• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Division of Hematology / Oncology
    • Research publications
    • View Item
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Division of Hematology / Oncology
    • Research publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Endothelial PAI-1 (Plasminogen Activator Inhibitor-1) Blocks the Intrinsic Pathway of Coagulation, Inducing the Clearance and Degradation of FXIa (Activated Factor XI

    Puy, Cristina
    Ngo, Anh T. P.
    Pang, Jiaqing
    Keshari, Ravi S.
    Hagen, Matthew W.
    Hinds, Monica T.
    Gailani, David
    Gruber, Andras
    Lupu, Florea
    McCarty, Owen J. T.
    : http://hdl.handle.net/1803/10023
    : 2019-07

    Abstract

    Objective- Activation of coagulation FXI (factor XI) by FXIIa (activated factor XII) is a prothrombotic process. The endothelium is known to play an antithrombotic role by limiting thrombin generation and platelet activation. It is unknown whether the antithrombotic role of the endothelium includes sequestration of FXIa (activated factor XI) activity. This study aims to determine the role of endothelial cells (ECs) in the regulation of the intrinsic pathway of coagulation. Approach and Results- Using a chromogenic assay, we observed that human umbilical veins ECs selectively blocked FXIa yet supported kallikrein and FXIIa activity. Western blotting and mass spectrometry analyses revealed that FXIa formed a complex with endothelial PAI-1 (plasminogen activator inhibitor-1). Blocking endothelial PAI-1 increased the cleavage of a chromogenic substrate by FXIa and the capacity of FXIa to promote fibrin formation in plasma. Western blot and immunofluorescence analyses showed that FXIa-PAI-1 complexes were either released into the media or trafficked to the early and late endosomes and lysosomes of ECs. When baboons were challenged with Staphylococcus aureus to induce a prothrombotic phenotype, an increase in circulating FXIa-PAI-1 complex levels was detected by ELISA within 2 to 8 hours postchallenge. Conclusions- PAI-1 forms a complex with FXIa on ECs, blocking its activity and inducing the clearance and degradation of FXIa. Circulating FXIa-PAI-1 complexes were detected in a baboon model of S. aureus sepsis. Although ECs support kallikrein and FXIIa activity, inhibition of FXIa by ECs may promote the clearance of intravascular FXIa.
    Show full item record

    Files in this item

    Thumbnail
    Name:
    Endothelial PAI-1 (Plasminogen ...
    Size:
    1.569Mb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Research publications

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy