• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Role of Ca2+/Calmodulin-Dependent Protein Kinase II in Regulating the Metabotropic Glutamate Receptor 5

    Marks, Christian Randal
    : https://etd.library.vanderbilt.edu/etd-02202019-113322
    http://hdl.handle.net/1803/10598
    : 2019-02-21

    Abstract

    Multi-protein complexes formed through protein-protein interactions in the dendrites of neurons are highly regulated to facilitate proper synaptic function. The work presented in this dissertation highlights the importance of a novel interaction between two synaptic regulators: Calcium/Calmodulin Dependent Protein Kinase II (CaMKII) and the metabotropic glutamate receptor 5 (mGlu5). Here, I show that CaMKII can bind to and phosphorylate the mGlu5 C-terminal domain (CTD). In vitro characterization showed that the mGlu5-CTD directly interacts with Thr286-autophosphorylated CaMKII. I identified three basic residues on the mGlu5-CTD necessary for the mGlu5-CaMKII interaction. Mutagenesis of these residues allowed for the construction of a full-length mGlu5 construct with reduced CaMKII binding. I hypothesized that the mGlu5-CaMKII interaction could modulate mGlu5 signaling. Activation of mGlu5 results in downstream signals that increase intracellular Ca2+ release and activate ERK to regulate many cellular processes. The co-expression of active CaMKII increased basal mGlu5 surface expression and ERK activation in heterologous cells. In addition, CaMKII modulated mGlu5-mediated Ca2+ release in heterologous cells, decreasing the initial Ca2+ amplitude, but prolonging the relative Ca2+ signal. Therefore, I hypothesized that knockdown of CaMKII in neurons would result in increased mGlu5-mediated Ca2+ signals. However, knockdown of CaMKII reduced mGlu5-specific Ca2+ signals in neuronal cultures. This effect was specific to mGlu5 because CaMKII knockdown had no effect on L-type voltage dependent Ca2+ channel (LTCC) signals. However, knockdown of an important synaptic scaffolding protein, Shank-3, reduced mGlu5 and LTCC Ca2+ responses.
    Show full item record

    Files in this item

    Icon
    Name:
    C.Marks_Dissertation.pdf
    Size:
    30.73Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy