• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    The DNA Cleavage Reaction of Human Type II Topoisomerases

    Deweese, Joseph Edward
    : https://etd.library.vanderbilt.edu/etd-02042009-111432
    http://hdl.handle.net/1803/10523
    : 2009-02-04

    Abstract

    The work presented in this dissertation examines the DNA cleavage activity of human topoisomerase II. Type II topoisomerases are required for removing DNA knots and tangles and are important chemotherapy drug targets. The ability to cleave DNA is critical to the cellular and pharmacological functions of human type II topoisomerases. To study the mechanism of DNA cleavage, we developed a system that isolates topoisomerase II-mediated DNA scission from ligation using substrates containing a 3’-bridging phosphorothiolate at the scissile bond. The characteristics of topoisomerase IIá-mediated cleavage of phosphorothiolate oligonucleotides were identical to those seen with wild-type substrates, except that no ligation was observed. The unidirectional accumulation of cleavage complexes enabled us to examine the effects of topoisomerase II poisons on the rate of DNA cleavage and will be valuable for future studies on DNA scission and the topoisomerase II-DNA cleavage complex. Topoisomerase II modulates DNA topology by generating double-stranded breaks in DNA. However, it is unclear how the enzyme coordinates its protomer halves. Results demonstrate that a nick at one scissile bond dramatically increases the rate of cleavage by human topoisomerase IIá at the opposite-strand scissile bond. We propose that this enhanced “second strand” activity coordinates the two topoisomerase II active sites, allowing the enzyme to create double-stranded breaks. We also found that nicks poison topoisomerase II and generate new cleavage sites. Finally, the role of metal ions in the DNA cleavage reactions of human topoisomerase IIá and IIâ were characterized. Results demonstrate that both enzymes employ a two-metal-ion mechanism for DNA cleavage. Also, an interaction between one divalent metal ion and the 3’-bridging atom of the scissile phosphate greatly enhances enzyme-mediated DNA cleavage, most likely by stabilizing the leaving 3’-oxygen. Further, there is an important interaction between a second metal ion and a non-bridging atom of the scissile phosphate that stimulates DNA cleavage mediated by topoisomerase IIâ. Although this non-bridging interaction frequently is postulated in models for enzyme-mediated DNA cleavage, our evidence with topoisomerase IIâ is the first biochemical demonstration that a metal ion contacts this position during scission.
    Show full item record

    Files in this item

    Icon
    Name:
    DeweeseDissertation.pdf
    Size:
    8.198Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy