A multifaceted investigation into molecular associations of chronic thromboembolic pulmonary hypertension pathogenesis
Halliday, Stephen J.
Matthews, Daniel T.
Talati, Megha H.
Austin, Eric D.
Su, Yan R.
Absi, Tarek S.
Fortune, Niki L.
Gailani, David
Matafonov, Anton
West, James D.
Hemnes, Anna R.
:
2020-02
Abstract
Purpose
Chronic thromboembolic pulmonary hypertension is characterized by incomplete thrombus resolution following acute pulmonary embolism, leading to pulmonary hypertension and right ventricular dysfunction. Conditions such as thrombophilias, dysfibrinogenemias, and inflammatory states have been associated with chronic thromboembolic pulmonary hypertension, but molecular mechanisms underlying this disease are poorly understood. We sought to characterize the molecular and functional features associated with chronic thromboembolic pulmonary hypertension using a multifaceted approach.
Methods
We utilized functional assays to compare clot lysis times between chronic thromboembolic pulmonary hypertension patients and multiple controls. We then performed immunohistochemical characterization of tissue from chronic thromboembolic pulmonary hypertension, pulmonary arterial hypertension, and healthy controls, and examined RNA expression patterns of cultured lymphocytes and pulmonary arterial specimens. We then confirmed RNA expression changes using immunohistochemistry, immunofluorescence, and Western blotting in pulmonary arterial tissue.
Results
Clot lysis times in chronic thromboembolic pulmonary hypertension patients are similar to multiple controls. Chronic thromboembolic pulmonary hypertension endarterectomized tissue has reduced expression of both smooth muscle and endothelial cell markers. RNA expression profiles in pulmonary arteries and peripheral blood lymphocytes identified differences in RNA transcript levels related to inflammation and growth factor signaling, which we confirmed using immunohistochemistry. Gene expression data also suggested significant alterations in metabolic pathways, and immunofluorescence and Western blot experiments confirmed that unglycosylated CD36 and adiponectin expression were increased in chronic thromboembolic pulmonary hypertension versus controls.
Conclusions
Our data do not support impaired clot lysis underlying chronic thromboembolic pulmonary hypertension, but did demonstrate distinct molecular patterns present both in peripheral blood and in pathologic specimens of chronic thromboembolic pulmonary hypertension patients suggesting that altered metabolism may play a role in chronic thromboembolic pulmonary hypertension pathogenesis.