• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Enhanced defect generation in gate oxides of P-channel MOS transistors in the presence of water

    Dasgupta, Aritra
    : https://etd.library.vanderbilt.edu/etd-02062009-162823
    http://hdl.handle.net/1803/10534
    : 2009-02-06

    Abstract

    Hydrogenous species play a key role in radiation induced charge buildup in metal oxide semiconductor field effect transistors (MOSFETs). The effects of water on defect formation in MOSFETs before and after radiation exposure have been studied. Transistors built in Sandia National Laboratories' 4/3-ìm technology were exposed to water at 130 °C for times up to three weeks. The n-channel transistors did not show as much sensitivity to water as the p-channel transistors. Irradiation of the n-channel transistors exposed to moisture, followed by a long-term biased anneal, resulted in a small increase in interface-trap and oxide-trap charge densities in the gate oxides. Greatly enhanced post-irradiation defect generation was observed in the gate oxides of p-channel MOS transistors that were exposed to water. Low frequency (1/f) noise measurements also showed enhanced noise power spectral densities in the moisture-exposed p-channel transistors consistent with the enhanced post-irradiation increase in defect density. Phosphorus and boron dopant atoms are present in the field oxides of the n-channel and p-channel transistors because of source and drain implant steps. Boron accelerates water penetration and phosphorus suppresses water diffusion in SiO2. This can lead to enhanced water-induced defect formation in the gate oxides of p-channel transistors compared to n-channel transistors before and after irradiation. These results are significant for the performance of MOS technologies in non-hermetic environments where water can be present; in particular, the degradation of devices and circuits may be larger in these cases than expected from reliability and radiation tests that do not account for the additional degradation that can occur because of water and its reactions in SiO2.
    Show full item record

    Files in this item

    Icon
    Name:
    Thesis.pdf
    Size:
    833.8Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy