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Cold exposure induces dynamic, 
heterogeneous alterations in human 
brown adipose tissue lipid content
Crystal L. Coolbaugh1, Bruce M. Damon1,2,3,4, Emily C. Bush1, E. Brian Welch1,2,3 & 
Theodore F. Towse1,2,5,6

Brown adipose tissue undergoes a dynamic, heterogeneous response to cold exposure that can 
include the simultaneous synthesis, uptake, and oxidation of fatty acids. The purpose of this work was 
to quantify these changes in brown adipose tissue lipid content (fat-signal fraction (FSF)) using fat-
water magnetic resonance imaging during individualized cooling to 3 °C above a participant’s shiver 
threshold. Eight healthy men completed familiarization, perception-based cooling, and MRI-cooling 
visits. FSF maps of the supraclavicular region were acquired in thermoneutrality and during cooling 
(59.5 ± 6.5 min). Brown adipose tissue regions of interest were defined, and voxels were grouped 
into FSF decades (0–10%, 10–20%…90–100%) according to their initial value. Brown adipose tissue 
contained a heterogeneous morphology of lipid content. Voxels with initial FSF values of 60–100% 
(P < 0.05) exhibited a significant decrease in FSF while a simultaneous increase in FSF occurred in 
voxels with initial FSF values of 0–30% (P < 0.05). These data suggest that in healthy young men, cold 
exposure elicits a dynamic and heterogeneous response in brown adipose tissue, with areas initially rich 
with lipid undergoing net lipid loss and areas of low initial lipid undergoing a net lipid accumulation.

Human brown adipose tissue exhibits a variety of neural, vascular, and metabolic responses to cold exposure. 
For example, cold exposure stimulates a sympathetically mediated increase in the rate of oxidative metabo-
lism of brown and beige adipocytes. This “activation” of brown and beige fat results in increased uptake of both 
glucose and non-esterified, or free, fatty acids. Due to the elevated expression of uncoupling protein-1 in the 
mitochondria of these adipocytes, the increased rate of oxidative metabolism also generates heat in an effort to 
defend core body temperature1,2. While brown adipose tissue was initially rediscovered in adult humans using 
18F-deoxyglucose positron emission tomography (FDG-PET)3–5, quantitatively the most important substrate for 
brown adipose tissue thermogenesis is intracellular lipids6–10. Indeed, cold-activated brown adipocytes exhibit 
a complex set of behaviors regarding lipid mobilization, with the synthesis, uptake, and oxidation of fatty acids 
occurring simultaneously11,12.

Biomedical imaging and spectroscopy are preeminent methods for studying the spatial distribution of many 
physiological and biochemical processes in vivo, and they provide complementary information about the struc-
ture and function of brown adipose tissue13,14. Of these methods, PET, X-ray computed tomography, and mag-
netic resonance (MR) imaging and spectroscopy allow investigators to study brown adipose tissue lipid content. 
PET imaging of tracers such as 18F-6-thia-heptadecanoic acid can be used to measure the uptake of non-esterified 
fatty acids into brown adipose tissue during cold exposure7,15–17. X-ray computed tomography can distinguish 
between brown and white adipose tissues based on their Hounsfield units18,19. 1H-MR spectroscopy has been used 
to characterize the content and degree of unsaturation of the lipids within brown vs. white adipocytes, revealing 
reduced levels of unsaturation and polyunsaturation in the lipids stored in brown adipose tissue20. Quantitative 
fat-water MRI, originally described as Dixon imaging21, allows the separation of fat- and water-derived MRI sig-
nal components and the spatial mapping of fat content in organs such as white and brown adipose tissue, skeletal 
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muscle, and liver22. Typically, this is expressed as the fat signal fraction (FSF), which is the proportion of MRI 
signal that is derived from lipids. Importantly, FSF can be used to detect brown adipose tissue independent of its 
activation status meaning that cold exposure is not required to estimate brown adipose tissue’s distribution in the 
body19.

Another important advantage of MRI is that it is non-invasive, non-destructive, and absent of ionizing radi-
ation. Although this property allows MRI to be used to study the temporal dynamics of physiological processes 
in vivo, we are aware of only a single study in which MRI was used to study FSF changes as a function of time 
during cold exposure23. However, this study used a two-point Dixon imaging method, which is unable to account 
for natural signal decay processes, inhomogeneity in the MRI scanner’s static magnetic field, or the existence of 
multiple lipid moieties in lipid molecules as it estimates FSF24,25. The use of MRI to study human brown adipose 
tissue is also limited by the lack of uniformity in data acquisition and analysis methods. For example, there is a 
lack of consensus concerning the range of FSF values that define human brown adipose tissue13 with the ideal 
range apparently varying in a subject-specific manner26.

Therefore, the overall goal of this study was to measure the response of human brown adipose tissue with 
fat-water MRI during approximately one hour of personalized cooling to a target temperature of 3 °C above a 
participant’s previously determined shiver threshold27. Our primary hypothesis was that brown adipose tissue 
lipid content, represented as FSF, would decrease following cold exposure. We also sought to characterize the 
temporal relationship between brown adipose tissue FSF and cold stress. We find that in healthy, young adult 
males, supraclavicular brown adipose tissue contains a diverse morphological distribution of lipids that under-
goes heterogeneous changes in brown adipose tissue FSF in response to a cold stimulus.

Methods
Participants.  Representative data from Stahl et al.23 were used to determine the number of participants 
required to detect a change in brown adipose tissue FSF in response to individualized cooling. Assuming a 
decrease of 2.9% (effect size = 1.45) to be scientifically relevant, a minimum sample size of 7 volunteers was 
needed to compare thermoneutral and cold exposure brown adipose tissue FSF values with α = 0.05 and 
β = 0.8528. An additional subject was recruited to account for attrition.

Participants were recruited for the study from the local community via word-of-mouth and email adver-
tisements. Prior to enrollment, volunteers completed a telephone screening interview to ensure compatibility 
with the following eligibility criteria: between 18 and 35 years of age; no use of tobacco products; no history 
or symptoms of cardiovascular, pulmonary, neurological, or metabolic disease; no current use of prescribed or 
over-the-counter medications known to affect thermoregulation or brown adipose tissue activity29,30; and no 
contraindications for an MRI exam. Subject recruitment was not targeted towards a specific physical activity level 
or racial or ethnic group. Female volunteers were excluded from this study due to difficulties scheduling multiple 
study visits during the follicular phase of the menstrual cycle, a constraint needed to limit the potential effects 
of sex hormones on thermoregulation31. The Vanderbilt University Medical Center Institutional Review Board 
approved the study procedures. All participants provided written, informed consent, and methods were carried 
out in accordance with relevant guidelines and regulations.

Study procedures.  Volunteers completed three separate study visits: familiarization, a perception-based 
cooling protocol (PCP), and an MRI cooling protocol (Fig. 1). Prior to PCP and MRI sessions, participants were 
required to avoid vigorous and moderate physical activity32 for 72 and 24 h, respectively; refrain from alcohol 
for 24 h; and consume no food or beverage other than water for 8 h. Compliance with pretest restrictions was 
confirmed via questionnaire, and both sessions were performed in the morning between 0800 h and 1000 h in a 
room with an ambient temperature of ~21 °C. Participants wore standard clothing (briefs, shorts, and socks; total 
insulation = 0.12 clo33) for each session. At the PCP session, subjects’ height, mass, and waist circumference were 
measured using a calibrated stadiometer, scale, and Gulick tape measure, respectively. Body height and mass were 
used to calculate body mass index (mass (kg) divided by height squared (m)) and estimate body surface area with 
the DuBois and DuBois formula34.

Familiarization and PCP cold exposure methods were performed as described previously27, and similar equip-
ment and subject setup details were implemented in the MRI session. In brief, two water-circulating blankets 
were secured around the participant and connected to a Blanketrol® III hyper-hypothermia system (Cincinnati 
Sub-Zero, Cincinnati, OH, USA). Blanket water temperatures were set to ~ 32 °C for an initial thermoneutral 
period, and temperatures were then decreased to achieve the target cooling profile for the session. Participants 
provided thermal sensation (e.g. “Neutral”, “Cold”, “Very Cold”) and shivering feedback in real-time with a key-
pad connected to a thermoesthesia Graphical User Interface (tGUI)35 throughout each session. Familiarization 
and PCP cooling profiles were designed to introduce the participant to the test environment and to identify 
the participant’s shiver threshold – the water temperature that elicited sustained shivering (>1 min duration as 
self-reported on the tGUI tool)27. For the MRI session, the cooling profile was individualized to maximize cold 
exposure and minimize shivering (Fig. 1). In general, blanket water temperatures were lowered from thermoneu-
tral to 6 °C above the participant’s shiver threshold before cooling continued to 3 °C above shiver threshold for the 
remaining duration of the protocol (59.5 ± 6.5 min total cold exposure, depending on the schedule constraints of 
the imaging session). To personalize cooling progression, we asked the participant (via the MRI telecom system) 
in 8 min intervals (or phases) to self-report his ability to tolerate the temperature without shivering. If shivering 
occurred, water temperature was increased to 6 °C above shiver threshold for a phase or until shivering ceased. 
Set and actual water temperatures were logged every 30 s to a laptop computer (Blanketrol® III Data Export 
Software). Blanketrol® III and tGUI data were synchronized to image acquisition time stamps and summarized 
offline36.
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MRI data acquisition.  MRI data were acquired using a Philips Achieva 3T scanner equipped with a 
16-channel neurovascular coil (Philips Healthcare, Best, The Netherlands) (Fig. 1). Three plane localizers and 
high-resolution T2-weighted images were obtained of the neck and upper torso to assist in planning fat-water 
MRI scans of the supraclavicular region. The fat-water MRI sequence, summarized in Table 1, was performed at 
thermoneutral (acquisition 1) and between 20 to 28 times per participant during cold exposure. Image analyses 
were completed offline using custom scripts written in MATLAB (Mathworks, Natick, MA).

MRI data processing.  Fat-water separation.  Fat-water image reconstruction was completed using proce-
dures similar to those described in our previously published method19 and are summarized briefly here. Initial 
processing steps removed the first echo of each six-echo train (Fig. 2, process 1, “Fat-Water MRI Acquisition”) to 
reduce potential phase contamination from the eddy currents in the complex fat-water signal37. Fat-water separa-
tion was then performed using a complex, three-dimensional optimization algorithm38 with a seven-peak spectral 
fat model that has been validated for 3T scanner field strength across a range of fat fractions39. We conducted 
simulation studies that demonstrated that it was not necessary to account for potential temperature-induced 
changes in the water proton resonance frequency within the brown adipose tissue when estimating the FSF (see 
Supplementary Materials). FSF parameter maps were calculated from the fat and water magnitude images while 
considering the dominant signal (i.e. water or fat) of each voxel19, and background voxels representing noise were 
removed.

Figure 1.  Schematic of the study timeline and procedures. Familiarization and perception-based cooling 
protocol (PCP) sessions were completed as previously described27. The magnetic resonance image (MRI) 
session included imaging procedures (slice planning and fat-water MRI) during thermoneutral and cold 
conditions. The temperature of two water-circulating blankets was adjusted to individualize cooling according 
to the participant’s shiver threshold (ST), which was identified during the PCP session.
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Image registration.  Image volumes were co-registered for each participant to compensate for shifts in body 
position during the MRI cooling protocol (Fig. 2, process 2a, “Image Registration”). Using the water magni-
tude images, the three-dimensional spatial correspondences between the first echo of the initial (acquisition 1) 
and subsequent (acquisitions 2–21…29) images were obtained (MATLAB function imregdemons). The resultant 
three-dimensional deformation fields were then applied (MATLAB function imwarp) to each FSF parameter map 
to complete registration (Fig. 2, process 3, “Fat-Signal Fraction (FSF) Map”). To reduce the impact of registration 
artifacts on FSF analyses, analysis of the image volumes was constrained to slices 6 to 13, an approximate anatom-
ical region covering the distal portion of the neck through the apex of the lungs.

Image registration results were validated using a control point mapping technique (Fig. 2, process 2b, 
“Registration Validation”). Nine control points or fiducials were manually selected (B. M. D.) in four slices in the 
thermoneutral, unregistered cold exposure, and registered cold exposure images. The final cold exposure image 
was selected for each participant because it reflected the cumulative effect of all body motion throughout the 
study. The investigator was blinded to the image type (i.e. thermoneutral, unregistered, or registered), and control 
points were placed at reproducible anatomical landmarks and near possible brown adipose tissue depots. The 
in-plane Euclidean distance was calculated for the control points before and after registration, and registration 
errors were summarized across all subjects.

Region of interest (ROI) definition.  Supraclavicular brown adipose tissue, subcutaneous adipose tissue, and mus-
cle regions of interest (ROIs) were delineated manually (C. L. C.) and slice wise on the right and left sides of the 
body on the thermoneutral FSF map (Fig. 2, process 4, “ROI Selection”). Preliminary analysis did not suggest 
left-right differences; therefore, ROIs were combined to form a single bilateral ROI for each tissue type. The supr-
aclavicular ROI was defined to include adipose tissue located between the clavicle and scapula with care taken to 
avoid bone marrow and areas adjacent to the lungs. When selecting the brown adipose tissue ROI boundary, the 
range of displayed FSF values was constrained between 30 and 80% to limit inclusion of muscle and subcutaneous 
adipose tissue in areas where the tissues were adjacent. All ROIs were eroded once to reduce the impact of partial 
volume artifacts (signal averaging of multiple, overlapping tissues in a single volume) on the calculated FSF value, 
and voxels containing erroneous fat-water separation results (FSF < 0 or > 100%) were masked. ROIs were then 
applied to the respective slice in the remaining co-registered images.

FSF analysis.  FSF values were summarized over all slices in each ROI. Due to the lack of an established FSF 
range for brown adipose tissue13, we considered three threshold options for the ROI: 0–100%, 40–100%40–42, and 
50–100%19,43. All FSF values (0–100%) were included in the subcutaneous adipose tissue and muscle ROIs. We 
also implemented an FSF decade grouping approach to further explore the apparent heterogeneity of lipid content 
within brown adipose tissue (Fig. 2, process 5, “FSF Analysis”). In the thermoneutral image (acquisition 1), voxels 
in the ROI of each tissue type were assigned to an FSF decade {0–10%}, {10–20%},… {90–100%}, where {10–20%} 
indicates FSF values greater than or equal to 10% and less than 20%. A voxel’s identity in the FSF decade was 
maintained for each subsequent image, and FSF decades with <60 voxels were excluded from summary analyses 
to ensure stable estimates of mean FSF. Bootstrap resampling of a population of >4000 voxel-wise FSF values was 
used to determine a minimum ROI size of 60 voxels was sufficient to estimate mean FSF within ±5%.

FSF values were averaged as a function of image acquisition number; as a function of normalized cooling 
dose – a construct we developed to account for temperature, temporal, and body size differences associated with 
individualized cooling (Fig. 3); and as a function of thermal sensation. Normalized cooling dose, Eq. (1), was 
calculated for each participant using the recorded cooling profile data:

Imaging Parameter Value

Pulse Sequence 3D multiple fast field echo

Coil 16-channel neurovascular receive coil

Orientation Axial

Number of Slices 15

Axial In-Plane Field of View 530 × 200 mm

Acquired Voxel Size 1.25 × 1.25 × 4.00 mm

Acquisition Time 115.7 s

Repetition Time 17 ms

Number of Echoes 18 (3 × 6 interleaved sets)

First Echo Time 1.395 ms

Effective Echo Time 0.737 ms

Flip Angle 5°

Water-Fat Shift 0.505 pixels

Table 1.  Fat-Water Magnetic Resonance Imaging Sequence Parameters. No contrast agents were used. Data 
were acquired under normal breathing conditions. Preparation phases for each scan included first order linear 
B0 shimming and center frequency optimization.
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where relative water temperature represented the difference in blanket water temperature from the thermoneutral 
temperature (T0 − T(t)), and t2 − t1 was the time interval of interest (e.g. the time between fat-water MRI acqui-
sitions for the MRI session). Thermal sensation values were extracted from the MRI-synchronized tGUI data.

Figure 2.  Overview of magnetic resonance imaging (MRI) processing methods. Process 1. Fat-water MR 
images were acquired during thermoneutral (TN) and cold exposure (CE). Exemplary magnitude images for 
echo times 3.61 ms, 4.34 ms, and 13.92 ms are shown. Process 2a. TN and CE images were co-registered with a 
three-dimensional nonrigid registration technique. Process 2b. A nine-point fiducial mapping approach was 
used to validate image registration. The in-plane Euclidean distance between fiducials was reduced following 
registration resulting in a median error of less than one pixel. Process 3. Registered fat-signal fraction (FSF, 
%) maps were derived from the fat-water MR images and corresponding three-dimensional deformation 
fields. Process 4. Regions of interest (ROIs) were manually delineated in brown adipose tissue (BAT, red), 
subcutaneous adipose tissue (SAT, green), and lean muscle (MUS, blue). Process 5. FSF analysis considered all 
voxels in each tissue ROI and included an FSF decade grouping approach. An example of a BAT FSF map (left) 
is shown with its corresponding FSF decade map (right).
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Statistical analysis.  Nonparametric tests were used for all analyses due to the small sample size (n = 7) of 
the study, and significance was defined as P < 0.05. Paired samples Wilcoxon signed rank tests were performed 
to compare PCP and MRI session conditions and to compare thermoneutral (acquisition 1) and cold exposure 
(acquisition 20) mean FSF for each ROI and FSF decade. Data for these comparisons are presented as the differ-
ence in mean FSF (thermoneutral – cold exposure) and the bootstrapped (1000 samples) nonparametric 95% 
confidence interval (CI) for the difference in the mean, unless otherwise noted. In addition, Spearman’s rank 
correlation coefficients (ρ, n = 179 observations) were calculated to test the relationships between mean FSF, nor-
malized cooling dose, and thermal sensation for each brown adipose tissue FSF decade. Statistical analyses were 
performed in R Studio (version 1.0.153; R Studio, Boston, MA, USA).

Results
Subject characteristics and session conditions.  Eight men completed the study at Vanderbilt 
University Medical Center in Nashville, TN between December 2016 and June 2017. Data for one volunteer were 
excluded from analyses due to excessive motion during the MRI session. The general physical characteristics of 
the volunteers and session environmental conditions were unremarkable (Table 2). Shiver threshold water tem-
perature and normalized cooling dose varied, by design, across individuals during the PCP session. Although 
unintended, cooling dose (P = 0.94) and normalized cooling dose (P = 0.94) did not differ significantly between 
PCP and MRI sessions.

Image registration validation.  The Euclidean distance between control point locations in the target and 
unregistered images had a median value of 1.19 pixels (interquartile range, IQR: 1.46 pixels; Fig. 2, process 2b, 
“Registration Validation”). Registration reduced the median Euclidean distance to 0.37 pixels (IQR: 0.46 pixels). 
Notably, the final registration error of less than one pixel supports the use of quantitative pixel-by-pixel compar-
isons of mean FSF changes.

Effect of cold exposure on tissue lipid content.  Region of interest.  Imposing an FSF threshold altered 
the interpreted effect of cold exposure on brown adipose tissue lipid content (Fig. 4). When considering the 
entire FSF range (0–100%), fat content in brown adipose tissue (−1.0%, 95% CI: −10.2 to 7.6%, P = 0.11) and 
subcutaneous adipose tissue (−0.2%, 95% CI: −6.2 to 5.9%, P = 0.38) did not significantly change while muscle 
tissue (1.9%, 95% CI: 1.1 to 2.7%, P = 0.016) exhibited an increase in fat content after exposure to cold. Setting 
the FSF threshold to 40–100% (−4.7%, 95% CI: −12.0 to 2.5%, P = 0.016) and 50–100% (−5.8%, 95% CI: −12.7 
to 0.8%, P = 0.016) for the ROI, however, revealed a significant reduction in lipid content in brown adipose tissue 

Figure 3.  Conceptual model illustrating the calculation of normalized cooling dose, a construct we created 
to standardize reporting of personalized cooling protocols. Simulated water temperature (°C) vs. time 
(min) plots were created to compare two protocols of equal duration that begin (32 °C) and end (10 °C) at 
the same temperatures but follow linear (solid line) or step (dashed line) cooling gradient profiles (a). To 
calculate normalized cooling dose, the following steps are completed: (1) relative water temperatures (°C) are 
expressed as the change (Δ) in temperature from the starting or thermoneutral temperature (b), (2) cooling 
dose (°C*min) is calculated from the area under the relative water temperature curve (c), and (3) normalized 
cooling dose (°C*min*m−2) is found by dividing cooling dose by body surface area to account for differences in 
participant body size (d).
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in response to cold exposure. As expected, mean FSF differed (P = 0.016) between brown adipose tissue (0–100% 
FSF; mean ± standard deviation (s.d.): 52.7 ± 9.5%) and subcutaneous adipose tissue (mean ± s.d.: 89.3 ± 6.7%) 
at thermoneutrality.

Characteristic Value

n 7

Age (years) 26.7 ± 3.4 (22 to 33)

Height (cm) 170.6 ± 6.5 (162 to 180.3)

Mass (kg) 70.8 ± 10.2 (55.8 to 86.4)

Body Mass Index (kg/m2) 23.6 ± 2.5 (19.3 to 27.7)

Body Surface Area (m2) 1.82 ± 0.15 (1.64 to 2.03)

Waist Circumference (cm) 83.1 ± 5.2 (75.8 to 90.4)

Perception Based Cooling (PCP) Session

Outdoor Temperature (°C) 8.5 ± 11.6 (−5 to 26)

Outdoor Humidity (%) 72.9 ± 15.9 (48 to 89)

Indoor Temperature (°C) 20.7 ± 1.9 (17 to 23)

Indoor Humidity (%) 41.7 ± 17.8 (21 to 70)

Shiver Threshold (°C) 15.6 ± 2.4 (13 to 20)

Cooling Dose (°C*min) 698.6 ± 213.5 (400.8 to 1078.3)

Normalized Cooling Dose 
(°C*min*m−2) 383.5 ± 117.0 (243.7 to 604.4)

Magnetic Resonance Imaging (MRI) Session

Outdoor Temperature (°C) 10.2 ± 9.7 (−4 to 22)

Outdoor Humidity (%) 85.0 ± 13.0 (66 to 100)

Indoor Temperature (°C) 21.1 ± 0.76 (20.4 to 22)

Indoor Humidity (%) 48.8 ± 4.7 (41.8 to 51.8)

Cooling Dose (°C*min) 665.9 ± 130.1 (406.1 to 758.3)

Normalized Cooling Dose 
(°C*min*m−2) 366.2 ± 71.5 (246.9 to 436.3)

Table 2.  Summary of Participant Characteristics and Session Conditions. Values are means ± s.d. (Minimum 
to Maximum). Body surface area was calculated using the formula of DuBois and DuBois34. Environmental 
conditions were recorded at the start of the PCP and MRI cooling sessions. Indoor MRI conditions were not 
available for three sessions. Shiver threshold was the water temperature that elicited sustained shivering (>1 min 
in duration) in a participant during the PCP session27. Cooling dose was calculated as the area under the relative 
water temperature versus time curve recorded for each participant during the PCP and MRI sessions. Cooling 
dose was divided by body surface area to account for differences in participant body size.

Figure 4.  Applying a fat-signal fraction (FSF, %) threshold altered the interpreted effect of cold exposure on 
brown adipose tissue (BAT). Comparison of thermoneutral (red) and cold exposure (blue) mean FSF for muscle 
(MUS), BAT, and subcutaneous adipose tissue (SAT). Mean FSF for BAT were calculated using three threshold 
conditions: 0–100%, 40–100%, and 50–100%. The center line in each box indicates the mean, and the top and 
bottom of the box show the 95% bootstrapped confidence intervals for the mean (1000 samples). Wilcoxon 
signed rank tests were performed to compare thermoneutral and cold exposure conditions (n = 7): *P < 0.05.
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FSF decades.  Brown adipose tissue exhibited a varied pattern of lipid loss and uptake in response to cold expo-
sure (Fig. 5a). Mean FSF decreased significantly in FSF decades with high initial lipid contents (60%, P = 0.047; 
70–90%, P = 0.016) with the largest decrease noted in the 90% decade (−14.4%, 95% CI: −10.5 to −19.2%). In 
contrast, FSF decades with low initial amounts of lipid (0–20%; P = 0.016) demonstrated a significant increase 
in mean FSF predominantly in the 0% decade (6.7%, 95% CI: 4.8 to 8.6%). Brown adipose tissue FSF decades in 
the middle lipid range (30%, P = 0.078; 40%, P = 0.47; 50%, P = 0.69) were not significantly altered following cold 
exposure. In skeletal muscle (2.7%, 95% CI: 2.1 to 3.1%, P = 0.016; Fig. 5b) and in subcutaneous adipose tissue 
(−2.9%, 95% CI: −0.4 to −5.6%, P = 0.016; Fig. 5c) small but significant increases and decreases in FSF were 
detected in the extreme FSF decades (i.e. 0% and 90%), respectively. Interestingly, cold exposure did not change 
mean FSF in the 10% decade in muscle (P = 0.69) and unlike brown adipose tissue, mean FSF increased in the 
70% (3.4%, 95% CI: 2.0 to 4.7%, P = 0.031) and 80% (0.87%, 95% CI: −0.18 to 2.0%, P = 0.031) decades of sub-
cutaneous adipose tissue.

Relationship with normalized cooling dose and thermal sensation.  Changes in brown adipose tissue lipid content 
correlated with normalized cooling dose (Fig. 6) and thermal sensation (Fig. 7). Mean FSF in high (60, 70, 80, and 
90%) and low (0, 10, and 20%) FSF decades demonstrated opposing weak negative and positive relationships with 
normalized cooling dose, respectively. Similar relationships existed between mean FSF and thermal sensation; 
however, the relationship was stronger in the high (50, 60, 70, 80, and 90%) and weaker in the low (0 and 10%) 
FSF decades. Mean FSF was not correlated with either normalized cooling dose (30, 40, and 50%) or thermal 
sensation (20, 30, and 40%) for FSF decades in the middle lipid range.

Discussion
The present study highlights the dynamic response of human brown adipose tissue to cold exposure and the 
unique ability of fat-water MRI to quantify these changes as functions of time. Our data revealed a diverse dis-
tribution of high and low lipid areas interspersed throughout the supraclavicular brown adipose tissue depot. 
Upon cold exposure, areas initially rich with lipid exhibited an immediate and dramatic reduction in FSF while a 
simultaneous, opposing increase in FSF occurred in areas with low initial amounts of lipid. Lipid loss and uptake 
were also detected in subcutaneous adipose tissue and skeletal muscle near the neck, respectively. Together, these 
findings provide further support to the suggestion of a coordinated response between brown adipose tissue, sub-
cutaneous adipose tissue, and skeletal muscle to a variety of stressors including exercise and cold exposure11,44–47.

Defining brown adipose tissue with different FSF thresholds influenced ROI-based analysis of supraclavic-
ular brown adipose tissue lipid content. When including all voxels, brown adipose tissue FSF was within the 

Figure 5.  Brown adipose tissue (BAT) lipid content underwent differential changes in mean fat-signal fraction 
(FSF, %) in response to cold exposure with significant increases at lower FSF decades (0–20%) and significant 
reductions in lipid content at the higher FSF decades (60–90%). Comparison of thermoneutral (red) and cold 
exposure (blue) mean FSF for FSF decades in BAT (a), muscle (MUS; b), and subcutaneous adipose tissue 
(SAT; c). Image voxels included in each tissue region of interest were assigned to an FSF decade according to the 
voxel’s initial FSF value (i.e. thermoneutral). For example, an initial FSF value of 33% was assigned to the 30% 
FSF decade. A minimum of 60 voxels were required for the FSF decade to be included in the summary analysis. 
The center line in each box indicates the mean, and the top and bottom of the box show the 95% bootstrapped 
confidence intervals of the mean (1000 samples). Wilcoxon signed rank tests were performed to compare 
thermoneutral and cold exposure conditions (n = 7): *P < 0.05.
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range of previously reported values, which have been as low as 23% in infants48 and as high as 94% in elderly 
adults49. Brown adipose tissue lipid content was also significantly lower than subcutaneous adipose tissue during 
thermoneutral conditions, a finding consistent with other fat-water MRI studies19,43,49–51. Setting different brown 
adipose tissue FSF thresholds, however, altered both the mean FSF value and the significance of the effect of cold 
exposure on brown adipose tissue lipid content – conflicting variabilities noted in other FSF analyses13. Lower and 
upper FSF thresholds are thought to remove voxels containing higher ratios of low (e.g. muscle, connective tissue, 
or blood vessels) and high (e.g. white adipocytes) fat tissues, respectively, to reduce the impact of partial vol-
ume artifacts on MRI-based detection of brown adipose tissue22,52. An optimal FSF threshold, however, remains 
unclear13,26 and is likely to vary with the age and body composition of the study population48,53–55. Excluding 
FSF values could also obfuscate functional characteristics of mixed beige, brown, and white adipocytes located 
in supraclavicular adipose in adult humans56–58. For these reasons, we created a voxel-wise, FSF decade analysis 
which allowed us to compare the heterogeneous morphology of brown adipose tissue to subcutaneous adipose 
tissue and skeletal muscle.

The significant cold-induced net loss in lipid content in brown adipose tissue FSF decades with high initial FSF 
parallels intracellular processes associated with thermogenesis. Although overlap is common, FSF values > 80% 
have been associated with a white rather than a brown adipose tissue phenotype13,50,52, resulting in their exclusion 
from some analyses23,59. We found it notable, therefore, that high FSF decades (60% to 90%) in the supracla-
vicular depot demonstrated a profound loss in fat content several fold greater than has been previously repor
ted19,23,40,42,43,60. Moreover, these trends were not mirrored in subcutaneous adipose tissue, which showed a small 
decrease in FSF in only the 90% decade. Additional biochemical and histological studies are necessary to discern 
definitively if the selected depot contained brown adipose tissue as well as if each FSF decade had a higher ratio 
of beige, brown, or white adipocytes. We can also not exclude partial volume effects of small vessels, nerves, or 
other non-adipose tissues22,52. We speculate, however, that the measured shifts in lipid content indicate lipolysis 
of intracellular triglycerides to fuel brown adipose tissue thermogenesis6–10. Lipid loss in both the brown61 and 
subcutaneous adipose tissue9 could also reflect a cold-induced release of fatty acids into the circulation for use 
elsewhere in the body44,62.

Further, increases in net lipid content in the low FSF voxels of the brown adipose tissue suggests a replenishing 
of intracellular lipid pools to maintain thermogenesis. Cold exposure has been shown to induce a simultaneous 
uptake of fatty acids, glucose, and other substrates from the circulation into brown adipose tissue to generate lipid 
droplets for further use46,63–65. Our data suggest uptake of fatty acids and/or triglyceride synthesis in brown adi-
pose tissue with low fat contents at thermoneutrality. These findings are in line with recent PET-CT data by Din 

Figure 6.  Cold-induced changes in mean fat-signal fraction (FSF, %) in each brown adipose tissue (BAT) 
FSF decade (0–10%: blue; 10–20%: orange; 20–30%: dark-green; 30–40%: red; 40–50%: purple; 50–60%: pink; 
60–70%: lime-green; 70–80%: gray; 80–90%: brown; 90–100%: teal) correlated with normalized cooling dose 
(°C*min*m−2). Data points indicate the individual mean FSF and normalized cooling dose calculated for each 
fat-water magnetic resonance image (i.e. 21–29 data points for each of the 7 participants). Least squares best-fit 
lines are overlaid on the mean FSF data. Correlation (ρ) between mean FSF and normalized cooling dose was 
evaluated with the Spearman’s rank test (n = 179).
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et al.17, in which brown adipose tissue regions with higher radiodensity (i.e. lower lipid contents) had a greater 
uptake of non-esterified fatty acids. Corresponding increases in FSF in skeletal muscle and subcutaneous adipose 
tissue also support a cold-stimulated uptake of fatty acids7 for combustion or storage, respectively45.

It remains unclear if lipids in the middle FSF decades (30–60%) in brown adipose tissue underwent a change 
in response to cold. The similarity of this FSF range to that found in brown adipose tissue in human infants48,56 
implies that the region has a high thermogenic capacity and subsequent demand for intracellular free fatty acids 
in response to cold exposure2,63. Stable lipid content measurements, however, may indicate a dynamic steady-state 
between the intracellular rates of lipolysis and fatty acid re-esterification62. Noninvasive imaging methods are 
needed to quantify the direct amount of heat produced by brown adipose tissue60 to resolve if adipose tissue with 
FSF values in this middle range contribute to cold-induced thermogenesis.

Lipid mobilization within the brown adipose tissue depot occurred rapidly in response to a cold stimulus. With 
progressive cold stress, thermoreceptors in the skin initiate a feedforward response via the hypothalamus to acti-
vate thermoregulatory processes including peripheral vasoconstriction and brown adipose tissue thermogenesis to 
maintain core body temperature66. Our findings support this, as both normalized cooling dose and thermal sensa-
tion, a surrogate measure of peripheral vasoconstriction27, correlated with the dynamic changes in brown adipose 
tissue lipid content. However, the observation that normalized cooling dose and thermal sensation explained at 
most 15% of the variance in FSF suggests that while personalized cooling limited the incidence of shivering, other 
individual responses to cold exposure67 or aspects of the imaging protocol continue to contribute to the variability 
in brown adipose tissue FSF. Future work should consider acquiring images during a prolonged thermoneutral 
period to establish the baseline repeatability of tissue FSF values. Extending the duration or severity of the cooling 
procedure also remains an area of interest to determine if the changes in lipid content in the low- and high-FSF 
decades reach a steady-state or if these alterations continue while brown adipose tissue is maximally activated.

The discussion above presumes that the observed changes in FSF are due primarily to changes in lipid content. 
One notable competing explanation is an increase in perfusion. Brown adipose tissue is highly vascularized, 
allowing for the dissipation of heat and the transport of free fatty acids to the cells11,68; and previous studies have 
reported a two-fold increase in perfusion to brown adipose tissue in response to cold69. It is conceivable that 
vasodilation and a resulting displacement of the tissue around vessels would increase the water signal fraction of 
the voxels. For several reasons, we argue that this process could not be a quantitatively important contribution 
to the FSF changes that we observed. First, Blondin et al.6 found that intracellular triglycerides were the primary 
substrate for brown adipose tissue, with no changes in perfusion. Also, Lundstrom et al.40 found that changes in 

Figure 7.  Cold-induced changes in mean fat-signal fraction (FSF, %) in each brown adipose tissue (BAT) 
FSF decade (0–10%: blue; 10–20%: orange; 20–30%: dark-green; 30–40%: red; 40–50%: purple; 50–60%: 
pink; 60–70%: lime-green; 70–80%: gray; 80–90%: brown; 90–100%: teal) correlated with thermal sensation 
(arbitrary units). Thermal sensation was recorded on a continuous integer scale (Neutral = 50 and Very Cold 
(V. Cold) = 0) via a thermoesthesia graphical user interface35. Data points indicate the individual mean FSF and 
thermal sensation value acquired for each fat-water magnetic resonance image (i.e. 21–29 data points for each of 
the 7 participants). Least squares best-fit lines are overlaid on the mean FSF data. Correlation (ρ) between mean 
FSF and thermal sensation was evaluated with the Spearman’s rank test (n = 179).
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FSF due to cold exposure persisted following reheating, which is inconsistent with the typically rapid on- and 
off-kinetics of perfusion. Lastly, an effect based principally on vasodilation is inconsistent with the data presented 
in Figs 5–7. In thermoneutrality, the mean FSF in the 90–100% decile was 95%; at the end of cold exposure, the 
mean FSF in this decade was 81.0%. Presuming that half of the water signal originated in blood at thermoneu-
trality (a blood volume fraction of 2.5%), then the blood volume fraction would need to increase to 16.5% of total 
tissue volume to explain the reduction of mean FSF to 81%. An effect based principally on vasodilation also could 
not explain the absence of net change in FSF in the middle decades, the increase in FSF in the lower decades, the 
varied responses within subcutaneous adipose tissue and muscle, or the monotonically changing FSF values over 
a period of 45–60 minutes. For these reasons, we conclude that the observed changes in FSF are due entirely or 
almost entirely to changes in lipid content.

A strength of this study is the use of personalized cooling during image acquisition, which allows for changes 
in brown adipose tissue lipid content to be reported with respect to the amount of cold exposure. This approach 
shows promise for investigating fundamental questions about brown adipose tissue physiology including: the 
extent of activation at a given cold stress and whether the magnitude of cold exposure associated with maximal 
activation differs between subjects70. A key challenge for these future studies, however, is the need for a stand-
ardized definition of cold exposure in the context of individualized protocols that vary – by design – in duration, 
temperature, and cooling gradient to minimize shivering for each participant. Ideally, precise measures of inlet 
and outlet water temperature would enable cold stress to be expressed as the change in temperature between the 
body and the ambient environment, but these types of data may not be possible without custom equipment6,23. 
Here, we introduce the concept of cooling dose as a starting point to address the need for a standardized defini-
tion of cold exposure. Cooling dose is simple to calculate using time and temperature data reported from many 
commercial cooling systems. Incorporating anthropometric and physiological factors (e.g. body surface area, 
subcutaneous fat thickness, or resting metabolic rate) can further standardize cooling dose to better describe the 
complex nature of human thermal regulation67. We normalized cooling dose using body surface area because we 
believed it provided a better geometrical representation of the human body than body mass index, and it could 
easily be estimated with body height and mass, descriptive characteristics measured in most human studies. 
Testing a larger population with greater diversity than tested here is necessary to refine the normalized cooling 
dose unit, and in general, to determine if the observed changes in brown adipose tissue lipid content differ with 
sex, age, body composition, or disease state.

Direct comparisons between our findings and previous fat-water MRI studies are difficult due to diverse 
experimental procedures, imaging sequences, and data analysis techniques. Extending recent standardization 
efforts for PET-CT imaging of brown adipose tissue to include MRI-based methods would improve inter-study 
comparability and establish best practices as techniques are validated and optimized70. For example, using our 
imaging sequence we can simultaneously calculate co-registered brown adipose tissue FSF and T2* maps. T2* 
is sensitive to iron content and has been proposed as a metric to differentiate brown and subcutaneous adipose 
tissue13. However, we did not include T2* data in the present analysis because recent findings from Franz et al.71  
indicated a 20-echo sequence is required for accurate analysis of T2* in adipose tissue. Additional limitations 
of the present study also offer potential for improvement. Acquiring images during breath-holds, a possibility 
with faster fat-water MRI sequences, could reduce image registration errors that cannot be excluded in this 
data obtained under free breathing conditions. Further, incorporating automated methods to segment adipose 
tissue41, opposed to the manual delineation of ROIs, could improve the reliability and validity of MRI-based 
studies of brown adipose tissue. If automated segmentation is not feasible, setting a lower FSF threshold equal 
to the mean FSF in muscle could also reduce inclusion of skeletal muscle voxels in adipose tissue ROIs.

In conclusion, we found that supraclavicular brown adipose tissue in healthy, adult men contained a hetero-
geneous mixture of high- and low-lipid areas. Immediately in response to a cold stimulus, these zones underwent 
differential changes in total lipid content that mirrored sympathetically-mediated, intracellular processes of lipol-
ysis and uptake of fatty acids associated with brown adipose tissue thermogenesis. Corresponding shifts in lipid 
content in subcutaneous adipose tissue and skeletal muscle highlight the potential of fat-water MRI to investigate 
the transport and metabolism of lipid within and possibly between brown adipose tissue and other tissues and 
organs. Finally, our findings support standardized brown adipose tissue FSF thresholds for future analyses to bet-
ter elucidate how diverse changes in human brown adipose tissue morphology and physiology relate to metabolic 
health and disease.

Data Availability
Summarized data and code to reproduce the figures and statistical analyses reported in this article are available for 
public download at http://github.com/ccoolbaugh/SciRep-Coolbaugh-2019 72. Raw MRI data generated during 
the current study are not available as the data have not explicitly been authorized for public release by the Van-
derbilt University Medical Center Institutional Review Board. Code is also accessible to run the tGUI tool35 and 
to assist with summarizing individualized cooling protocol data36.
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