely generated. We give upper bounds on the complexity of some subgroups, such as the shape kernel and the Spanier group. Applications to the normal generation of groups are given, as well as an application to covering space theory. We present an array of theorems regarding the first homology of Peano continua. We also demonstrate the existence of subgroups of all but finitely many additive and multiplicative Borel types. We prove that torsion-free word hyperbolic groups are n-slender, and the class of n-slender groups is closed under graph products.
    Show full item record

    Files in this item

    Icon
    Name:
    Corson.pdf
    Size:
    587.3Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy