Show simple item record

OCT Guided Micro-Vascular Robotic Surgery: Design, Calibration and Telemanipulation

dc.creatorYu, Haoran
dc.date.accessioned2020-08-22T17:36:05Z
dc.date.available2018-07-25
dc.date.issued2016-07-25
dc.identifier.urihttps://etd.library.vanderbilt.edu/etd-07182016-212430
dc.identifier.urihttp://hdl.handle.net/1803/13211
dc.description.abstractRetinal surgery requires surgeons to manipulate delicate structures with very high precision while contending with perception and manipulation challenges due to the limited repertoire of tools available to them. Current commercial robotic systems are unable to support tasks of orbital manipulation and intraocular dexterity. In addition, the emerging use of optical coherence tomography (OCT) as a feedback modality for surgeons presents questions regarding the value of such feedback and the ways such information can be used by the robot and the surgeon to improve safety and accuracy of retinal surgery. Current OCT and robotic systems are unable to support real-time intervention control and to provide sectional information of the anatomy (B-mode imaging), which is necessary for surgeon feedback during the operation. This dissertation presents design, modeling, calibration and control of robotic systems for increasing the safety of micro-surgery on constrained organs such as the eye. To address the limitations listed above a dual-arm robotic system is improved and customized to meet the needs of safe orbital manipulation. A new modeling approach for constrained telemanipulation of such robots is also developed and demonstrated experimentally. New approaches for calibration of custom B-mode OCT probes and their integration for control feedback and assistive telemanipulation are investigated. Finally, calibration of dual arm robotic systems for manipulation of partially constrained organs is presented with the aim of facilitating eventual clinical deployment. This work provides the theoretical and technological basis for the design and integration of future OCT-guided robotic systems. Results of investigation of the utility of OCT feedback with and without robotic assistance point to the value of a combined solution integrating both technologies. Evaluation of telemanipulation algorithms suggests that the combined use of vision and OCT feedback for assistive telemanipulation control can improve task execution accuracy and safety. The evaluation of the new calibration algorithms
dc.format.mimetypeapplication/pdf
dc.subjectmedical robot
dc.subjectoptical coherence tomography
dc.subjectophthalmic surgery
dc.subjectvirtual fixture
dc.titleOCT Guided Micro-Vascular Robotic Surgery: Design, Calibration and Telemanipulation
dc.typedissertation
dc.contributor.committeeMemberKarl Zelik
dc.contributor.committeeMemberKaren M. Joos
dc.contributor.committeeMemberNilanjan Sarkar
dc.contributor.committeeMemberPietro Valdastri
dc.type.materialtext
thesis.degree.namePHD
thesis.degree.leveldissertation
thesis.degree.disciplineMechanical Engineering
thesis.degree.grantorVanderbilt University
local.embargo.terms2018-07-25
local.embargo.lift2018-07-25
dc.contributor.committeeChairNabil Simaan


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record