• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    •   Institutional Repository Home
    • Electronic Theses and Dissertations
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Studies of Functional Connectivity in White Matter

    Wu, Tung-Lin
    : https://etd.library.vanderbilt.edu/etd-03222016-213015
    http://hdl.handle.net/1803/11072
    : 2016-03-23

    Abstract

    Resting state functional magnetic resonance imaging (rsfMRI) has been widely used for measuring functional connectivity between cortical regions. However, there have been minimal reports of rsfMRI in white matter, presumably because of the sparse vasculature in white matter relative to gray, and the consistent failure to observe significant hemodynamic responses from tasks within white matter. In this study, we aimed to investigate and assess the nature of temporal variations in rsfMRI signals from human and monkey brains in white matter. Previous studies have reported that the correlations of time course signals in a resting state between voxels are anisotropic in white matter. We therefore constructed functional correlation tensors (FCTs) that quantify the functional relationships between neighboring voxels and their anisotropy in normal brains at rest, and compared these to underlying structural features. Furthermore, we elucidated the underlying biophysical mechanisms that account for their origins by assessing whether MRI signal fluctuations in white and gray matter vary for different baseline levels of neural activity. We found FCTs were capable of visualizing long range white matter tracts as well as short range sub-cortical fibers imaged at rest, suggesting temporal resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Moreover, our monkey studies revealed that fractional power of rsfMRI signals are modulated similarly in regions of SI cortex, gray and white matter as neural baseline activity is varied. Our results imply that neural activity is encoded in white matter, and that that BOLD signal fluctuations in white matter may be detected in a resting state.
    Show full item record

    Files in this item

    Icon
    Name:
    Wu_Master_Thesis_2016.pdf
    Size:
    2.006Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Electronic Theses and Dissertations

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy