• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Boron Clusters as the Centerpiece of Advanced Liquid Crystals: Fundamental Chemistry and Properties

    Ringstrand, Bryan Scott
    : https://etd.library.vanderbilt.edu/etd-03242011-210842
    http://hdl.handle.net/1803/11205
    : 2011-04-06

    Abstract

    Liquid crystals incorporating boron clusters are of interest for electro-optics, ion transport, and fundamental structure-property relationship studies. A liquid crystal is a fluid possessing orientational and positional order between that of the lattice of a solid (long-range orientational and long-range positional order) and the random disorder (no orientational or positional order) of a liquid. Balance between the rigidity of the molecular core and flexible periphery dictates the type of liquid crystalline phase and its stability. Anisometric molecules, typically rods or discs, form liquid crystalline phases. closo-Boron clusters are inorganic structures characterized by highly delocalized bonding and high chemical, oxidative, and thermal stability. These clusters can exist as highly symmetrical molecules that are either neutral or negatively charged. Within this framework, a negatively charged boron cluster, [closo-1-CB9H10]-, was exploited as the centerpiece of both zwitterionic and ionic liquid crystalline materials. Access to these materials was limited by the lack of synthetic methodology and understanding of reactive intermediates of the [closo-1-CB9H10]- anion. Therefore, a systematic approach was taken to advance the synthetic and physical-organic chemistry of the [closo-1-CB9H10]- anion within the context of incorporating it into liquid crystalline structures. Once this stepwise approach was completed, the newly discovered methodology was employed in the preparation of advanced liquid crystalline materials containing the [closo-1-CB9H10]- anion. Both the zwitterionic and ionic materials were studied for liquid crystalline properties using thermal, optical, and in some cases dielectric and XRD methods. The zwitterionic materials posses large longitudinal dipole moments and were utilized as additives to other liquid crystals, which caused large increases in the dielectric properties of the bulk material. These findings are promising for electro-optical applications. The ionic materials displayed typical liquid crystalline behavior expected for ionic architectures. However, the design of such materials is unique in that the anisometric anion is the driving force behind the organization of the molecules in the fluid phase. These types of materials are promising for photo-physical effects and the potential transport of ions for energy storage or delivery.
    Show full item record

    Files in this item

    Icon
    Name:
    PhDDissertation.pdf
    Size:
    12.33Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy