• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Outcome Misclassification in Logistic Regression: Examining Hospitalization Risk and its Association with Health Literacy

    Stanley, Brooklyn
    : https://etd.library.vanderbilt.edu/etd-03152019-155008
    http://hdl.handle.net/1803/10805
    : 2019-03-19

    Abstract

    In a cohort of patients seeking primary care, the Mid-South Coronary Heart Disease Cohort Study (MSCHDCS) sought to examine the association between health literacy and hospitalization risk in the year following enrollment. The hospital admission outcome data were originally collected from the Vanderbilt University Medical Center (VUMC); however, researchers eventually realized hospitalizations might be missed, and so they expanded hospital admissions to also include the surrounding Vanderbilt Health Affiliated Network (VHAN). By including admissions to non-VUMC hospitals, new hospitalizations were identified, and so by only using VUMC admissions data, many outcomes were misclassified. The goal of this research is to explore the potential impact outcome misclassification can have in settings similar to MSCHDCS where the hospitalizations might be missed due to inadequate outcome measurement. We explore the impact of non-differential and differential misclassification on naïve analyses and demonstrate the impact that misclassification can have on the results when it is dependent on the variables of interest, as in the MSCHDCS data. In the presence of suspected differential misclassification, we propose to collect validation data on a subset of patients and describe methods that can be used in conjunction with this data to obtain unbiased coefficient estimates. While older methods depend on prior knowledge of the sensitivity and specificity for the misclassification, the validation data removes this limitation and allows for adjustment with more flexible, non-parametric methods. With the highlighted adjustment methods, non-biased estimates were obtained in a simulation study as well as in the example data.
    Show full item record

    Files in this item

    Icon
    Name:
    Stanley.pdf
    Size:
    374.3Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy