• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Neurology
    • View Item
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Neurology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Reduction of Leukocyte Microvascular Adherence and Preservation of Blood-Brain Barrier Function by Superoxide-Lowering Therapies in a Piglet Model of Neonatal Asphyxia

    Kennedy, Nan
    : https://ir.vanderbilt.edu/xmlui/handle/1803/9900
    : 2019-05-01

    Abstract

    Background: Asphyxia is the most common cause of brain damage in newborns. Substantial evidence indicates that leukocyte recruitment in the cerebral vasculature during asphyxia contributes to this damage. We tested the hypothesis that superoxide radical (O-2(radical anion)) promotes an acute post-asphyxial inflammatory response and blood-brain barrier (BBB) breakdown. We investigated the effects of removing O-2(radical anion) by superoxide dismutase (SOD) or C-3, the cell-permeable SOD mimetic, in protecting against asphyxia-related leukocyte recruitment. We also tested the hypothesis that xanthine oxidase activity is one source of this radical. Methods: Anesthetized piglets were tracheostomized, ventilated, and equipped with closed cranial windows for the assessment of post-asphyxial rhodamine 6G-labeled leukocyte-endothelial adherence and microvascular permeability to sodium fluorescein in cortical venules. Asphyxia was induced by discontinuing ventilation. SOD and C-3 were administered by cortical superfusion. The xanthine oxidase inhibitor oxypurinol was administered intravenously. Results: Leukocyte-venular adherence significantly increased during the initial 2 h of post-asphyxial reperfusion. BBB permeability was also elevated relative to non-asphyxial controls. Inhibition of O-2(radical anion) production by oxypurinol, or elimination of O-2(radical anion) by SOD or C-3, significantly reduced rhodamine 6G-labeled leukocyte-endothelial adherence and improved BBB integrity, as measured by sodium fluorescein leak from cerebral microvessels. Conclusion: Using three different strategies to either prevent formation or enhance elimination of O-2(radical anion) during the post-asphyxial period, we saw both reduced leukocyte adherence and preserved BBB function with treatment. These findings suggest that agents which lower O-2(radical anion) in brain may be attractive new therapeutic interventions for the protection of the neonatal brain following asphyxia.
    Show full item record

    Files in this item

    Thumbnail
    Name:
    Reduction of Leukocyte Microva ...
    Size:
    2.167Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Neurology

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy