• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Optimizing PEG Molecular Weight and Molar Composition for Enhanced In Vivo Pharmacokinetics of a Mixed Micellar siRNA Carrier

    Miteva, Martina
    : https://etd.library.vanderbilt.edu/etd-12022013-175726
    http://hdl.handle.net/1803/15044
    : 2013-12-12

    Abstract

    RNA interference (RNAi) by small interfering RNA (siRNA) possesses great promise as a therapeutic for pathologies whose etiology is related to gene overexpression. However, due to the poor pharmacokinetic properties of siRNA, it requires a carrier for in vivo intravenous delivery. Historically, nucleic acid delivery systems have utilized cationic lipids or polymers as carriers, but such agents are poorly translatable in vivo, as they have inadequate hemo-stability, a short blood circulation half-life, and can lead to unexpected toxicity. Here, we introduce a series of novel mixed micelles that modulate the molar concentration and lengths of poly(ethylene glycol) (PEG) on the corona of the micelles to achieve charge shielding that improves the pharmacokinetic properties of the siRNA-micelle complex, while maintain significant levels of gene knockdown. Hemocompatibility and in vitro stability is increased for micelles with greater PEG surface concentration and for micelles with higher molecular weight PEG in the corona. When delivered intravenously in vivo, micelles with a higher molecular weight PEG in the corona demonstrate a significantly improved blood circulation half-life (17.8 minutes for micelles with a 20 kDa PEG vs. 4.6 minutes for micelles with a 5 kDa PEG) and a 4-fold decrease in lung accumulation. These improved in vivo pharmacokinetics have the potential to be applied to leverage the enhanced permeation and retention (EPR) effect for biodistribution to and gene silencing in vascularized tumors.
    Show full item record

    Files in this item

    Icon
    Name:
    Miteva_BME_Masters.pdf
    Size:
    3.285Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy