• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Development of Vertical Nanodiamond Vacuum Field Emission Microelectronic Integrated Devices

    Hsu, Shao-Hua
    : https://etd.library.vanderbilt.edu/etd-02272014-153712
    http://hdl.handle.net/1803/10632
    : 2014-03-05

    Abstract

    Recent development of nanocrystalline diamonds has demonstrated the potential use of diamond material for vacuum microelectronics. Apart from the advantages of conventional microcrystalline diamond, nanodiamond with smaller grain size and smoother surface morphology possesses unique properties including the insertion of deliberate amounts of sp2-carbon into the sp3-diamond matrix and controlled electrical conductivity, expanding its utility for practical applications. This research is focused on the design, fabrication, and characterization of nitrogen-incorporated nanodiamond vacuum field emission (VFE) functional devices and integrated circuits, specifically on vertically configured VFE transistors, triodes, and differential amplifiers (diff-amps). A well-controlled and IC-compatible fabrication process has been developed to achieve three-terminal nanodiamond VFE integrated devices for vacuum micro/nanoelectronics. The nanodiamond pyramidal sharpened nanotips built with self-aligned silicon gate and anode electrodes were fabricated by employing a dual-mask microfabrication process which involved a silicon-on-insulator (SOI) mold transfer technique in collaboration with chemical vapor deposition (CVD) of nanodiamond and silicon gate partitioning. With proper design of the electrodes placement, the fabricated VFE functional devices have achieved transistor and triode characteristics, and they have been further implemented into vacuum integrated circuit building block – differential amplifiers. The nanodiamond VFE transistors and triodes demonstrate efficient gate-modulated electron field emission behavior with low operating voltages, high emission current, and negligible gate intercepted current. The dc characteristics of the transistor demonstrate distinct linear, saturation and cutoff regions with low turn-on gate voltage and high amplification factor. The triode demonstrates high emission current with efficient current modulation by low gate voltages. The ac signal amplification performance has been evaluated, indicating the applicability of nanodiamond VFE transistors and triodes as signal amplifiers and buffer amplifiers, respectively. An identical pair of nanodiamond VFE transistors with well-matched field emission characteristics was constructed and employed to accomplish a nanodiamond VFE diff-amp for the first time. A large common-mode-rejection ratio (~ 60 dB) was realized, demonstrating a viable approach to vacuum-based IC technology. These achievements signify the fundamental step for further development of vacuum integrated micro/nanoelectronics for practical applications, including high-speed, high-power and extreme-environment electronics.
    Show full item record

    Files in this item

    Icon
    Name:
    Hsu.pdf
    Size:
    33.79Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy