• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Design and Optimization of ‘Smart’ Nanoparticles for Targeting of the STING Pathway with Applications in Cancer Immunotherapy

    Shae, Daniel
    : https://etd.library.vanderbilt.edu/etd-03042019-120929
    http://hdl.handle.net/1803/10674
    : 2019-03-11

    Abstract

    I detail the rational design and optimization of STING-NPs: a nanoparticle delivery platform that stimulates innate immunity and T cell activation through targeted activation of the stimulator of interferon genes (STING) protein, a critical cytosolic immune sensor of oncogenesis that has historically been difficult to target due to the poor pharmacokinetic properties of its natural ligand, cGAMP. STING-NPs comprise self-assembling, pH responsive, and endosomolytic polymers and overcome delivery barriers associated with cGAMP delivery by facilitating the cellular uptake and endosomal escape of cGAMP, facilitating a 2-3 order of magnitude enhancement in drug potency. Administration of STING-NPs in murine tumor models initiates a multifaceted pro-inflammatory program associated with type I interferon expression and recruitment of T cells into the tumor microenvironment, eliciting tumor suppression or complete rejection through both intratumoral and systemic administration routes. Strikingly, STING-NP treatment is capable of mediating rejection of primary tumor growth as well as generating systemic and long-lived antitumor immunity, manifesting in suppression of distal tumor growth and resistance to cancer cell rechallenge. Efficacy is improved with the addition of checkpoint blockade antibodies, demonstrating that STING-NP treatment can sensitize tumors to ICB. Finally, the activity of STING-NPs is validated in an ex vivo model of freshly resected human melanoma.
    Show full item record

    Files in this item

    Icon
    Name:
    Shae.pdf
    Size:
    7.654Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy