• About
    • Login
    View Item 
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Cardiovascular Medicine
    • Research reports
    • View Item
    •   Institutional Repository Home
    • Vanderbilt University Medical Center
    • Cardiovascular Medicine
    • Research reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Institutional RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Use of Genetic Variants Related to Antihypertensive Drugs to Inform on Efficacy and Side Effects

    Gill, Dipender
    Georgakis, Marios K.
    Koskeridis, Fotios
    Jiang, Lan
    Feng, Qiping
    Wei, Wei-Qi
    Theodoratou, Evropi
    Elliott, Paul
    Denny, Joshua C.
    Malik, Rainer
    Evangelou, Evangelos
    Dehghan, Abbas
    Dichgans, Martin
    Tzoulaki, Ioanna
    : http://hdl.handle.net/1803/10055
    : 2019-07-23

    Abstract

    Background: Drug effects can be investigated through natural variation in the genes for their protein targets. The present study aimed to use this approach to explore the potential side effects and repurposing potential of antihypertensive drugs, which are among the most commonly used medications worldwide. Methods: Genetic proxies for the effect of antihypertensive drug classes were identified as variants in the genes for the corresponding targets that associated with systolic blood pressure at genome-wide significance. Mendelian randomization estimates for drug effects on coronary heart disease and stroke risk were compared with randomized, controlled trial results. A phenome-wide association study in the UK Biobank was performed to identify potential side effects and repurposing opportunities, with findings investigated in the Vanderbilt University biobank (BioVU) and in observational analysis of the UK Biobank. Results: Suitable genetic proxies for angiotensin-converting enzyme inhibitors, beta-blockers, and calcium channel blockers (CCBs) were identified. Mendelian randomization estimates for their effect on coronary heart disease and stroke risk, respectively, were comparable to results from randomized, controlled trials against placebo. A phenome-wide association study in the UK Biobank identified an association of the CCB standardized genetic risk score with increased risk of diverticulosis (odds ratio, 1.02 per standard deviation increase; 95% CI, 1.01-1.04), with a consistent estimate found in BioVU (odds ratio, 1.01; 95% CI, 1.00-1.02). Cox regression analysis of drug use in the UK Biobank suggested that this association was specific to nondihydropyridine CCBs (hazard ratio 1.49 considering thiazide diuretic agents as a comparator; 95% CI, 1.04-2.14) but not dihydropyridine CCBs (hazard ratio, 1.04; 95% CI, 0.83-1.32). Conclusions: Genetic variants can be used to explore the efficacy and side effects of antihypertensive medications. The identified potential effect of nondihydropyridine CCBs on diverticulosis risk could have clinical implications and warrants further investigation.
    Show full item record

    Files in this item

    Thumbnail
    Name:
    Use of Genetic Variants Related ...
    Size:
    698.3Kb
    Format:
    PDF
    View/Open

    This item appears in the following collection(s):

    • Research reports

    Connect with Vanderbilt Libraries

    Your Vanderbilt

    • Alumni
    • Current Students
    • Faculty & Staff
    • International Students
    • Media
    • Parents & Family
    • Prospective Students
    • Researchers
    • Sports Fans
    • Visitors & Neighbors

    Support the Jean and Alexander Heard Libraries

    Support the Library...Give Now

    Gifts to the Libraries support the learning and research needs of the entire Vanderbilt community. Learn more about giving to the Libraries.

    Become a Friend of the Libraries

    Quick Links

    • Hours
    • About
    • Employment
    • Staff Directory
    • Accessibility Services
    • Contact
    • Vanderbilt Home
    • Privacy Policy