• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Protein structure elucidation by combining computational and experimental methods

    DeLuca, Stephanie Judith Han Hirst
    : https://etd.library.vanderbilt.edu/etd-03102015-221044
    http://hdl.handle.net/1803/10724
    : 2015-03-25

    Abstract

    Membrane proteins remain a particular challenge in structural biology. Only approximately 1.5% of reported tertiary structures and around 100 unique polytopic membrane proteins are represented in the Protein Data Bank (PDB). Site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) is often used for the structural characterization of proteins that elude other techniques, such as X-ray crystallography and NMR. RosettaEPR combines SDSL-EPR distance data with computational methods to improve high-resolution protein structure prediction. We demonstrated the feasibility of using RosettaEPR with soluble proteins by benchmarking the method on T4-lysozyme, for which a final model of 1.7Å accuracy was obtained. RosettaTMH, a new membrane protein de novo folding method that employs rigid body sampling, is also introduced. It expands upon RosettaEPR to cover the important class of membrane proteins. RosettaTMH was benchmarked on 34 membrane proteins of known structure using simulated EPR distance restraints. It was able to sample the correct topology for 33 of 34 proteins and improves Rosetta’s ability to predict the three-dimensional structure of large membrane proteins, such as transporters and receptors.
    Show full item record

    Files in this item

    Icon
    Name:
    deluca.pdf
    Size:
    26.08Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy