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ABSTRACT

Introduction: Inherited susceptibility to lung cancer risk in
never-smokers is poorly understood. The major reason for
this gap in knowledge is that this disease is relatively un-
common (except in Asians), making it difficult to assemble
an adequate study sample. In this study we conducted a
genome-wide association study on the largest, to date, set of
European-descent never-smokers with lung cancer.

Methods: We conducted a two-phase (discovery and
replication) genome-wide association study in never-
smokers of European descent. We further augmented the
sample by performing a meta-analysis with never-smokers
from the recent OncoArray study, which resulted in a to-
tal of 3636 cases and 6295 controls. We also compare our
findings with those in smokers with lung cancer.

Results: We detected three genome-wide statistically sig-
nificant single nucleotide polymorphisms rs31490 (odds
ratio [OR]: 0.769, 95% confidence interval [CI]: 0.722–0.820;
p value 5.31 � 10-16), rs380286 (OR: 0.770, 95% CI:
0.723–0.820; p value 4.32 � 10-16), and rs4975616
(OR: 0.778, 95% CI: 0.730–0.829; p value 1.04 � 10-14). All
three mapped to Chromosome 5 CLPTM1L-TERT region,
previously shown to be associated with lung cancer risk in
smokers and in never-smoker Asianwomen, and risk of other
cancers including breast, ovarian, colorectal, and prostate.

Conclusions: We found that genetic susceptibility to lung
cancer in never-smokers is associated to genetic variants
with pan-cancer risk effects. The comparison with
smokers shows that top variants previously shown to be
associated with lung cancer risk only confer risk in the
presence of tobacco exposure, underscoring the impor-
tance of gene-environment interactions in the etiology of
this disease.

� 2019 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Lung cancer; Never smokers; Genome-wide as-
sociation study; Genetic susceptibility
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Table 1. Characteristics of Never-Smoking Lung Cancer
Cases and Controls Included in the Final Dataset

Characteristic
Cases
(n ¼ 3636)

Controls
(n ¼ 6296)

Age, y, mean (SD) 63.6 (12.4) 61.9 (11.9)
Sex, n (%)
Male 1156 (31.8) 2595 (41.2)
Female 2480 (68.2) 3701 (58.8)

Histology, n (%)
Adenocarcinoma 2509 (69.0) 6296
Squamous cell carcinoma 310 (8.5) 6296
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Introduction
Lung cancer is the leading cause of cancer mor-

tality worldwide, accounting for more than 1 million
deaths each year.1 Although most lung cancer is pre-
ventable, because the majority of cases occur in to-
bacco smokers, approximately 10% of cases are seen
in lifetime never-smokers.2 Although lung cancer is
diagnosed in a minority of never-smokers, it still ranks
as the seventh to ninth most common cause of cancer
death worldwide.2

In never-smokers, lung cancer has characteristics
distinct from those associated with smoking, including
different histology and mutation spectrum.3 The only well-
established risk factors for lung cancer in never-smokers
are exposure to radon,4 secondhand smoke, dust,
asbestos, and, notably, family history of cancer, which has
provided evidence for inherited susceptibility.5-7

To date, genome-wide association studies (GWAS) on
lung cancer have largely been focused on ever-smokers,
and have identified 18 independent loci influencing
risk.7,8 Whereas several GWAS studies in never-smokers
have been conducted, these have primarily been based
on Asian women.9-12 Several environmental risk factors
for lung cancer, including cooking fumes and air pollu-
tion, are highly prevalent in Asian populations, raising
the possibility of effect modification.13 Identifying lung
cancer susceptibility alleles among never-smoking Eu-
ropean populations has been limited to candidate gene
analyses and small GWAS.14-18 Reported here are the
results of a large GWAS of lung cancer in never-smokers
of European descent, based on 3636 cases and 6295
controls.
Materials and Methods
Study Design and Samples

Never-smokers were defined as individuals who had
smoked less than 100 cigarettes during their lifetime.
The study had a discovery and a replication series, both
from studies participating in the International Lung
Cancer Consortium (ILCCO; http://ilcco.iarc.fr). The
discovery series, after quality control (See
Supplementary material), comprised 1287 cases and
1655 controls with European ancestry from seven cen-
ters (Supplementary Table 1). The replication series
comprised 960 cases and 940 controls from 16 study
centers, of which some centers (but not study subjects)
also participated in the discovery phase (Supplementary
Table 2). Comprehensive details of each series have been
previously reported.17,19-23 To increase statistical power,
data on never-smokers recently generated by the
OncoArray lung cancer study from ILCCO were also
leveraged.20 After excluding samples overlapping be-
tween the OncoArray and the discovery set and between
the OncoArray and the replication set, 1149 cases
and 1144 controls from the discovery, 1527 cases and
4211 controls from the OncoArray, and 960 cases and
940 controls from the replication sets were included in
the final analyses. Most of the lung cancer cases (76.7%
in the discovery, 69.2% in the replication, and 63.1%
in the OncoArray sets) had histologically confirmed
adenocarcinoma, followed by squamous and small cell
carcinoma (Supplementary Tables 1–3). Given that
subtype-specific associations are likely to exist, adeno-
carcinomas were also analyzed separately. Table 1 pre-
sents the demographic characteristics of the final
dataset.

Genotyping and Quality Control
Both cases and controls from the discovery set were

genotyped using Illumina Infinium OmniExpress-24 v1.2
BeadChips, with the exception of cases and controls from
Harvard School of Public Health (HSPH), genotyped on
Illumina Human660W-Quad BeadChip. Genotyping of
the replication series for 384 selected single nucleotide
polymorphisms (SNPs) was performed using Illumina
GoldenGate technology. Genotyping quality control and
SNP selection procedures are detailed in the
Supplementary material. The OncoArray genotyping
platform, the never-smoker samples to which it was
applied, and genotyping and quality control procedures
are described in the Supplementary material and have
been previously characterized in detail.20,24

Data Analysis
To harmonize data and address population strat-

ification in the discovery set, the studies were
grouped according to the genotyping array they used
and the geographic origin of the subjects they
enrolled. This resulted in two groups: United
Kingdom studies and North American studies.
Further, since the HSPH samples were genotyped on
a different platform, these were analyzed separately.
Thus, the following clusters were used: (1) HSPH, (2)
United Kingdom, and (3) North America (see

http://ilcco.iarc.fr
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Supplementary Table 4 for more detail). Three
separate GWAS analyses were ran based on the three
groups. We applied logistic regression analyses with
case-control status as the outcome and the SNP ge-
notype as a predictor to identify risk-associated SNPs
in these three groups. Additive models, with 0 for
the reference allele homozygotes, 1 for heterozy-
gotes, and 2 for variant allele homozygotes, were
used. Reference alleles were defined as in the hg19
reference genome. Age (continuous variable), sex,
secondhand smoke exposure (SHS; from any venue at
any period in a lifetime), education level, and study
site within the group (if more than one site) were
used as covariates. The definition of the education
variables and more information on the SHS assess-
ment are given in the Supplementary material.
Missing values for SHS and education status were
treated as a separate category. To offset potential
effects of population stratification within clusters,
SNP-based principal components analyses (PCAs)
were performed and the corresponding first five
principal components were included as covariates,
even though the PCA of these three GWAS clusters
do not suggest population stratification
(Supplementary Fig. 1).25An inverse variance fixed-
effects meta-analysis was used to combine the re-
sults for the three group-based GWAS.26

A brief description of the OncoArray never-smoker
dataset is provided in the Supplementary material. To
perform the joint analysis of the discovery and the
OncoArray sets, inverse variance meta-analysis was
used, whereby studies were grouped into five clusters
(Discovery-North America, Discovery-United Kingdom,
OncoArray-North America, OncoArray-United Kingdom,
and OncoArray-Continental Europe), as detailed in
Supplementary Table 5. This joint analysis was adjusted
for age, sex, study site within the group, and the first five
Figure 1. Manhattan plot of the association analysis of lung can
the discovery set and the OncoArray samples. The x axis is chro
on a –log10 scale.
principal components, but not SHS or education level, as
they were not available in the OncoArray set.

Criteria for SNP selection and the quality control
procedures in the replication phase are described in the
Supplementary material.

Results
We focus on the joint analysis of the discovery and

OncoArray sets as having the largest sample size (the
results for the discovery set separately are presented
in Supplementary Figure 2 showing the Q-Q plot
that shows no indication of an inflation of type I error
(l ¼ 1.005), and Supplementary Table 6 presenting the
list of the top SNPs derived from the discovery set
(p < 1 � 10-4)).

Figure 1 presents the scatter plot of the –log10P
values against the chromosome position (the so-called
Manhattan plot) for the meta-analysis of the discovery
and the OncoArray samples. The analysis identified 71
genome-wide statistically significant SNPs (p < 5 � 10-8,
the accepted genome-wide level of statistical signifi-
cance), all of them mapping to the 5p15.33 CLPTM1 like
(CLPTM1L)-telomerase reverse transcriptase (TERT) re-
gion.27 Supplementary Table 7 presents the 229 top
SNPs at p value less than 10-5. There is also a peak on
chromosome 9 in the cyclin dependent kinase inhibitor
2A (CDKN2A) region, but none of the SNPs in this regions
attained statistical significance at the GWAS level.

The PCA of the replication samples showed no dif-
ferences by the case-control status for the first five
principal components (Supplementary Fig. 3).

Supplementary Table 8 presents the list of nominally
statistically significant (p < 0.05) SNPs from the repli-
cation analysis. The most significant SNPs, rs380286
(p ¼ 3.88 � 10-7), rs31490 (p ¼ 4.68 � 10-7), and
rs4975616 (p ¼ 2.50 � 10-6) were located in the
5p15.33 (CLPTM1L-TERT) region (Table 2). These three
cer in European ancestry never-smokers performed jointly in
mosomal position, and the y axis is the statistical significance



Table 2. The Three GWAS-Significant (p < 5 � 10-8) Variants for Lung Cancer in European Ancestry Never-Smokers, Found in
the Joint Analysis of the Original Discovery Set, the Never-Smoker Subset of the OncoArray Set, and the Replication Set (6
Clusters, 3636 Cases, 6295 Controls), Adjusted for Age, Sex, and the First Five Principal Components

SNP ID CHR Position
Odds
Ratioa 95% CI p Valuea Reference Allele Effect Allele EAF

Gene
Symbol

rs380286b 5 1320247 0.770 0.723-0.820 4.32x10-16 A G 0.4169 CLPTM1L
rs31490c 5 1344458 0.769 0.722-0.820 5.31x10-16 G A 0.4142 CLPTM1L
rs4975616d 5 1315660 0.778 0.730-0.829 1.04x10-14 G A 0.4005 CLPTM1L
aAdjusted for age, sex, and the first five principal components.
bIntronic variant.
cSplice variant.
dDownstream gene variant.
GWAS, genome-wide association study; SNP, single nucleotide polymorphism; ID, identification; CHR, chromosome; CI, confidence interval; EAF, effect allele
frequency
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SNPs were significant after the Bonferroni correction for
370 tests resulting in the p value of 1.35 x 10-4 to declare
significance (the false discovery rate [FDR] approach
identified the same three SNPs as statistically significant)
(Supplementary Table 8).

The 370 candidate SNPs selected for replication (see
Supplementary material for the selection criteria) were
analyzed using all three study population sets: the dis-
covery, the replication, and the OncoArray (total 3636
cases and 6295 controls). The analysis identified three
SNPs statistically significant at the genome-wide level:
rs380286 (p ¼ 1.6 � 10-14), rs31490 (p ¼ 5.1 � 10-14),
and rs4975616 (p ¼ 5.8 � 10-14) (Table 2). These three
SNPs are from the CLPTM1L-TERT region and the asso-
ciation with the variant alleles was consistently negative
(odds ratio < 1). These SNPs belong to a wide linkage
disequilibrium (LD) block corresponding to the LD re-
gion 2 marked by rs451360 as described in Wang et al.28

The very high LD between the pairs of SNPs (0.925 for
rs380286 and rs31490; 0.915 for rs380286 and
rs4975616; and 0.955 for rs31490 and rs4975616) did
not allow identifying the leading SNP among the three as
there was very little variation within an SNP when the
genotypes of the other two were fixed. The results of the
joint analysis of the discovery and replication sets
without the OncoArray samples are shown in
Supplementary Table 9. In brief, the same three SNPs
from the CLPTM1L-TERT region were identified to be
genome-wide statistically significant.

Analysis of only adenocarcinoma cases produced
nearly identical results, with only the CLPTM1L-TERT
region SNPs showing statistical significance
(Supplementary Tables 10 and 11).

Table 3 summarizes the comparisons between our
study results and previous published findings reported
in never-smokers from genome-wide and candidate
gene/SNP association studies in both individuals of Eu-
ropean descent and Asians. Our study confirmed SNPs
located in the 5p15.33 (CLPTM1L-TERT) region. The
direction of the association is highly concordant among
the studies for the SNPs in this region. The results for
3q28 (tumor protein p63 [TP63]) and 6q22.2 (ROS1-
discoidin, CUB and LCCL domain containing 1 [DCBLD1])
regions are suggestive in our analysis (p values of w10-4

for both these regions). The results from our study for
the loci identified in the recently published largest-to-
date lung cancer study that involved mostly smokers
are shown in Supplementary Table 12.20

A comparison of the regional association plots for the
CLPTM1L-TERT region and 15q25 (cholinergic receptor
nicotinic alpha 3 subunit [CHRNA3]) region in never-
smokers and smokers was also performed (whereby
the smokers’ data were obtained from the lung
OncoArray project) (Figs. 2A and B). We found that the
risk association profile plotted as the –log10P for the
SNPs in the CLPTM1L-TERT region in never-smokers
tightly followed that in smokers (Fig. 2A). By contrast,
the association profiles in the CHRNA3 region (impli-
cated in nicotine dependence) are strikingly different in
never- and ever-smokers, with very high –log10P values
in smokers and a flat profile in never-smokers (Fig. 2B).
Analogous comparisons for two other regions, TP63 and
CDKN2A, are presented in Supplementary Figure 4.

The analyses of associations for the three most sta-
tistically significant SNPs from the CLPTM1L-TERT re-
gion stratified by SHS exposure status are shown in
Supplementary Table 13. There was no indication of
SNP-SHS interaction effects or a SNP effect modification
by the SHS exposure as the interaction term was not
significant for any of the SNPs.
Discussion
This is the largest lung cancer GWAS so far conducted

in never-smokers of European descent. However, only
one region (CLPTM1L-TERT) strongly associated with
lung cancer risk in this patient population was found.
Our results for this region corroborate findings by



Table 3. Previous Findings From the Association Analyses of Lung Cancer in Never-Smokers, With a Comparison to This Study

Previously Published Studies This Studya

Region Gene RefSeq Study Type Pubmed ID Histology Ethnicity
Discovery
Cases j Controls

Replication
Cases j Controls OR p Value OR p Value

13q31.3 GPC5 rs2352028 GWAS Li et al.17 NSCLC Mostly Eur. descent 377 j 377 328 j 407 1.46 5.90E-06 0.99 0.95
5p15.33 CLPTM1L rs4975616 Candidate Wang et al.15 NSCLC Eur. descent 239 j 553 — 0.69 7.90E-04 0.78 1.04E-14b

5p15.33 CLPTM1L-TERT rs2736100 GWAS Hsiung et al.9 Adeno Asian women 584 j 585 2184 j2515 1.5 5.40E-11 1.3 2.66E-09b

10q25.2 VTI1A rs7086803 GWAS Lan et al.10 NSCLC Asian women 5547 j 4492 1085 j 2877 1.3 5.10E-17 1.3 0.011b

6q22.2 ROS1-DCBLD1 rs9387478 0.85 7.80E-08 0.86 1.50E-04b

6p21.32 HLA II rs2395185 1.16 2.60E-06 1.04 0.34
5p15.33 CLPTM1L-TERT rs2736100 1.38 4.20E-27 1.27 2.66E-09b

5p15.33 CLPTM1L-TERT rs2853677 GWAS Shiraishi et al.12 Adeno Asians (Japanese) 1695 j 5333 3328 j 8168 1.44 3.90E-23 1.28 1.12E-09b

5p15.33 CLPTM1L-TERT rs2736100 1.37 9.90E-19 1.27 2.66E-09b

3q28 TP63 rs10937405 1.28 2.00E-10 1.16 1.50E-04b

17q24.3 BPTF rs7216064 1.21 1.50E-06 1.1 0.054
6p21.3 BTNL2 rs3817963 1.21 1.50E-07 1.06 0.2
1q25.1 ACVR1B rs10127728 Candidate Spitz et al.14 NSCLC Mostly Eur. descent 451 j 508 — 1.68 3.00E-04 1.06 0.34
3q28 TP63 rs4488809 Replication of

GWAS findings
Seow et al.11 Adeno Asian women 7448 j 7007 0.8 4.30E-17 0.82 8.52E-07b

5p15.33 TERT rs2736100 7505 j 7070 1.43 6.12E-43 0.79 2.66E-09b

6p21.1 FOXP4 rs7741164 10531 j 10648 1.17 3.96E-13 0.97 8.28E-01
6p21.3 BTNL2 rs3817963 7255 j 6745 1.16 1.63E-07 1.06 1.97E-01
6p21.32 HLA-DPB1 rs2179920 7457 j 7020 1.17 1.69E-05 1.08 9.42E-02
6p21.32 HLA class II rs2395185 7757 j 9637 1.16 2.04E-09 1.04 3.91E-01
6q22.2 ROS1/DCBLD1 rs9387478 8022 j 9970 0.86 5.25E-11 0.86 1.53E-04b

9p21.3 rs72658409 10780 j 10938 0.76 2.37E-10 0.89 1.43E-01
10q25.2 VTI1A rs7086803 7964 j 9914 1.25 9.22E-17 1.31 1.12E-02b

12q13.13 rs11610143 10267 j 10634 0.85 3.55E-13 0.97 4.88E-01
17q24.3 BPTF rs7216064 7720 j 8630 0.86 6.19E-09 1.10 5.43E-02
a“This study” pertains to the results of the meta-analysis of the discovery and OncoArray sets, except for rs4975616, for which the result from the meta-analysis of the discovery, OncoArray, and replication sets is
shown.
bNominally significant p values.
RefSeq, Reference sequence or single nucleotide polymorphism identification; GWAS, genome-wide association study; OR, odds ratio; Eur., European; Adeno, adenocarcinoma.
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Figure 2. Regional association plots for smokers (red line) and never smokers (blue line) in CLPTM1L-TERT region (A) and
CHRNA3-5 region (B). The y axis corresponds to –log10P for 650 SNPs in the CLPTM1L-TERT region and –log10P for 535 SNPs in
CHRNA3-5 region. To aid visual representation we selected the 10 closest single nucleotide polymorphism (SNP) and
computed average –log10P- values.
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earlier studies of lung cancer in never-smokers
(Table 3), showing consistent direction of effect. The
5p15.33 CLPTM1L-TERT region SNPs have also been
reported to be associated with multiple cancers
including lung cancer in smokers, breast cancer, glioma,
nasopharyngeal cancer, and prostate cancer.16,29-32 TERT
encodes the catalytic subunit of the telomerase reverse
transcriptase, which takes part in adding nucleotide re-
peats to chromosome ends.33 Although active in early
development and germ cells, this gene is not expressed
in most adult tissues, resulting in a shortening of telo-
meres with each cell division. When telomeres become
critically short, the cell can no longer divide. However,
cancer cells can upregulate telomerase, which enables
them to continue dividing.34 The CLPTM1L gene is re-
ported to be overexpressed in lung and pancreatic can-
cer where it promotes growth and survival.35,36 Also,
there is a locus within the CLPTM1L gene that serves as a
binding site for ZNF148, which promotes expression of
TERT.37

Functional annotation of the top-identified SNPs us-
ing Encyclopedia of DNA Elements (ENCODE) found that
rs4975616 coincides with the binding site for three
transcription factors: ELF1, ZEB1, and BCLAF1.38 Both
TERT and CLPTM1L are among the many target genes for
ELF1 and ZEB1; CLPTM1L (but not TERT) is among the
target genes for BCLAF1. According to Ensemble regu-
latory database, SNP rs31490 is located in the region
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that acts as a promotor for CLPTM1L in the developing
lung.39 In the Genotype-Tissue Expression all three
SNPs: rs31490, rs380286, and rs4975616 are reported
as expression quantitative trait loci (eQTL) for TERT in
esophagus and CLPTM1L in skin tissue.40

Previously, a fine-mapping study has been conducted
on this locus to deeply investigate its association with
lung cancer risk.41 The study included a limited number
of never-smokers and the novel loci identified did not
show significant effect, specifically in never-smokers.
However, the direction of the effect was largely consis-
tent with that in smokers, in line with what our study
reports (Fig. 2A).

For other SNPs, for example, those reported by Li
et al.,17 no association in our study was detected. How-
ever, the study by Li et al.17 used additional covariates
(e.g., chronic obstructive pulmonary disease and lung
cancer family history) to adjust for in their analyses. This
may have made a comparison of their results with our
study less straightforward because the data on these
covariates were not available from the majority of the
sites participating in our study. The SNPs rs10937405
for 3q28 and rs9387478 for 6q22.2, previously reported
to be significant in Asian never-smoking women
(Table 3), showed at best a suggestive association (p
values of w10-4 in both cases). These two regions have
been shown also to be implicated in other cancer sites.
SNPs in the TP63 region have been shown to be associ-
ated with lung adenocarcinoma in the U.K. population,
acute lymphoblastic leukemia, bladder cancer, and
pancreatic cancer.8,42-44 SNPs in the ROS1-DCBLD1 re-
gion have been shown to be associated with colorectal
cancer.45 This further suggests that SNPs/regions asso-
ciated with lung cancer risk in never-smokers are not
specific for this type of cancer but rather have pleio-
tropic effects.

Our analysis was designed to control for de-
mographic variables (age and sex, as controls were
slightly but statistically significantly younger [p < 0.001]
and had a higher proportion of men than cases [p <

0.001]) as well as for known and potential risk factors,
specifically, where possible, for education status and
self-reported SHS exposure.46 To account for possible
population stratification, the first five principal compo-
nents and the study site were also adjusted. However,
the information on radon exposure, asbestos, prior res-
piratory conditions, and diet was not available from
most studies. As such, these established and putative risk
factors were not accounted for in the analyses. A further
limitation is the self-reported nature of the never-
smoker status. Differential misreporting of the smoking
status, for example, if a modest proportion of former or
current smoker controls reported that they have never
smoked, might lead to SNPs associated with smoking
appearing as protective. Unfortunately, the great major-
ity of the participating studies did not verify it by co-
tinine measurements. However, SNPs in CHRNA3-5 or
cytochrome P450 family 2 subfamily A member 6
(CYP2A6) regions, known to be associated with smoking,
did not show any effect in this study (Fig. 2B;
Supplementary Table 11).20

Latest GWAS of lung cancer in smokers have gener-
ated many more findings than did this study, which is
not surprising given that the former are much larger.
Most SNPs reported as statistically significant in smokers
showed the same direction of effect in never-smokers
(Supplementary Table 12). Gene-smoking interaction
may be another factor contributing to the higher number
of positive findings among smokers than never-smokers:
some of the sequence variations that are neutral in the
absence of tobacco smoking confer risk when smoking
and the associated tissue and DNA damage are present.

High body mass index and alcohol exposure are
common and may also explain a proportion of the lung
cancer risk in never-smokers.47,48 It is possible that
there are rare variants influencing risk that could not be
detected by a GWAS that focuses on common variants.
Additionally, gene-gene interactions that are beyond the
scope of this study may in part explain variability in the
incidence of lung cancer in never-smokers. Very rarely,
individuals can carry inherited mutations in TP53
increasing lung cancer risk.49 The availability of results
from our GWAS will allow additional exposures to be
studied using Mendelian Randomization approaches (as
exemplified in Wang et al.50). Developing models that
can identify never-smokers at highest risk for lung can-
cer development could improve early detection.
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