• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    A study of small heat shock proteins structure and function by cryo-electron microscopy.

    Shi, Jian
    : https://etd.library.vanderbilt.edu/etd-01162008-104354
    http://hdl.handle.net/1803/10436
    : 2008-01-17

    Abstract

    Small heat shock proteins (sHSPs) are a ubiquitous family of chaperones that protect unfolded proteins from irreversible aggregation in the cell. Human sHSPs are associated with the pathology of a variety of diseases. The high resolution structures of mammalian members of the sHSP family have not yet been achieved presumably because they form polydisperse oligomers. The engineered variants of monodisperse Hsp16.5 adapt to diverse quaternary structures, therefore serve as a model system for mammalian sHsps. In this work, we have combined biophysical approaches, cryoEM single particle reconstruction and spin labeling EPR spectroscopy to study various forms of engineered Hsp16.5 and their complexes with substrates. Our studies show that sequence variation in the N-terminal region of Hsp16.5 can dramatically influence its oligomeric structure. The oligomeric plasticity may result from the flexible linker region in the C-terminus, which allows two dimers to interact in a continuum of angles. A hypothetical model proposed for a polydisperse Hsp16.5 variant provides a feasible explanation for the polydispersity of human sHSPs. Our results suggest substrates are protected inside the sHSP oligomer through interactions with the N-termini and α-crystallin domain shell. For polydisperse and expanded oligomers, we hypothesize that increased volume and greater access to the substrate binding sites contribute to enhanced binding ability. Further, our knowledge from this study sheds light on the roles of sHSPs in human disease. Early onset cataractogenesis, related to an Arg mutation in human α-crystallin, may result from hyperactivity of the mutated α-crystallin, as Hsp16.5 with the analogous mutation shows conformational changes similar to those observed after substrate binding. From this study, we have gained insight into the structure and mechanism of polydisperse human sHSPs. The structural analysis of Hsp16.5 variants suggests that sequence divergence in the N-terminal region leads to the wide spectrum of quaternary structures in the sHSP family. We propose that the dynamic and polydisperse nature of sHSPs is important for chaperone function.
    Show full item record

    Files in this item

    Icon
    Name:
    JianShi_Dissertation_final.pdf
    Size:
    5.499Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy