• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    The effects of auditory stimulus level and speech recognition performance on fNIRS measured cortical activation in adults with normal hearing and adults with cochlear implants

    Sheffield, Sterling Wilkinson
    : https://etd.library.vanderbilt.edu/etd-03082016-193820
    http://hdl.handle.net/1803/10704
    : 2016-03-09

    Abstract

    An objective measure, not requiring a behavioral response, of speech recognition performance in individuals with cochlear implants (CIs) would be beneficial in directing clinical recommendations. Neuroimaging can be such a measure but is difficult in the CI population. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that is viable for CI recipients. This dissertation began to examine the potential of fNIRS in this population by determining the effects of speech recognition performance and stimulus intensity level on fNIRS recorded cortical activation. We hypothesized that fNIRS responses would be correlated with both intensity level and speech recognition performance. Thirteen adults with bilateral CIs and 16 adults with normal hearing were included in the study. Experiment one used signal-correlated noise to determine the effect of intensity level in the range of soft to loud speech (45-75 dB SPL). Experiment two used both signal-correlated noise and sentences presented in background babble at three different signal-to-noise ratios to determine the effect of speech recognition performance on cortical activity. fNIRS data were recorded in the left hemisphere. The experiment one showed a positive correlation of auditory cortical activation with stimulus intensity level in both groups. In contrast, experiment two revealed a difference between the groups. The adults with normal hearing had stronger activation in the auditory cortex, inferior frontal gyrus, and the inferior parietal lobe with higher speech recognition. In contrast, the CI group had the opposite effect with stronger activation in those same areas with lower speech recognition. The stimulus level results are consistent with the literature and out hypothesis. The results of the second experiment are consistent with our hypothesis and the literature in only the normal hearing group. This is the first study to use neuroimaging for speech recognition in noise in individuals with CIs. Research is needed to further examine cortical activation patterns for speech recognition in noise in these two groups. These results support the potential of fNIRS as a measure of speech recognition performance at a group level. The individual variability was large, however, and might limit the potential of fNIRS at an individual level.
    Show full item record

    Files in this item

    Icon
    Name:
    Sheffield.pdf
    Size:
    14.52Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy