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Chapter 1

Introduction

1.1 Overview

In many industries, it is desirable to detect damage and flaws in products and sys-

tems as early as possible. Structural health monitoring (SHM) plays an important role in

achieving this goal for structural, mechanical, and infrastructure systems. For instance,

aerospace agencies such as NASA have been investigating SHM technologies to study the

safety of space shuttle components. In the semiconductor industry, companies have been

adopting SHM technologies such as thermography to examine the defect in chips as well

as to minimize the inadvertent downtime during manufacturing, which could cost compa-

nies millions of dollars each hour. The focus of this dissertation is on concrete structures;

concrete is well known for its extreme heterogeneity. However, the proposed approaches

are generally applicable to other types of materials and structures.

During the past decades, researchers have studied different types of structural health

monitoring techniques by combining finite element modeling, structural dynamics, signal

processing, image processing, and statistical modeling.

Thermography Analysis (TA) -related techniques are based on the assumption that de-

fects and malfunction will also lead to change in heat flow in the material/part. TA-related

techniques have been applied in Condition Monitoring (CM)/ SHM in aero-vehicle, bear-

ings, motors, electric generators, wind turbines, etc. Infrared Radiation (IR) transmitters

and high-resolution IR cameras are the sensors in the application. Depending on the res-

olution, TA can be used as a local or global monitoring technique. However, challenges

appear for early fault detection and large-scale objects. Researchers used spatial standard

deviation of temperature data to monitor the fatigue crack initiation and growth [2]. Ta-

lai et al established online structural vibration monitoring systems to evaluate the surface
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cracks through thermal imaging of the vibration-induced crack [3]. Bao and Mahadevan

proposed performed interior damage detection, localization and quantification in concrete

using infrared thermography with image processing techniques[4].

Traditionally, vibration-based condition monitoring techniques refer to the application

of in-situ non-destructive (ND) sensing and analysis of system dynamic characteristics, in

time and frequency domains, which may indicate damage/degradation. The time history

response of a structure can be measured by sensors such as accelerometers, strain gauges,

etc. Fourier transform (FT) analysis is often used to convert the data from time domain

to frequency domain. Early approaches were based on connecting the numerical models

to measured modal properties from damaged and undamaged conditions. A majority of

the literature focuses on the modal parameters, which could be extracted from frequency

domain information. e.g. methods based on natural frequencies, mode shapes (curvatures),

matrix update methods, etc.

Farrar and Doebling suggested the problem being fundamentally a statistical pattern

recognition problem, and advanced non-modal based methods, also known as data-driven

methods . Fugate et al. applied autoregressive function to fit the time history response

data and trace the mean and variance of the residual signals for undamaged cases to form

a statistical control chart. Responses from the damaged cases were fitted to the same au-

toregressive model, and the resulting residuals outside the control limits indicated damage.

Farrar et al. used the frequency response function to develop damage-sensitive features [5].

Adams et al. used internal feedback to account for non-linearity and estimate the parame-

ters of non-linear parametric models [6]. Hidalgo et al. proposed a wireless SHM system,

and fitted autoregressive models to predict the damage based on the fitting errors [7].

Computer vision (CV) based condition monitoring is an extension of traditional visual

inspection using modern computer vision and image processing techniques, such as edge

detection, template matching, segmentation, etc. CV-based methods focus on the assess-

ment of cracking, spalling, and other defects on the surface of structures such as concrete

2



bridge decks and asphalt pavements [8]. The major data acquisition approach is through

high resolution surveillance cameras. Abdelqader et al. first pre-processed the images by

line filters in different directions and then used Principal Component Analysis to reduce

the dimensions of feature vectors ; then they used k-Nearest Neighbor algorithm (KNN)

to perform the classification [9]. Lattanzi and Milller developed an automatic clustering

method for segmentation based on the Canny algorithm and K-means to achieve crack

detection [10]. Poozesh et al. performed condition monitoring on a scaled wind turbine

with full-field strain and displacement information from digital image correlation (DIC)

[11, 12]. Murray et al. used the full-field displacement data from DIC to monitor a re-

inforced concrete bridge‘‘s static and dynamic displacement and compared to the results

from the sensors on the bridge [13].

Optical fiber sensing (OFS) has been widely applied in the field of life-cycle moni-

toring of large civil structures, such as bridges, tunnels, and geotechnical structures. The

OFS has a wide range of measurands such as strains, temperatures, accelerations, deflec-

tions/displacements, cracks, and corrosions. The OFS techniques have the advantages of

small size, light weight, immunity to electromagnetic interference (EMI) and corrosion,

and capability of embedment, but cost vs. benefit is a challenge. An OFS system con-

tains a light transmitter, a receiver, an optical fiber, a modulator element and a unit for

signal processing. As the core unit, the optical fiber will expand or contract when strain or

temperature variation occurs at its location. Thus, the reflected light will change. Optical

Time-Domain Reflectometry (OTDR) sensors are the most widely applied OFS sensors, in

distributed monitoring of large-scale civil structures due to their ability to measure strain

and temperature over a long distance [14]. Kinet et al. applied fiber Bragg grating (FBG)

sensors in composite materials health monitoring and outperformed the traditional sensors

[15]. Mallik et al. used plastic optical fiber to collect vibration information on a composite

cantilever beam and applied neural network to perform damage location identification [16].

However, many of the methods were developed for homogeneous materials, such as alu-

3



minum and steel. Some studies proposed using ultrasonic waves to perform the tests and

detecting the damage through frequency-based features [17, 18], but the method has been

shown only with tiny concrete brick samples; experiments on larger sizes of concrete struc-

tures need to be done. Some studies proposed to study the dynamics of a structure using a

high-speed video camera with advanced image processing algorithms, such as phase-based

motion magnification, optical flow estimation, etc. Methods of this type are applicable for

materials like steel and aluminum but face significant challenges in concrete. Some other

vibration-based methods either can only perform damage detection or meet similar chal-

lenges when translating from small lab samples to larger concrete blocks. Therefore, it is

essential to develop a method that can not only detect and localize damage but also can

translate its effectiveness and efficiency from small samples to larger concrete blocks.

Some studies have used finite element models to infer the condition in the interior of

the structure, but the accuracy and effectiveness of such an approach strongly relies on the

accuracy and resolution of the finite element model [19, 20]. For a real-world structure

with complex geometry, it is difficult to build an accurate and precise finite element model

due to the complexity of the structure.

During the past several years, machine learning techniques have been introduced in

health monitoring. Generalized as a pattern recognition problem, classical machine learn-

ing algorithms, such as Bayes classifiers, support vector machine (SVM) classifiers, etc.,

have been playing an important role in damage detection when associated with damage-

sensitive-features from domain knowledge. Stiffness matrices, natural frequencies and

some other values from dynamics, which usually change along with the health condition of

the structure, have been used to train machine learning classifiers. However, the approaches

mentioned above depend on and are limited by the accuracy and effectiveness of the phys-

ical models. Therefore, data-driven structural health monitoring has become a promising

direction for complex structures with complicated material properties.

Building a general machine learning system requires careful engineering and tremen-

4



dous domain knowledge to design an effective feature. It is because that traditional machine

learning algorithms are limited in their ability to process raw data directly from the experi-

ment. The process of establishing an effective feature is usually tedious and require much

effort in trial and error. Deep-learning methods, in the family of representation learning

methods, enable the model to be fed with raw data and to find the appropriate representa-

tions required for detection and classification automatically. Deep-learning methods con-

tain multiple levels of representations. A typical deep-learning model contains multiple

simple but non-linear modules, and each of them transforms the representations into the

next level with slightly more abstract representations, starting from the raw input to the

output decision-making. Deep-learning algorithms are powerful in exploring the intricate

structure in high-dimensional datasets. Therefore, deep learning has been applied in many

fields such as face recognition, speech recognition, particle accelerator data analysis, brain

circuit reconstruction, etc. The application of deep-learning methods in structural health

monitoring is still in the infant phase, and the utilization of deep-learning so far has fo-

cused on replacing human visual inspection, such as steel rust detection, steel delamination

detection, surface crack detection, etc.

An individual SHM technique with one type of data source usually has its limits. There-

fore, it is desirable to provide a versatile capability for damage diagnosis by fusing multiple

techniques and multiple data sources. Given that each of the monitoring techniques has its

advantages and drawbacks (suitability for local damage vs. overall damage, surface crack

or internal damage, etc.), the motivation of the research in this dissertation is to improve

the damage diagnosis system with information fusion techniques. In addition, the uncer-

tainty in the diagnosis is also significant to investigate. As we include multiple monitoring

techniques and multiple datasets for information fusion, each of them will contain different

types of uncertainty sources. For any individual damage diagnosis algorithm, there will

be uncertainty in parameter selection. Further, uncertainty also exists during data acquisi-

tion from the experiments, and in processing the data. Using the methods of uncertainty
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quantification, we will be able to incorporate multiple uncertainty sources and estimate the

overall uncertainty in diagnosis.

The primary research objective of this dissertation research is to investigate the applica-

tion of cutting-edge deep learning techniques in structural health monitoring (SHM) along

with traditional SHM techniques of general scope (e.g., thermography and high-speed im-

ages with advanced image processing algorithms) and SHM techniques of local scope (e.g.,

pitch-catch tests, strain measurements at individual locations). Moreover, the proposed

dissertation research also investigates information fusion and uncertainty quantification of

combining multiple monitoring techniques for decision-making.

To demonstrate the proposed methodologies, we focus on concrete material, which is

well-known to be a challenging material due to its extreme heterogeneity. One of the essen-

tial parts of the proposed research is to carry out experiments and collect data from multiple

structural health monitoring techniques. However, the methodologies are not limited to just

concrete but can be translated to other types of materials, such as metal, composite materi-

als as well.

Thermography has been used much in structural health monitoring on metal materials,

such as steel and aluminum. Little progress in research has been achieved on heterogeneous

materials, such as concrete. Meanwhile, previous monitoring techniques with thermogra-

phy have relied on engineers‘‘ experience and judgement to detect the potential defect or

damage. In this research, we improved the techniques and provided engineer with a di-

rected decision map about the structure by using advanced image processing techniques.

The direct decision map is capable of multiple tasks, such as to detect, localize, and quan-

tify the damage.

Vibration-based techniques also have significant applications in structural health moni-

toring. Guided-wave based pitch-catch test has been used for SHM in metals, such as steel

plates and steel pipes. Swept-wave testing is used in monitoring wind turbines. A critical

part of this research combines these two methods and establishes an effective and robust

6



damage-sensitive feature for detection using singular value decomposition (SVD). We also

use the crest factor concept from signal processing to assist the damage localization.

Deep learning methods have shown great power over traditional machine learning tech-

niques for applications with large datasets such as image classification, object detection,

natural language processing, and DNA sequencing. In this research, we first generate train-

ing image datasets using finite element analysis. Then, we investigate the application of

deep learning methods to perform damage diagnosis with images obtained using SHM

techniques such as thermography.

This research considers multiple data analysis methods on datasets obtained from mul-

tiple monitoring techniques. Each method and monitoring technique will have its strength

and drawbacks, and there are multiple uncertainty sources within each method. This re-

search investigates how to quantify the uncertainty in the diagnosis.

1.2 Research Objectives

The research in this dissertation involves extensive experimental effort. Therefore, the

first objective is to design and implement the experiments and data acquisition process for

multiple monitoring techniques.

The second objective is to investigate structural health monitoring with advanced image

processing techniques. The advantage of optical monitoring techniques, such as thermog-

raphy and high-speed imaging, is that they are equivalent to having thousands of sensors

and each screenshot contains thousands of measurements. Advanced image processing

techniques can assist researchers to extract more information for a full-field damage diag-

nosis, such as edge detectors, optical flow estimation, image pyramid, phase-based motion

magnification, etc.

The third objective is to investigate structural health monitoring with vibration testing

and signal processing techniques. We treat structural health monitoring problem as a data-

mining problem, with techniques such as singular value decomposition (SVD), K-means
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clustering, and support vector machines (SVM). We use guided-wave harmonic vibration

experiments as an example to demonstrate the method. The method is demonstrated with

concrete specimens of different sizes to detect and localize the damage.

The fourth objective is to investigate the application of deep learning techniques in

structural health monitoring. This one aims to fill the research gap that traditional image

processing-based SHM techniques takes much time and effort in building and tuning the

damage sensitive features and current deep learning-based techniques fail to handle dam-

ages other than the surface cracks. The goal of our proposed technique for this objective

is to handle the internal damage and automate the feature generation. It uses the idea of

transfer learning to take advantage of the current sophisticated pre-trained deep learning

architectures, which is extremely helpful for small dataset problems, such as most cases

in SHM. The method is demonstrated with thermography testing on concrete specimens to

identify the most likely damage location.

The fifth objective is to investigate the uncertainty quantification and robustness within

each of the proposed structural damage diagnosis methods. This investigation is conducted

individually for each of the structural health monitoring techniques in this dissertation.

1.3 Dissertation Organization

This dissertation is organized to address the research objectives listed in 1.2. Chap-

ter 3 investigates an image processing technique for internal damage diagnosis in concrete

based on thermal imaging. Chapter 4 uses vibration-based testing to develop a frame-

work for damage detection and localization in heterogeneous materials such as concrete.

Chapter 5 develops a convolutional neural network based interior damage diagnosis frame-

work using both computer simulation data and experimental data. The first objective (data

generation with experiments and computer simulations) and the fifth objective (uncertain

and robustness studies) will be addressed in each of Chapters (in relation to the particular

technique considered) 3, 4, and 5. Chapter 6 concludes the dissertation summarizing the
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accomplishments and outlining future directions.
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Chapter 2

Background

2.1 Selected Image Processing Techniques in Structural Health Monitoring

This section briefly reviews the main filtering techniques used later in the disserta-

tion for damage diagnosis using image processing. Figure 1 shows the general procedure

of structural damage diagnosis using image processing. Images of the surface are first ac-

quired. Second, different kinds of filters are applied for noise cancellation in the raw images

to remove the environmental and operational effects. Third, based on the image content or

objective of the monitoring process, different kinds of algorithms are applied to calculate

the features of the image. Lastly, damage diagnosis decision making is accomplished based

on appropriate criteria.

Figure 2.1: Steps in damage diagnosis using image processing

2.1.1 2-Dimensional simple moving average filter

In the noise cancellation step in Figure 2.1, a moving average filter tends to smooth

out short-term variations and leaves in the long-term changes, by taking an average value

of the data within a fixed-size window. The window shifts from one side of the data se-

ries to the other, thus covering the entire dataset [21]. Moving average has been used for

time series analysis in many fields such as financial analysis, signal processing, etc[22].

There are usually three types of moving average approaches: simple moving average, cu-
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mulative moving average, and weighted moving average [23]. The thermal images appear

to have relatively long-term variation. Considering the balance between effectiveness and

computational expense, the Simple Moving Average (SMA) filter is adequate [24], and is

described as

P̂ =
PM +PM−1 + ...+PM−(n−1)

n
(2.1)

where P̂ is the new value at the middle point of vector, PM +PM−1 + ...+PM−(n−1), Pi

is the original value at position i, and n is the length of the vector[25].

2.1.2 Sobel filter

Image processing typically has two approaches to extract features: color-based and

texture-based. In our system, the thermal images have differences in contours which re-

flects the heat conductivity difference. Therefore, a texture filter, such as Sobel filter, is

more appropriate in our case. The Sobel filter, also called Sobel Operator, is one of the

most commonly applied in image processing for edge detection. The Sobel filter used here

contains two 3 by 3 convolution masks as follows [26, 27].

Sx =


−1 0 1

−2 0 2

−1 0 1

 (2.2)

Sy =


1 2 1

0 0 0

−1 −2 −1

 (2.3)

Given an image A, to apply the Sobel Filter, we usually convolve the mask separately

with the input image to obtain the corresponding gradient component (gx and gy) along

each direction as follows [26].
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gx = Sx ∗A (2.4)

gy = Sy ∗A (2.5)

Typically, based on the above two formulas, the gradient magnitude, G, and the angle

of the image orientation, φ , can be calculated as [27]

G =
√

g2
x +g2

y (2.6)

φ = arctan(
gx

gy
) (2.7)

As one of the most commonly applied methods in the gradient-based filter family, the

Sobel filter uses the property that an edge is usually characterized by a threshold value

of the gradient. Since the pixel intensity value at the edges will be usually higher than

their surrounding pixels, a threshold value is commonly set [28, 29]. And an edge will be

declared when the calculated gradient at a pixel crosses the threshold.

2.2 Singular value decomposition and reconstruction

Singular Value Decomposition (SVD) performs a linear decomposition of the data to

create a set of orthogonal bases [30, 31]. Given a matrix Xm×n, with a rank of r < n < m,

the SVD method decomposes the matrix as

X =USV T (2.8)

where U is an m×m matrix and the columns, Uk, called left singular vectors, form an

orthonormal basis. S is an m×n rectangular diagonal matrix. V T is an n×n matrix and the

rows, V T
k , called right singular vectors, form another orthonormal basis.
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SVD has been commonly used for dimension reduction, in reducing model complexity

and computational burden by effectively representing the dataset with lower dimensions.

It also has been applied to create features from the face images in face recognition appli-

cations [32, 33]. In the field of structural health monitoring, several researchers have been

applying SVD for the calculation of natural frequencies or as a type of dimension reduction

technique [34, 35].

2.3 Comparing signals with the crest factor metric

In signal processing, the crest factor or K-factor, is used to measure the deviation of

a signal from a sinusoidal waveform [36]. Given a signal yi, RMS stands for root mean

square value, and one definition of the K-factor is

K = max(yi)×RMS(yi) (2.9)

To better illustrate the performance of the K-factor, we show a few simple examples

of how the K-factor value changes for different signals. These signals were created by

combining two different sinusoidal components (one with a higher frequency and one with

a lower frequency). The waveforms and the corresponding K-factor value are shown in

each of the subplots of Figure.2.2. Subplots (a) and (b) show a relatively high frequency

wave and a relatively low frequency wave. And their K-factors are 0.7067 and 0.70048

respectively. In an ideal case, namely an infinitely long pure sinusoidal wave of magnitude

1, the K-factor would be 1√
2

(roughly 0.707). In the subplot (c) and (d), we mixed the high

frequency signal with the low frequency signal in two different ratios, 90% high signal with

10% low signal and 90% low signal with 10% high signal and we keep the energy of the

synthetic signals to be the same and in (e) we mixed them in equal proportion (50/50),

which makes it less sinusoidal. Their calculated K-factors increased a little but still close

to the theoretical value of the ideal case.
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Figure 2.2: K-factor values for different signals

Therefore, the K-factor can be used to describe the deviation of a signal from a pure

sinusoidal wave. The more the signal deviates from a sinusoid, the higher the crest K-

factor will be. The assumption is that the damage in the structure changes the property

of the structure such that the acquired signal would be different (deviated) from the signal

source (pure sinusoid wave).
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2.4 k-means clustering

As mentioned previously, during the damage localization step, we need to use clustering

methods to differentiate the locations of the damaged regions from the locations of the

intact regions. The k-means clustering method, which is a classical clustering method, is

a possible technique for this purpose. Therefore, in this section, we present some basic

concepts of k-means clustering.

In signal processing and machine learning, the k-means clustering algorithm aims to

partition the given observations into k clusters. Here, k is predetermined and stands for the

number of clusters one sets up [34, 35].

Given n observations x1,x2,x3, ‘‘,xn, the k-means clustering algorithm allocates each

observation into one of the k clusters by minimizing the distance between that point and

the centroid of the allocated cluster µ j. There are several different approaches to perform

the optimization, such as an expectation-maximization (EM) algorithm [37, 38]. Following

is a pseudocode to perform k-means clustering using EM:

• Determine the number of clusters, k;

• Initialize k centroids randomly, µ1, µ2, ‘‘, µk;

• Allocate each observation to the cluster with the closest centroid (Euclidean dis-

tance);

• Update the centroids based on the observations assigned;

• Repeat the allocation and updating steps until clustering results become stable.

In Chapter 4 , we apply k-means clustering to the calculated K-factor values from dif-

ferent candidate damage locations. Based on our assumption, the K-factor values reflect

the damage severity. Therefore, we track the corresponding locations of the K-factor values

from each of the clusters and identify damage zones with different damage levels.
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2.5 Neural network and activation functions

Figure 2.3: Feed-forward neural network architecture

A basic type of neural network model is the feed-forward neural network, also known

as the multi-layer perceptron. An example of the feed-forward network is shown in Figure

2.3. In the input layer x1 to xD represent the input variables. x0 is the bias term for the input

layer. w(n)
ji is the corresponding weight from node i in the n−1th layer to node j in the nth

layer. The forward computation consists of two parts: linear combination and non-linear

activation. First, we construct the linear combination of the input nodes (including bias

term) with corresponding weights as shown in Eq. 2.10

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 (2.10)

Second, we transform the results from the linear combination through a nonlinear, but
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differentiable activation function σi() as shown in Eq. 2.11. The purpose of applying the

activation function is to bring nonlinear features into the neural network model to fit com-

plex data sets. Some of the commonly used activation functions are logistic sigmoid (Eq.

2.12), softmax (Eq. 2.13), and ReLU (short for Rectified Linear Units) activation function

(Eq. 2.14; in practice, sometimes a j is directly used instead of computing σsigmoid(a j)).

The choice of the activation function is based on the nature of the input data and the ex-

pected distribution of the output variables.

z j = σ1(a j) (2.11)

σsigmoid(a j) =
1

1+ exp(−a j)
(2.12)

σso f tmax(a j) =
exp(a j)

∑ j exp(a j)
(2.13)

σReLU(a j) = max(0,σsigmoid(a j)) (2.14)

The model shown in Figure 2.3 can be summarized into Eq. 2.15. Since the neural

network model only contains linear combination and a differentiable activation function,

the parameters of the model are trained through error back-propagation algorithms, such

as the Adam optimizer. The detailed procedure of the error back-propagation and Adam

optimizer can be found in [39].

y = σ2(Σ
M
j=0w(2)

k j σ1(Σ
D
i=0w(0)

ji xi)) (2.15)
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2.6 Convolutional neural network

Convolutional neural networks (CNNs), also known as convnets, belong to an important

category of neural networks used to process grid-like data sets. CNNs have been widely

applied in the fields of computer vision, image processing, and time-series analysis and

have become state-of-the-art techniques for tasks such as image classification and object

detection. CNNs and other deep learning techniques have also been proven significantly

effective in other fields, such as medical image segmentation in CT and MRI scans [40, 41].

CNN layers contain two important operations: convolution and pooling. The convolu-

tion operation follows the form in Eq. 2.16, where I represents the input (such as the pixel

values of an image), K represents the kernels (sometimes called filters), S represents the

output (sometimes called feature map), and i, j,m,n are the indices for rows and columns.

One of the major advantages of the convolution layer is parameter sharing over traditional

neural networks, such as the feed-forward neural network. Each of the nodes in a feed-

forward neural network has its own weights, as shown in Eq. 2.10 [42]. However, in

convolution layers, each of the kernels is applied to all the input values. Parameter sharing

significantly cuts down the computational expense and makes the CNN more efficient in

representing complex models.

S(i, j) = (I ∗K)(i, j) = ΣmΣnI(m,n)K(i−m, j−n) (2.16)

The pooling operation replaces the elements in the output from the previous layer with

summary statistics of their neighboring elements. Some common pooling operations are

max pooling (maximum value within a rectangular region) and average pooling (average

value within a rectangular region). With selected stride sizes, the pooling operation can

reduce the number of the nodes to pass to the next layer. This is essential in handling

model inputs of large sizes or varying sizes due to high-resolution images [42].
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2.7 Transfer learning and VGG nets

Transfer learning assumes that the knowledge learned in one task T1 has overlap with

another task T2. Therefore, the models for task T1 (done previously) should offer us advance

insights for T2 and accelerate the training of new models for T2. This is because many of the

tasks share the same pre-processing steps, such as measuring geometrical shapes, low-level

edges, repeated patterns, and changes in lighting conditions [42]. Transfer learning helps

to model the field with fewer data sets (for instance, the SHM task) using the parameters

learned from fields with abundant data sets [43]. The model proposed in this chapter takes

the VGG-19 CNN model as base layer and then adds layers to specifically handle the

damage diagnosis of the structural specimen of interest.

VGG-19 was developed by the Visual Geometry Group at Oxford and had successful

results in the ImageNet Large Scale Visual Recognition Challenge (ILVRC 2012) [44, 45,

46]. Although the model has 19 layers, it is still concise and elegant. Deeper layers provide

better performance and smaller convolution filters than previous deep neural networks, and

balanced the computational cost and performance. This is because that the model consists

of repeated simple modules (convolution layers with small 3×3 kernels) of convolution and

pooling operations. The CNN configuration of the VGG-19 is summarized in Table 2.1. All

convolution operations use ReLU as their activation function. The VGG-19 model contains

144 million parameters in total, and the parameters trained on ImageNet are available in

the public domain [44].

2.8 Uncertainty Quantification

It is known that the damage diagnosis results from the monitoring techniques have

significant variation, regarding the diagnosis accuracy, etc. Several uncertainty sources

contribute to the overall uncertainty in diagnosis, such as natural variability, measurement

uncertainty, data processing uncertainty, and model uncertainty. Uncertainty quantification
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Input (224×224 RGB images)
conv3-64
conv3-64
max-pool
conv3-128
conv3-128
max-pool
conv3-256
conv3-256
conv3-256
conv3-256
max-pool
conv3-512
conv3-512
conv3-512
conv3-512
max-pool
conv3-512
conv3-512
conv3-512
conv3-512
max-pool

Table 2.1: Configuration of CNN part in the VGG-19 neural network

involves both forward propagation of uncertainty from model inputs and parameters to the

output, and inverse analysis in terms of quantifying the various uncertainty sources. Back-

ground information is provided here for two forward analysis techniques, namely Monte

Carlo simulation and sensitivity analysis

2.8.1 Monte Carlo Simulation for forward uncertainty propagation

The interest in forward uncertainty propagation is to find the expectation of some func-

tion f (x), corresponding to a probability distribution p(x) [47]. Considering a continuous

variable, the expectation is written as

E[ f ] =
∫

f (x)p(x)dx (2.17)
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However, sometimes the expectation is too complex to be evaluated using an analytical

method. Therefore, the principal idea behind Monte Carlo simulation is to draw N samples

independently from distribution p(x) [28]. Then, the integral in Eq. 2.17 is approximated

as

ˆE[ f ] =
1
N

N

∑
i=1

f (xi) (2.18)

2.8.2 Global Sensitivity Analysis

The purpose of sensitivity analysis is to learn how the output of a given model depends

on its inputs. There are two types of sensitivity analysis in practice, local sensitivity anal-

ysis, and global sensitivity analysis. Local sensitivity analysis is performed at a specific

given point in the region of inputs, typically based on derivatives [48]. On the other hand,

the global sensitivity analyses focus on the study of the output uncertainty when the input

parameters vary along the entire region of themselves [48]. As a form of global sensitivity

analysis, variance-based sensitivity analyses decomposes the variance of the output into

portions from each input and quantifies the sensitivity based on the percentage of variance

corresponding to each input. Mathematically, the variance-based global sensitivity analysis

can be expressed as follows. Given a model

y = f (X) (2.19)

where y is the model‘‘s output, and X denotes a series of model inputs, i.e., x1,x2‘‘xn.

The decomposition of variance is expressed as

Var(y) =
n

∑
i=1

Vi +
n

∑
i< j

Vi, j +
n

∑
i=1

V1,2,...,n (2.20)

Vi =VarXi(EX i(y|Xi)) (2.21)
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Vi, j =VarXi, j(EX i, j(y|Xi, j)) (2.22)

where Xi denotes the i-th variables in vector X . X i in Eq. 3.3 denotes all other input

variables except Xi . Xi, j in Eq. 3.4 denotes all other input variables except Xi and X j.

Based on the above decomposition, the first order sensitivity index is expressed as [49,

50]

Si =
Vi

Var(y)
(2.23)

This first order sensitivity index measures the contribution to the output variance from

xi alone. To analysis the global sensitivity, several methods have been proposed. The

Fourier amplitude sensitivity test (FAST) was suggested in the 1970s and is still one of

the most elegant methods for sensitivity analysis. By calculating multivariate integrals

through the Monte Carlo Method, Sobol indices are efficiently calculated [51, 52]. Li and

Mahadevan proposed to estimate the first-order Sobol index using modularized sample-

based method[53]. Hu and Mahadevan proposed to used enhance surrogate with global

sensitivity analysis for reliability analysis [54]. Sankararaman and Mahadevan includes

both aleatory and epistemic uncertainties in their method[55].

2.9 Summary

This chapter reviewed some of the fundamental and theoretical concepts, which are

used in the following chapters. Selected image processing techniques (2D-Moving aver-

age filter, Sobel filter) will be used to implement thermal image-based damage diagnosis

in Chapter 3. Concepts of singular value decomposition and reconstruction, K-factor anal-

ysis, and k-means clustering will be used to develop a vibration-based damage diagnosis

methodology in Chapter 4. Neural network related concepts, including activation functions,

convolutional neural work, VGG nets, and transfer learning are discussed in preparation for
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Chapter 5.
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Chapter 3

Thermal Image-Based Concrete Diagnosis

3.1 Introduction

Image processing has been studied for several decades in many different engineering

applications. With the rapid development in computing speed and storage capabilities in

recent years, image processing has rapidly advanced in several directions, such as image

compression, enhancement and restoration. Image compression focuses on the balance be-

tween fewer bits for image representation vs. deterioration in quality. Image enhancement

and image restoration techniques have been studied to improve the quality of an image,

usually through raising the contrast of the image from the background either for better vi-

sualization by the human eye or for better detection by the computing algorithm [56]. With

respect to image enhancement, researchers have studied several techniques such as thresh-

old transformation [57], logarithmic transformation [58], histogram equalization [19, 20],

and local enhancement [17].

Digital image processing techniques have also been studied in the context of non-

destructive testing (NDT) of structures and materials in recent years. Researchers have tried

to apply image processing to monitor and evaluate the condition of concrete structures us-

ing different type of imaging systems. Ito et al. proposed an automatic detection technique

for cracks in a concrete block by utilizing image-processing techniques on raw images ac-

quired by a high-resolution camera. Fujita et al. implemented a line-filter and threshold

processing to improve the robustness of the above method [59, 60]. Edge-detection algo-

rithms and statistical methods [18, 61, 62] have been advocated and evaluated for assessing

images obtained by acoustic televiewers and high-resolution cameras. An automatic detec-

tion and quantification technique for micro-cracks and other micro-defects was introduced

based on scanning electron microscope (SEM) and optical microscope images [63].
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Image processing using high-resolution camera, acoustic televiewers, scanning electron

microscope (SEM), and optical microscopes are rather effective in identifying micro-cracks

or largely propagated cracks on the surface of concrete. But none of them are helpful

in interior structure inspection, since interior damage may not cause detectable external

change until the damage has progressed to a considerable extent. X-ray tomography has

been studied and applied in internal structure diagnosis [64]. However, as a radioactive and

hazardous technique, X-ray tomography is not suitable for frequent inspections. Therefore,

an automated, less hazardous internal damage detection method is attractive, considering

both efficiency, effectiveness and capabilities of internal damage assessment.

In this chapter, we investigate the processing of thermal images for internal defect di-

agnosis (detection, localization and quantification) in concrete. Thermographic cameras

have been used to detect the differences of temperature in the material in the health moni-

toring of metallic components such as turbine blades [65, 66]. The idea behind this is that

defects or irregularity in a material might cause differences in heat conductivity and tem-

perature diffusivity, when compared with intact material [67, 68]. Thermographic damage

diagnosis has been applied locally and globally [69, 70, 71, 72]. One influential factor is

the resolution of the thermographic camera [73]. Typically, in image processing, the pa-

rameters were selected based on the experts‘‘ experiences. The chapter proposed a more

sophisticated approach for parameter selection through Bayesian updating.

The image processing technique consists of four steps: cropping, smoothing, feature

identification, and decision-making. Each of these steps requires the selection of values

for the processing parameters, which will affect the diagnosis result in turn. We will elab-

orate the parameters in our proposed method in Session 3. In reality, however, it is hard

to determine which values should be chosen for these parameters. In order to study the

uncertainty in the diagnosis result, we first perform Monte Carlo simulation of the image

processing system by randomly choosing values of the image processing parameters. Next,

the contributions of various image processing parameters to the uncertainty in the diag-
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nosis result are analyzed using the global sensitivity analysis (GSA) technique. Finally,

a Bayesian approach is pursued to select the optimal values of parameters for the image

processing system. The obtained optimal parameters can provide guidance in the selection

of parameters for damage diagnosis of similar structures. Thus the proposed damage diag-

nosis methodology consists of four elements: (1) thermal image processing, (2) uncertainty

quantification, (3) sensitivity analysis, and (4) parameter selection.

The remainder of the chapter is organized as follows. Section 3.2 describes the pro-

posed methodology for damage diagnosis in concrete, using thermal image processing,

uncertainty quantification, sensitivity analysis, and parameter selection. Section 3.3 illus-

trates the implementation of the proposed methodology for a concrete slab. Finally, Section

3.4 provides concluding remarks.

3.2 Proposed Methodology

In this section, we will first discuss how thermal image processing can be implemented

for internal damage diagnosis. Following that, we will quantify the uncertainty in the diag-

nosis results and develop the method for selecting the optimal values of image processing

parameters.

3.2.1 Damage Diagnosis Using Thermal Image Processing

The main idea of using thermal image processing for damage detection is that an inter-

nal damage beneath the surface will cause a discontinuity in the thermal conductivity of the

material. Therefore, the captured images will be different from those of the original, intact

material in heating cycles. As long as differences in images exist, we can distinguish them

by calculating features with image processing algorithms.

Figure 3.1 provides a flowchart of the thermal image processing system for internal

damage diagnosis. The inputs of the system are raw images captured from thermographic

camera. Due to the limitations of the camera and experimental setup, some portion of an
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image may capture regions that are not related to the studied specimen. Therefore, the first

step of our image processing system is to crop the raw image to remove the irrelevant parts.

Secondly, with the cropped image, a same size cropped image from an intact structure is

subtracted from the acquired one as baseline removal [21]. After that, a smoothing filter

(namely, SMA filter) mentioned in Section 2.1.1 is employed for noise-cancellation [21].

With the smoothed image, the feature extraction filter (namely, Sobel filter) as reviewed

in Section 2.1.2 is used for feature calculation. With the calculated features, we can apply

threshold settings for pixel-wise decision-making. After scanning through the entire image,

a pixel-wise damage detection and decision matrix is produced and can be shown as a

black-and-white image (suspected damage shown as white spots in Figure 6). Based on

the aforementioned matrix, the amount of damage is estimated. In order to determine the

location of the damage, a pixel-to-length unit convertor first needs be calculated based on

photogrammetry and the relative positions of the camera and the specimen. An illustrative

example will be provided shortly.

Figure 3.1: Flowchart of internal damage diagnosis of concrete

In Figure 3.1, each of the dashed boxes contains the parameters that need to be deter-

mined for the corresponding image processing step. In the cropping step, we have x and y
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, representing the x and y coordinates of the starting point; h and w, representing the height

and weight of the cropped images; and β representing the potential rotation of the studied

specimen. In the noise cancellation step, we have, win, which is the window size of the

selected smoothing filter. In the pixel-wise decision making step, we have xT hr and yT hr,

which are the threshold values for the x gradient and y gradient respectively. Even if some

empirical ranges can be provided for these parameters, determining the optimal values of

the parameters is not straightforward.

In order to quantify the effects of the image processing parameters on the damage diag-

nosis results, the next step is to perform uncertainty quantification of the damage diagnosis,

and assess the relative contributions of different parameters to the diagnosis uncertainty

through sensitivity analysis.

3.2.2 Uncertainty quantification and Sensitivity Analysis

As mentioned in Section 3.2.1, ranges of values may be available, based on previous

experience, for the parameters in the image processing system. Based on the intervals, we

first use Monte Carlo sampling to quantify the uncertainty in the diagnosis results. We then

use global sensitivity analysis to identify important parameters. The noises and errors in

the measurement and numerical method are also considered during this process.

The Monte Carlo simulation is performed by generating random realizations of the

image processing parameters. Uniform distributions over the aforementioned ranges are

used for the random sampling of the parameter values, in the absence of any information

about preferred values. It should be noted here that, even though we use Monte Carlo

simulation, the image processing parameters are not random variables. Their values are

chosen by the analyst, and the chosen value affects the diagnosis result. The purpose of

using Monte Carlo simulation and sensitivity analysis is to observe the effect of the choices

on the diagnosis result in a quantitative manner. In addition, this exercise can also shed

light on the stability of the image processing procedure, by observing whether the diagnosis
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result changes slightly or drastically for a small perturbation of the parameter values.

The purpose of sensitivity analysis is to analyze how the output of a given model is af-

fected by its inputs. There are two types of sensitivity analysis in practice, local sensitivity

analysis and global sensitivity analysis. Local sensitivity analysis is performed at a specific

given point in the region of inputs. Global sensitivity analysis focuses on the study of the

output uncertainty by considering the variation of the input parameters over their entire

range [74, 75]. As a form of global sensitivity analysis, variance-based sensitivity analysis

decomposes the variance of the output into contributions from each input and quantifies the

sensitivity based on the percentage of variance corresponding to each input. Mathemati-

cally, variance-based global sensitivity analysis can be expressed as follows [21]. Given a

model

y = g(X) (3.1)

where y is the model output and X denotes a vector of model inputs, i.e. x1,x2, ...,xn.

The decomposition of variance is expressed as

Var(y) =
n

∑
i=1

Vi +
n

∑
i< j

Vi, j +
n

∑
i=1

V1,2,...,n (3.2)

Vi =VarXi(EX i(y|Xi)) (3.3)

Vi, j =VarXi, j(EX i, j(y|Xi, j)) (3.4)

where Xi denotes the i-th variables in vector X . X i in Eq. 3.3 denotes all other input

variables except Xi . Xi, j in Eq. 3.4 denotes all other input variables except Xi and X j.

Based on the above decomposition, the first order sensitivity index is expressed as [49,

50]
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Si =
Vi

Var(y)
(3.5)

This first order sensitivity index measures the individual contribution of xi to the output

variance. The index is practically computed by calculating the multivariate integrals in Eq.

3.6 and Eq.3.7 through Monte Carlo sampling [35]. By investigating the global sensitivity

results, we can distinguish the parameters of more significant impact on the desired output

from those with less significant impact. This information can be used to narrow the study

to the most important parameters for more detailed investigation [51, 52].

3.2.3 Selection of Optimal Image Processing Parameter Values

Define the input parameters of the damage diagnosis system as α = [x,y,win,xT hr,yT hr],

and expressing the damage diagnosis result mathematically as r = g( α) +er, where r is

the estimated amount of damage, g() is the internal damage diagnosis system, and er is the

error in the diagnosis system. Then the optimization problem to identify the optimal values

of the image processing parameters α is formulated as argmin(|r− rtrue|) where r = g( α)

+er, rtrue is the true damage and α ∈ Ω, where Ω stands for the random domain of the

input variables.

Due to the fact that rtrue is unknown during actual diagnosis and the input parameters

can be chose as any value in the domain Ω, solving the optimization model given above

is impossible during actual diagnosis. However, if the damage diagnosis system is to be

applied to a class of similar structures, we may able to calibrate the optimal parameters

for the internal damage diagnosis system based on experimental observation of rtrue for a

given structure.

Three approaches commonly available for parameter estimation can also be used to

solve the optimization problem. The least squares (LS) approach attempts to minimize the

square of the sum of differences between the observed data and the model prediction. The
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maximum likelihood estimator (MLE) obtains the value of α that maximizes the likelihood

f (rtrue| α ) . A third approach is to use Bayesian estimation, and the parameter values could

be selected as maximum a posteriori (MAP) estimates, thus including any prior information

about the parameters in the estimation [29]. If a uniform prior is assumed, then the MAP

estimate is the same as the MLE estimate. The Bayesian approach is used in this chapter.

Thus the problem of image processing parameter value selection is solved through a

parameter estimation approach in this chapter. Note that the selection of the processing

parameter values is actually a design problem; the analyst gets to select these values. How-

ever, using a parameter estimation approach is a convenient way to solve the design prob-

lem and is mathematically correct.

Using Bayes‘‘ theorem, the posterior distribution of the image processing system pa-

rameters are computed as

f (ααα|rtrue) =
f (rtrue|ααα) f (ααα)∫

f (rtrue|ααα) f (ααα)dααα
(3.6)

where rtrue is the true damage extent, ααα represents the parameters selected in the image

processing system. f (ααα) represents the prior distributions of the parameters. f (rtrue|ααα)

represents the likelihood of the true damage extent of the particular parameter selections.

f (ααα|rtrue) represents the posterior of the distributions of the image processing parameter

given the true damage extent.

Markov Chain Monte Carlo(MCMC) simulation is commonly used to estimate the pos-

terior distribution based on the following proportionality relationship:

p(ααα|rtrue) ∝ p(rtrue|ααα)p(ααα) (3.7)

In this chapter, MCMC is implemented using the Python package PyMC, and the

Metropolis-Hastings sampling method is used [76, 74, 75].

Thus we obtain the optimal parameters for the image processing system. It should be
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noted that the optimal parameter values may vary with structure and damage geometry.

The obtained optimal parameters are only applicable to structures with similar features and

damage characteristics as the structure used for the parameter optimization. An illustra-

tive example is given in the next section to explain the implementation procedure of the

proposed framework.

3.3 Illustrative Example

Damage detection in a concrete slab is used to illustrate the proposed methodology.

The experimental setup is first described, followed by description of the diagnosis imple-

mentation and parameter estimation.

3.3.1 Experimental Setup

The thermal imaging experiment was carried out on concrete slabs with dimensions (in

inches) 15.5×15.5×1.75. The slab was placed on a thermal blanket for uniform heating

at the bottom, and a thermographic camera was placed to take pictures from over the top of

the slab. To simulate internal damage, three parallel holes with different sizes were drilled

from one side of the concrete slab. The dimensions and positions of the holes are shown in

Figure 3.2. Experiments were carried out both before and after drilling. The images were

taken while the slab was subjected to heating. Applied heating profile is provided in Figure

3.4.

3.3.2 Data Collection

The images were obtained using an FLIR‘ Infrared (IR) camera from the top of the

slab every 2 minutes during the experiment. The relative positions of the slab and the

thermographic camera are shown in Figure 3.3.

The temperature profile of the heating blanket is shown in the following image. And
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Figure 3.2: Dimensions and locations of the holes in the concrete slab (cm)

Figure 3.3: Positions of the thermographic camera and concrete slab
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the image selected for parameter optimization is at 18th minute. The reason for choosing

that particular time instant is that at the beginning of the heating cycle, initial conditions

dominate and it may take a while for the heating blanket and other equipment to function

smoothly. Since the internal damage in the concrete will have effect on the heat conduc-

tivity in the corresponding area, the images that are taken while the temperature of the

slab is increasing should reflect the heat conductivity of the internal condition better than

during steady temperature. Thus we selected 18th minute, which is immediately after the

temperature of the heating blanket reaches its maximum value.

Figure 3.4: Temperature profile in the thermal blanket

The images were taken for both the intact concrete slab and the drilled slab. Figure 3.5

shows one collected raw image for the slab with the holes.
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Figure 3.5: Raw image from thermographic camera

3.3.3 Image Processing Methodology

As shown in Figure 3.4, due to the limitation of the camera, there are segments on both

edges, which are due to the metal frame and unrelated to the concrete slab. Therefore, the

first step is to crop the image into purely concrete part. Next, a cropped image of the same

size from an intact slab is subtracted from the acquired one for baseline removal. After

that, a 2-dimensional simple moving average filter, with a window-size win, is applied for

noise-cancellation [77] as described in Section 2.1. With the smoothed image, a Sobel

filter is employed to calculate the gradients (features) gx and gy of the image as introduced

in Section 2.1.2. A threshold value needs to be selected for each feature; in each pixel,

if both xT hr and yT hr are below the corresponding threshold; damage is declared at that

pixel. After scanning through the entire image, a pixel-wise damage detection and decision

matrix is produced and can be shown as a black-and-white image (suspected damage shown

as white spots in Figure 3.6).
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The location of damage can be quantified based on the pixel-wise damage matrix. In

this calculation, the length-to-pixel convertor is as follows,

1pix≈ 0.0777cm ⇐⇒ 12.86pix/cm (3.8)

Figure 3.6: Pixel-wise damage detection and decision matrix (parameter values: [x = 74,
y = 16, win = 25, xT hr = 0.08, yT hr =−0.08)]

The extent of damage is first provided by the pixel counts in terms of the damage area-

ratio defined as

ψ =
Nd

Nt
(3.9)

where ψ is the damaged area ratio, Nd is the number of suspected internal damage

pixels and Nt is the total number of pixels within the cropped image.

We make an assumption that the area ratio, ψ , calculated in Eq. 3.9 is equal to the

actual area ratio in the concrete slab. With the calculated area ratio, ψ from Eq. 3.9 and
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knowing the physical area of the slab, A, we build the following relationship:

Ad = ψA (3.10)

where Ad is the estimated damaged area.

The function above is deterministic, which means that given a combination of all the

five parameters and the measurement of the concrete slab dimensions, estimated damaged

area, Ad is a fixed number. However, the analyst is uncertain about the values to be selected

for these parameters; each combination of the parameter values will give a different result.

Next, we will investigate how to quantify the uncertainty in the diagnosis result due to the

uncertainty regarding parameter selection. As the three parallel holes are not extremely

close to each other, we can assume that they are independent. Therefore, we can further

predict the damage area individually. Based on the Eq. 3.8, Eq. 3.9, and Eq. 3.10, we

can calculate the damage area for upper hole, 16.324cm2 , the damage area for middle

hole, 17.075cm2 , and the damage area for lower hole, 12.436cm2 . Compared with the

true areas, 15.494cm2 , 11.590cm2 , and 9.638cm2 , though the middle hole area seems

relatively overestimated, the estimated results are close the true values. We are able to

estimate the diameter of each of the drilled holes from Figure 3.6, upper hole, 2.33cm,

middle hole, 1.55cm, and lower hole, 1.32cm. Compared with the true diameters: 1.27cm

, 0.95cm, and 0.79cm , the estimations are also very close to the truth.

3.3.4 Uncertainty Quantification and Sensitivity Analysis

As mentioned in Section 3.3.2, we assume that the parameter settings in the image

processing steps are independent from each other [78]. The selected range of x and y are

based on direct observation of the raw images. The range of window size win is assumed

to be 15 to 35 pixels. The selected ranges of xT hr and yT hr are based on trial and error,

namely, a process that carries out a greedy search on different parameter combinations for
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suitable settings.

For the purpose of uncertainty quantification using Monte Carlo simulation, all five pa-

rameters are sampled from uniform distributions, since there is no information regarding

preferred values for the parameters. Table 3.1 summarizes the five variables in the image

processing system. Note that x, y ,and win refer to the coordinate and smoothing window

size, which are measured in pixels, whereas, xT hr and yT hr are threshold values of gradi-

ents. Therefore, we sample x, y, and win from discrete uniform distributions, and xT hr and

yT hr from continuous uniform distributions. The lower and upper bounds of the uniform

distributions are also given in Table 3.1.

Variable x y win xT hr yT hr
Distribution Uniform (D) Uniform (D) Uniform (D) Uniform (C) Uniform (C)
Parameters [64, 84] [6, 26] [15, 35] [0, 0.1] [-0.1, 0]

Table 3.1: Five variables of the image processing system and their empirical intervals Vari-
able. Note: D: discrete distribution (in our case: only take integer values), C: continuous
distribution

From each of the distributions in Table 3.1, we randomly draw 30,000 samples. With

each realization of the parameter values, the four image processing steps are applied ac-

cording to the procedure given in Figure 2.1 in order to calculate the estimated damage

area. With the 30,000 values of estimated damaged area, Ad , the histogram is plotted as in

Figure 3.7. The total computation time for the Monte Carlo simulation is about 31.3 hours

on a 4-core-CPU computer.

The true damage area (known because we drilled the holes to a specified size) is

36.008cm2. From the MCS results in Figure 3.7, we can observe that the peak of the

histogram of estimated damage area is at about 60cm2 assuming that the area ratio in the

cropped image carries over to the full slab. If we directly compute the damage area from

the pixels and the convertor in Eq. 3.8 without carrying the area ratio to the full slab, the

peak of the histogram is still at about 56cm2. Thus there is a conservative overestimation

of damaged area with the thermal imaging technique in this example. This is expected, be-
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Figure 3.7: Histogram of estimated damaged area obtained from MCS

cause the thermal conductivity of the areas adjacent to the holes is reduced by the presence

of the holes, and therefore these adjacent areas are also identified as damaged through the

image processing analysis. This is also visually seen in Figure 3.6, where the white pixels

cover widths larger than the true widths of the three holes.

Next we perform global sensitivity analysis of the damage diagnosis result, and Table

3.2 gives the first-order indices (i.e., individual effects).

Variable x y win xT hr yT hr
First-order indices 0.001622 0.031796 0.028584 0.75492 0.069603

Table 3.2: Global sensitivity analysis results

Table 3.2 indicates that xT hr has the highest first-order sensitivity index, followed by

yT hr. It implies that the selection of xT hr and yT hr is critical for the accuracy of the diag-

nosis result. The reason for a dominant sensitivity of xT hr is considered as the geometric

spread of the drilled holes in the concrete slab. As shown in Figure 3.5, due to the specific

geometry of the holes, the temperature field in the slab varies less horizontally(x-direction)

than vertically(y-direction). Therefore, a small change in will make a significant difference
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in the decision making result, i.e. xT hr should have a relatively high sensitivity. In the next

section, we select optimal values of these parameters based on our knowledge of the true

damage.

3.3.5 Selection of Optimal Parameters

In this example, we assume that the error er, in the system follows normal distribution.

The mean of the error is the assumed to be zero, and the variance is unknown and needs to

be estimated along with the parameters. We use a uniform prior for the standard deviation

(σ Uni f orm[0.01,0.0126]). Figure 3.8 shows a simple Bayesian network connecting all

the variables, output and observation.

Figure 3.8: Bayesian model connecting processing parameters and the output

We estimate the posterior distributions of the processing parameters based on the Bayesian

updating mentioned in Section 3.3.3. Figures. 3.9 - 3.13 give the obtained posterior dis-

tributions of the image processing parameters. We ran 10000 samples for MCMC using
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Metropolis-Hastings algorithm. As the algorithm takes some iterations to reach a steady

state [79], we discarded the first 1000 samples. The total computational time is about 26.9

hours on a 4-core-CPU computer.

Figure 3.9: Posterior distribution of x

The posterior distributions of x, y, and win do not provide much guidance for selecting

their optimal values. This result is expected, since these three parameters were observed to

have very low sensitivity indices (Table 3.2). In the case of significant parameters xT hr and

yT hr the MAP estimates are found to be xT hr = 0.09 and yT hr = −0.09; these estimates

are similar to the result from trial and error: xT hr = 0.08 and yT hr = −0.08. By the

Eqs. 3.8 - 3.10, we calculate the damage area using parameters from Bayesian updating,

26.706cm2 and the parameters from trial-and-error, 45.835cm2. Compared with the true

area, 36.008cm2, the result from Bayesian updating parameters is more aggressive and the

result from trial-and-error seems more conservative.
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Figure 3.10: Posterior distribution of y

Figure 3.11: Posterior distribution of win
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Figure 3.12: Posterior distribution of xT hr

3.4 Conclusion

This chapter investigated thermal image processing for internal damage detection, lo-

calization and quantification in concrete. From the Monte Carlo simulation, we are able to

gain insight into the uncertainty of the diagnosis result based on ranges of the values for the

image processing parameters. The sensitivity analysis identifies the significant parameters

that affect the diagnosis uncertainty. The Bayesian approach is able to identify optimum

values of the significant parameters. The proposed damage detection and quantification

framework is validated by the damage of drilled holes due to the fact that concrete specimen

casting and curing consume weeks. Specimens containing other kinds of damages should

be casted and tested to study the generality of the proposed damage diagnosis framework.

Chapter 4 explores damage detection and localization based on vibration testing.
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Figure 3.13: Posterior distribution of yT hr
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Chapter 4

Harmonic Vibration Testing for Damage Detection and Localization

4.1 Introduction

Condition monitoring or health monitoring in heterogeneous materials, such as con-

crete, has been a challenging problem. Researchers have studied different types of struc-

tural health monitoring techniques using structural dynamics, signal processing, image pro-

cessing, and finite element and statistical modeling [80, 81, 82]. However, many of the

methods were developed for homogeneous materials, such as aluminum and steel. (Finite

element modeling has been used for the prediction of structural condition and verification

of experimental observations, and model updates have been done using monitoring data

[83, 84]. And for real-world structure with complex geometry, it is complicated to build

an accurate and precise finite element model due to the complexity of the structure.) Some

studies proposed using ultrasonic waves to perform the tests and detecting the damage

through frequency-based features [85, 86]. But the method has been shown only with very

small concrete brick samples. Meanwhile, experiments on larger sizes of concrete struc-

tures need to be done. Some studies proposed to study the dynamics of a structure using a

high-speed video camera and advanced image processing algorithms such as phase-based

motion magnification, optical flow estimation, etc. [87, 88]. Methods of this type are ap-

plicable for materials like steel and aluminum but face significant challenges in concrete.

Other studies proposed using infra-red thermography to perform damage detection and lo-

calization [4]. But due to the limitation of the camera and the low heat conductivity of

the concrete, these methods also face challenges for larger size concrete blocks. Some

other vibration-based methods either can only perform damage detection or meet similar

challenges when applying the technique developed from small laboratory samples to larger

concrete blocks [89, 90, 91, 92, 93]. Recent studies have considered hybrid condition mon-
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itoring of concrete with embedded PZT and optical fibers [94]; this approach is feasible

only for new structures. Other studies have built ultrasonic tomography systems for evalu-

ating concrete structures [95], but the method requires access to both sides of the structure,

causing challenges when one side of the structure is not accessible (e.g., the inner side of

the concrete shield around a nuclear reactor). Therefore, it is important to develop a method

that can not only detect and localize damage but also can achieve simplicity, effectiveness

and efficiency in applications to large concrete structures.

This chapter investigates swept and harmonic vibration tests for damage diagnosis in

concrete. This work is inspired by the research on pipeline health monitoring using guided

ultrasonic waves and the research on using swept waves for detecting cracks within steel

beams [96, 97, 36, 98]. A robust SVD-based damage-sensitive feature is developed for

damage detection, and a damage location-sensitive K-factor metric is developed for damage

localization. To demonstrate and validate the proposed two-stage damage diagnosis frame-

work, experiments are carried out on patio blocks (thin slabs) and medium-sized concrete

blocks. At the damage localization stage, we propose to use unsupervised learning tech-

niques to cluster the locations of intact parts and damaged parts. There are many clustering

methods and for demonstration purposes, we use k-means clustering, a classic clustering

method, in this chapter.

The rest of the chapter is organized as follows. In Section 4.2, we present the proposed

two-stage damage diagnosis methodology, and describe the steps to calculate the proposed

SVD-based damage-sensitive feature and the K-factor metric. In Section 4.3, we describe

our experiments on different concrete samples with different types and amounts of damage,

and demonstrate the methodology through the analysis of the collected datasets. In Section

4.4, we conclude the chapter with a brief summary.
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4.2 Proposed Methodology

The proposed methodology consists of two stages, i.e., detection and localization. Dur-

ing the detection stage, there are two inputs, namely, the data collected previously on the

intact sample (to compute the left singular vectors) and the newly received data from the

sample whose health status is unknown. Both of these datasets are from sine-sweep har-

monic vibration experiments. The core part of the first stage is to compute the proposed

SVD-based damage-sensitive feature and compare it with those calculated from the intact

sample dataset. If the estimated feature value lies outside the threshold, the damage is

detected and we move to the next stage for localization.

At the second stage, namely, the localization of damage, the only input is the data from

harmonic vibration tests with the sinusoidal input on the same sample. The core part of this

stage is to compute the crest K-factor from the data collected by the accelerometer at each

of the different locations. The location where the computed crest K-factor value is above a

threshold indicates the damaged region.

4.2.1 Proposed SVD-based features with linear swept waves

Besides dimension reduction, in the field of non-destructive evaluation (NDE), re-

searchers have analyzed the datasets collected from ultra-sonic pitch-catch experiments

on steel pipes and found that the projection values on one specific left singular vector is

significantly different between an intact pipe and a pipe with simulated damage [99]. This

direction is promising because SVD provides us different angles to observe the structure

of the data compared to traditional decomposition methods, such as Fourier Transform,

Wavelet Transform, which decompose the signal in to fixed periodic bases or mother wave

bases. On the other hand, SVD decomposes the data based on the data samples themselves

and offers more flexibility in monitoring different structures. For structural health moni-

toring, we are primarily interested in the internal damage that is highly correlated with the
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health condition. However, there are several issues that need to be addressed in this regard.

The order where the damage-indicating left singular vector occurs changes from one ex-

periment to another. The difference is not significant enough to observe and sometimes it

may not even exist. Therefore, we need more robust and stable damage-sensitive features.

In particular, the monitoring of concrete, due to the complex heterogeneity, requires more

reliable and stable damage-sensitive features.

To address these issues, we propose a damage-sensitive feature based on the energy of

the signal reconstructed from the projections on the last several left singular vectors that are

calculated from the data of intact samples. Researchers performed monitoring on pressur-

ized pipe under operation and they found the correlation between the first several singular

vectors and the experimental design and operational set-up [100]. The reasoning behind

this damage-sensitive feature is that the first several left singular vectors reflect the infor-

mation of some of the statistics of the signal (such as magnitudes, frequencies, bandwidth,

etc.) and the general medium properties (material type) in which the signal travels, etc. On

the other hand, the changes in the material (such as internal damage, cracking, etc.) domi-

nate the latter left singular vectors. Therefore, the projections onto the last several singular

vectors should reflect these types of changes. Thus, we use the projections onto the last

several left singular vectors to reconstruct the signal and choose the energy (sum of the

squared values) of the reconstructed signal as the damage-sensitive feature. Meanwhile, to

enrich the content of the vibration signal, instead of a pure sinusoidal input, we employ a

linear sweep.

Given the data collected from the experiments, after preprocessing, we place them in

a matrix X = [x1,x2, ‘‘,xn], where each xi represents a column vector of vibration data

collected in test number i. Then we perform singular value decomposition as described

in Section 2.2, as X = USV T . Since the columns of U form an orthonormal basis, we

reconstruct the signal with the last several left singular vectors, from k4ton4, which can be

done practically by setting the diagonal values of S to be zeros from 1 to k− 1, to get S∗.
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The reconstructed signals are calculated as

X∗ = [x∗1,x
∗
2, ...,x

∗
n] =US∗V T (4.1)

Each x∗i is a reconstructed signal using one of the last several left singular vectors as set

above. Next, the proposed damage-sensitive feature is calculated using the

Ei =
n

∑
j=1

x∗i, j
2 (4.2)

where Ei represents the energy of the reconstructed signal x∗i , and x(i, j)∗ represents the

value of the reconstructed signal at time step j. With the calculated damage-sensitive fea-

ture values from the intact condition and later conditions, we can perform damage detection

by setting a threshold based on the feature values from the intact condition. In real-world

applications, we can also build a time-series model of degradation by performing continu-

ous monitoring of the structure.

4.2.2 Selection of singular vectors

In this section, we first discuss the reasons for the selection of the singular vectors to

reconstruct the signal to compute the damage-sensitive feature. Then, we discuss the ro-

bustness of the proposed approach. To illustrate the robustness of selecting singular vectors,

we will follow the section with a comparison of the results of using different combinations

of singular vectors to reconstruct the signal.

As mentioned in the previous section, each of the newly collected signals is projected

onto the intact bases and the signal is reconstructed with the latter several signal vectors.

In the experiments discussed in Section 4.2.3, we used the 21st to 50th singular vectors to

reconstruct the signal. During this process, we neglected the first twenty singular vectors

due to the assumption that these first several singular vectors represent the basic information

of the tests such as the material types, experiments setup, etc. And the basic information
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should remain the same if we test on the same material (concrete) and use the same type

of experiment. Meanwhile, we also removed the very last few singular vectors, in order

to remove the noise in the signal. The selection of the singular vectors was based on trial

and error. And the selection criterion could be quantified by the variance explained by the

selected singular vectors. We found that removing the first several singular vectors that

explained 50% of the variance and the last few vectors that explained 5% of the variance

would be a reasonable and effective selection.

The selection of the singular vectors to reconstruct the signal is found to be quite robust

to minor changes in terms of the singular vectors included. To better demonstrate this argu-

ment, we performed reconstructions of the signal with multiple different selections of the

singular vectors around the 21st to 50th singular vectors. Based on the singular value de-

composition results of the intact dataset, the first 20 singular vectors explain about 50% of

the signal variance and the singular vectors after 50th represent about 5% of the signal vari-

ance. As described previously, we drop out these singular vectors and reconstruct the signal

with the remaining ones. To demonstrate the robustness of feature values, we changed the

starting and ending singular vectors and calculated the proposed damage-sensitive feature

values with different selections of singular vectors. We presented the results with six differ-

ent singular vector selections in Figure 4.1. The x-axis describes the test numbers and the

y-axis describes the value of the proposed damage-sensitive feature. In all six cases, three

sets of points are shown. The blue plus signs represent the damage-sensitive feature values

from the intact dataset that we used to create the intact basis. The red plus signs represent

the damage-sensitive features from the damaged dataset. And the blue circles represent the

intact dataset reserved for validation.

The results of finer changes in combinations are summarized in a table. We varied

the starting and ending singular vector by a range of −5 to 5, so we had 11 choices for

starting singular vector and 11 choices for ending singular vectors. Therefore, we have

121 singular vector selection candidates overall. To quantify evaluate the performance of
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Figure 4.1: SVD-based feature values with different singular vector selections for signal
reconstruction (x-axis: dataset number; y-axis: SVD-based feature value)

each of the combinations, for each singular vector selection, we trained a Support Vector

Machine classifier with two kernels: RBF Gaussian kernel and polynomial kernel. We

performed 10-fold cross-validation of the SVM classifier 10 times and gathered the error

rates . (Note however, that the SVM analysis is only for evaluating the performance of the

selected singular vectors, and is not actually used in damage detection). With the RBF-
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kernel, 118 out of 121 singular vector (SV) combination candidates reached the accuracy

of over 90% and only 3 out of 121 combination selections had an accuracy rate slightly

less than 90%. And for the polynomial-kernel case, all 121 singular vector combinations

reached over 90% accuracy and more than 60% of them reached an accuracy over 92.5%.

Table 4.1 lists the SVM classifier results for each sensor location during one test. It is then

seen that the results were not affected by minor changes in the singular vector selection. In

other words, the damage-sensitive feature is quite robust to the singular vector selection. (In

many SHM studies, statistical hypothesis testing is often employed for damage detection

[47, 101]. In the case of Figure 4.1, the separation between the intact and damaged cases is

quite distinct, thus hypothesis testing does not seem necessary; however, hypothesis testing

could be employed if overlap is seen among the two sets of values, to check whether the

overlap is significant).

Sensor Location 0∼ 2.5% 2.5%∼ 5% 5%∼ 7.5% 7.5%∼ 10% 10%∼ 12.5% 12.5%∼ 15% 15%∼ 20%
1 0 0 12 104 5 0 0
2 0 0 25 96 0 0 0
3 0 0 0 0 50 45 26
4 0 0 0 11 106 4 0
5 0 2 93 26 0 0 0
6 0 0 0 0 119 2 0
7 0 0 8 104 9 0 0
8 0 0 56 65 0 0 0
9 0 0 83 38 0 0 0

Table 4.1: Number of SV selection at different error at each sensor location

4.2.3 K-factor as an indicator for damage localization

The proposed SVD-based damage-sensitive feature is able to differentiate the data col-

lected on damaged samples from the data collected on intact samples, as shown in the

numerical study later. The next step is to identify the location of the damage by using the

data from multiple sensors.

The assumption here is that the internal damage or crack will cause discontinuity in

the material, especially for acoustic wave transmission. Therefore, if we set the waveform

at the actuator to be a sinusoid, the acquired signals at accelerometers mounted at differ-
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ent locations will be differently affected by the damage and deviate from the sinusoid at

different levels. The amount of deviation will be affected by the location of the accelerom-

eter, with the highest deviation observed when the accelerometer is mounted closest to the

region where damage is present. As we acquire time series data from the accelerometers

at different locations, we calculate the corresponding K-factor for each of the locations.

Thereafter, by comparing the relative values of the K-factors, we will be able to identify

the possible locations of the damaged zones.

For each of the sinusoidal input vibration tests, xi, the K-factor can be calculated as

Ki = max(xi)×RMS(xi) (4.3)

After the calculation of the K-factors from the data collected by the accelerometers at

each location, damage localization can be performed by comparing the K values. There

are several possible methods to determine the damage locations, such as direct observation,

maximum-value position, and use of unsupervised learning algorithms. In this study, we

choose two methods (k = 2), direct observation and k-means clustering (an unsupervised

learning method) for the sake of illustration. Other metrics might be found suitable for

different applications.

4.2.4 Implementation of the proposed methodology

Using the proposed SVD-based damage-sensitive feature and the crest K-factor metric,

we establish a procedure for damage detection and localization as shown in Figure 4.2.

Two types of vibration datasets are needed: swept-input and sinusoidal input. Suppose X =

x1,x2,x3, ‘‘,xn represents the dataset from n swept-wave vibration tests where xi represents

the acquired signal from the ith test, and Y = y1,y2,y3, ‘‘,ym represents the dataset from

m sinusoid-wave vibration tests where y j represents the acquired signal from the jth test.

Note that the swept-wave vibration experiments are performed on all the samples (i.e., both
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intact samples and damaged samples in this study; in practical application, they will be time

series datasets collected from the same structure at different dates based on the monitoring

schedule, with the early stage treated as intact or initial condition.). On the other hand, the

sinusoid vibration tests are performed only on the damaged sample. When monitoring an

actual structure, the sinusoid tests may be performed only after the SVD-based damage-

sensitive feature indicates the presence of damage, thus resulting in some cost savings.

Figure 4.2: Flowchart of the proposed health monitoring framework

Suppose X0 is the dataset from the intact/initial case, and X1,X2,X3... are the subsequent

datasets. We first establish the singular vector bases using the dataset X0 as

X0 =U0S0V T
0 (4.4)

For a subsequent dataset Xi (i > 0), the projection of this dataset on the established

singular vector bases will be
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Si =UT
0 XiV0 (4.5)

Next, we reconstruct the signal with the last several singular vectors. This can be done

by setting the first several projection coefficients to be zero to get S′i. The reconstructed

signal is

X ′i = [x′i1,x
′
i2, ...] =U0S′iV

T
0 (4.6)

where x′i j represents the jth reconstructed signal from the ith dataset. Then the proposed

SVD-based damage-sensitive feature is computed as

E ′i j = x′i j
T x′i j (4.7)

After the calculation of the feature values for all the collected datasets, we obtain the

time series of the feature values starting from the intact/initial condition, and infer damage

detection based on the selected threshold value of the feature.

During health monitoring over a lifetime of a structure, one issue needs to be considered

is that, as we collect an increasing number of datasets, how to maintain the singular vector

bases. Several options may be considered. The first one is not to update but continue to

use the original bases. The benefit of this strategy is that we always compare the current

condition against the initial condition. But the bases need to be updated once there is major

maintenance or repair on the structure.

The second option is to update the singular vector bases every time we acquire a new

dataset and establish the bases based on all the collected datasets up to this time. The benefit

of this plan is that it can include the data over a long time-span. But this will increase the

data storage expense and the computational load as we collect more and more datasets.

The third option is also to update the bases once we have a new dataset but, instead of

saving and using all the collected datasets, we save and use only the n most recent datasets
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to create the singular vector bases. This option implies a Markov-type assumption (i.e.,

the singular vector bases are only affected by recent history) and reduces the storage and

computation expense.

Once we detect damage in the structure, we enter the second stage of the health moni-

toring methodology by starting the data acquisition with the sinusoidal input vibration tests.

In this stage, the K-factor calculation is relatively simpler compared with the SVD-based

damage-sensitive feature calculation. Using the K-factor, we identify the most probable

damage location(s) by direct observation, k-means clustering, or some other criterion; al-

though different criterion can be used, the essential step is the calculation of the K-factor.

As the grid for the accelerometers becomes finer (i.e. more accelerometer locations), the

damage localization becomes more refined. The next section presents experiments with

concrete samples with two different types of damage, and illustrates the proposed method-

ology.

4.3 Illustrative Example

To demonstrate and verify the proposed method, we conducted experiments on concrete

samples with different sizes and different kinds of damage. Two types of samples were used

for the experiments: patio block (thin slab) samples and thick block samples. Both types

of samples were made of plain concrete.

4.3.1 Harmonic vibration experiments on patio block (thin slab) samples

The patio block samples were made of concrete and purchased from the hardware store.

The dimensions of the patio block are shown in the Figure 4.4. A few of the slabs are

preserved as intact samples; in other samples, to simulate internal damage, we drilled holes

on one side of the block. The detailed locations and dimensions of the drilled holes are also

shown in the Figure 4.4.
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Figure 4.3: Testing equipment used in the experiment

The Harmonic vibration tests employed a waveform generator, a wave amplifier, a Na-

tional Instruments data acquisition (NI-DAQ) system, an actuator, and nine single-axis

accelerometers as shown in the Figure 4.3. The waveform generator was used to tune the

parameters of the waveform. The actuator and the nine accelerometers were mounted on

the top surface of the sample at the locations shown in the Figure 4.4 and 4.5.

The experiments used sinusoidal waveforms at 5000Hz and a sweep waveform (linearly

swept from 200Hz to 5000Hz). The frequencies were chosen based on the lowest effective

frequency of the actuator and the highest sampling frequency in the NI-DAQ system. Due

to the limitation of the accelerometer range, the amplitude of the waveform was constantly

set to be 1000mV for all the tests. In each vibration test, the signal of a specific waveform

(one of the aforementioned waveforms) generated by the actuator was received by the nine

accelerometers at different locations, and each test lasted for 1.5seconds. Overall, 100

tests were carried out with each of the waveform settings for both the intact sample and the

damaged sample.
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Figure 4.4: Dimensions and locations of the sensors (a) and drilled holes (b) in the patio
block sample

4.3.2 Data Analysis

The data from the intact slab was divided into two subsets, 70% for damage detection

and 30% for validation. SVD was performed on the former subset to establish the damage-
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Figure 4.5: Thin slab sample with accelerometers mounted on the top surface

sensitive basis using the singular values. The data points collected from the damaged sam-

ple were not used to construct the intact condition basis. Since the feature values for the

test set were calculated based on the projection to the bases calculated by the training data,

it is expected that there is a little different for the two sets.

After the construction of the intact condition basis, each of the data points from both

the intact and the damaged samples was projected onto the intact condition basis. We used

the 21st to the 50th singular values to reconstruct the signal and calculate the energy of the

reconstructed signal – the proposed damage-sensitive feature. In Figure 4.6, the blue points

represent the values of the damage-sensitive features from the intact data, and the red points

represent the values of the damage-sensitive features from the damaged sample. The blue

circles represent the values of the damage-sensitive features from the intact dataset set aside

for validation. The x-axis shows the dataset number, and the y-axis shows the energy value.

Same as the shown in Figure 4.1, the blue plus signs indicate the damage-sensitive feature

values from the intact dataset that we used to create the intact basis. The red plus signs in-

dicate the damage-sensitive features from the damaged dataset. And the blue circles show

the intact dataset reserved for validation. The plots indicate that the energy values from
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the damaged cases were much lower than those from the intact samples. The results are

consistent for each of the 9 sensors, showing significant difference between the feature val-

ues from the intact samples and those from the damaged samples, thus making the damage

detection very effective.

Figure 4.6: SVD-based features from patio block samples (x-axis: dataset number; y-axis:
SVD-based feature value

Next, we use the data from tests with the pure sinusoid waveform (here we used a

frequency of 5kHz) for damage localization analysis. Since there are 100 tests, 100 K-

factors are calculated at each of the 9 locations and plotted in Figure 4.7. From the plot,

we observe that the values of K-factor at locations No.1, No.4, and No.7 are much higher

than those at the other locations. Therefore, these three locations are identified to have
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a high probability of damage. This result matches with the design of the sample, since

accelerometers No.1, No.4, and No.7 were mounted above the drilled holes.

Figure 4.7: K-factor calculation from the drilled patio block sample

For the patio block sample, we know the ground truth and could make the diagnosis

directly by visual observation. However, for the next studied sample, which is conducted

with much larger and thicker samples, the damage is not visible, and the damage locations

are unknown.

4.3.3 Harmonic vibration Experiments on the Thick Block Samples

These samples were made at the University of Alabama, and were utilized to simulate

damage due to alkali-silica reaction, a type of damage seen in concrete structures such as

dams. Some types of aggregates chemically react with the cement to form an alkali-silica

gel, which continues to grow in the presence of moisture and eventually causes cracking.

The samples contained two kinds of reactive aggregates, from North Carolina and Col-

orado. For each type of aggregate, the concrete samples were prepared by adding chemi-
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cals to either boost the reactivity (referred to as reactive samples), or suppress the reactivity

(referred to as control samples). The reactive samples were cured in alkaline solution to

further accelerate the alkali-silica reaction. In the following discussion, we will refer to

the samples as AR, AC, BR and BC, where A and B refer to the sources of the aggre-

gates (North Carolina and Colorado), and R and C refer to reactive and control samples

respectively. These samples were cured in alkali and humid condition for over a year. The

presence of alkali-silica reaction (ASR) was first detected using deformation measurements

(i.e., expansion of the AR and BR blocks).

Figure 4.8: Dimensions of the block samples

The locations of the accelerometers and the actuator for the vibration tests are shown in

Figure 4.9. For the sake of illustration, we concentrate the placements of the accelerometers

on one half of the sample. The parameter settings of the waveforms were maintained the

same as in the case of the thin patio slabs, including the frequencies and the magnitudes.

Then, 100 tests for each of the specific settings, each with 1.5 seconds duration, were

conducted.

Similar to the thin slab case, the datasets of the control samples were divided into two

subsets, 70% for damage-sensitive basis construction and 30% for validation. Then, all the

data points were projected on the created basis, and the damage-sensitive feature (energy)

was computed based on the reconstructed the signal with the 21st to 50th singular values.
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Figure 4.9: Locations of the accelerometers and the waveform actuators

The results are shown in Figures 4.10 and 4.11. As before, the blue plus signs repre-

sent the feature values for the 70% control samples, the red plus sings represent the values

for the reactive samples, and the blue circles represent the values for the 30% control val-

idation samples. It can be observed that the feature values for the reactive samples were

much lower than those for the control samples. Meanwhile, the differences were significant

enough to make the damage detection quite clear.

Similar to the process for the patio block samples, sinusoidal vibration test data on

the reactive samples are used next, to compute the K-factors at each of the accelerometer

locations. The assumption in using the K-factor is that higher values of the K-factors

indicate more damage under that specific accelerometer. Since this process was a relative

comparison, there could be multiple different metrics to make decisions. Here we illustrate

two metrics: direct observation and k-means clustering.

The results from direct observation are shown in Figures 4.12 and 4.13. For the AR

sample, it is seen that the values of the K-factors from accelerometer No.2, No.3, No.5,

and No.6 were much higher than the other accelerometers. Therefore, we could identify
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Figure 4.10: SVD-based features of North Carolina samples (x-axis: dataset number; y-
axis: SVD-based feature value)

locations No.2, No.3, No.5, and No.6 as more likely to be damaged than the other locations.

For the BR sample, the K-factors from accelerometer No.6 were much higher than at other

locations, implying a higher probability of damage in the zone close to location No.6.

(Hypothesis testing is not necessary to distinguish between the K-factor values since they

are remarkably consistent at each location, with negligible variance).

As an alternative to direct observation, we could also use an unsupervised learning

method to cluster the values of the K-factors. Here we use k-means clustering to group the

candidate locations based on their damage condition, and set the number of clusters to be

two. (Note that we could set the number of clusters to be greater than two, thus offering

more flexibility in identifying and locating multiple levels of damage severity). After a
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Figure 4.11: SVD-based features of Colorado samples (x-axis: dataset number; y-axis:
SVD-based feature value)

hundred iterations of K-means clustering, the clustered groups reached a stable result. The

results are shown in Figures 4.14 and 4.15. The red points indicate the ‘‘damage‘‘ cluster,

and the blue points indicate the ‘‘intact‘‘ cluster. For the AR sample, the results from direct

observation and the results from k-means clustering (k = 2) match with each other. For the

BR sample, the results using k-means clustering (k = 2) are more conservative than the

results from direct observations, since more locations are identified as damaged. When

we apply this method to a relatively large structure, we should expect damage of different

kinds and severity, and adjust the number of the clusters accordingly.
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Figure 4.12: K-factors for AR samples: (a) direct observation; (b) possible damaged zone

Figure 4.13: K-factors for BR samples: (a) direct observation; (b) possible damaged zone

Figure 4.14: AR sample K-factors: (a)k-means clustering; (b) possible damaged zone

4.3.4 Robustness study about location-choice of the actuator

For the harmonic vibration test, there are many possible locations where a researcher

can place the actuator on a sample. Especially, we want to study whether the relative
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Figure 4.15: BR sample K-factors: (a)k-means clustering; (b) possible damaged zone

distances from the actuator to the nine accelerometers will affect the calculation of the

crest factors, which may affect the prediction of the damaged area. Therefore, we draw a

grid on the top surface of the sample and select the locations of the actuator based on the

grid. Here in the Figure 4.16 is the grid we draw on the Alabama sample with 18 selected

locations for the actuator placement.

For each of the scenarios, we carry out 100 harmonic vibration tests and acquire re-

sponses from 9 accelerometers. Then we calculate the corresponding crest factor for each

location. With the calculated crest factors for each of the scenarios, we can perform dam-

age localization with hard-max direct observation (locations with the maximum crest factor

values) and the k-means clustering algorithm. The predicted damage locations are listed in

the following Table 4.2.

If we use a voting mechanism, we can further identify the damaged area based on the

location(s) with the most votes. The following two tables, Table 4.3 and 4.4, summarized

the votes for each location.

4.4 Conclusion

In this chapter, we developed a novel two-stage methodology for damage detection

and localization using vibration tests. For the purpose of damage detection, we proposed

an SVD-based damage-sensitive feature using swept waves. For damage localization, we
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Figure 4.16: Locations candidates of the actuator placement

Scenarios Hard-Max k-mean
1 6 1,2,5,6,8
2 2, 5 2, 5
3 8 2, 4 5, 7, 8
4 8 2, 5, 7, 8
5 8, 8, 9
6 2, 6 1, 2, 5, 6, 8
7 8 1, 2, 5, 6, 7, 8
8 6 2, 5, 6
9 2 2, 5, 6

10 2 2, 5
11 6 6
12 6 6, 8
13 3, 5 3, 5
14 2 2, 5
15 2 2, 5
16 2, 5 2, 4, 5, 8
17 2 2
18 2 2, 5
19 3 3
20 2 2, 4, 5, 6

Table 4.2: Prediction results from each scenario

introduced the K-factor metric using sinusoidal waves.

The proposed methodology is demonstrated using experiments on two types of concrete
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Acc # 222 3 5 6 8
Votes 101010 2 3 5 4

Table 4.3: Votes for damaged locations with hard-maximum

Acc # 1 222 3 4 555 6 7 8 9
Votes 3 151515 2 3 15 8 3 8 1

Table 4.4: Votes for damaged locations with k-means clustering

samples ‘‘ thin slabs with drilled holes and thicker blocks with internal ASR damage. In

both cases, the SVD-based damage-sensitive feature was effective in differentiating dam-

aged samples from intact samples. (There is some variance in the damage-sensitive feature

values from test to test, but there is still clear separation between the intact and the dam-

aged datasets for all the specimens). And the values of the K-factors were able to provide

insights for damage localization. For the patio blocks, other conventional methods can also

detect the holes; however, the advantage of the proposed approach becomes clearer in the

thicker concrete blocks, where the performance of the proposed SVD-based feature val-

ues is much better than its performance on patio blocks, whereas the other methods have

difficulty as specimen thickness increases.

Note that our method is equally applicable to homogeneous and heterogeneous ma-

terials, and there is no customizing of the method to particular cases of heterogeneous

conditions. However, our illustrations using real laboratory experiments on patio concrete

blocks and thick concrete blocks are all considering heterogeneous material. In all cases,

we employ the same techniques for damage detection and localization.

It can been seen from the methodologies from Chapter 3 and this chapter that feature

development takes a lot of trial-and-error effort and time-consuming. Therefore Chapter 5

explores using deep learning, by employing convolutional neural networks and the concept

of transfer learning, which can save much effort and time in feature generations through its

multi-resolution architecture, which can be treated as feature automation.
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Chapter 5

Convolutional Neural Network for Interior Damage Diagnosis using Simulation and

Experimental Data

5.1 Introduction

Visual inspection-based structural monitoring techniques continue to be the primary

approaches for inspecting massive structures such as bridges and dams. During the past

decade, computer vision-based techniques have been developed to overcome the limita-

tions of close-distance inspection and variations in the inspector‘‘s experience and judge-

ment. Computer-vision based structural health monitoring (SHM) techniques have dense

information due to the high resolution (large number of pixels) in images. This provides an

advantage over vibration-based techniques which are limited by the number of sensors and

space available for sensor placement, and the dynamic effects introduced by sensor weights

[102, 103, 104].

Most applications of traditional image processing techniques focus on testing their fit-

ness to one specific structural damage mechanism. For example, some studies have used

edge detection and sequential image filtering to perform crack detection on concrete bridges

[105, 106, 107]. Some studies have used entropy-based image processing techniques to de-

tect concrete spalling [108], and Hough transform and support vector machines to detect

loose bolts and rust in steel bridges [109, 110, 111] . Other studies have used Gabor filter,

textual pattern recognition, and Adaboost techniques to detect crack and other defects in

pavements [112, 113, 114]. Researchers have also attempted to improve the efficiency and

robustness of traditional vision-based SHM techniques with machine learning algorithms

[110, 109]. Each of these methods have considered only for one type of damage (and

mostly for homogeneous material), and require much effort in creating damage sensitive

features [115, 116, 117, 118].
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Deep learning techniques have shown unprecedented success in major image classifi-

cation/object recognition and natural language understanding (NLU)/natural language pro-

cessing (NLP). Some of the significant applications of deep learning methods in structural

health monitoring include deep belief network models for failure detection and estimation

in aircraft engines and power transformers [119, 120], and convolutional neural networks

to perform detection and localization of surface cracks and rust [121, 122]. Also, some

researchers used denoising autoencoders with multiple hidden layers to detect faults in

bearings and other rotating machines [123, 124]. These studies have used deep learning

techniques to enhance SHM with more complex, comprehensive models and automated

the feature generation. However, as mentioned above, most of the applications are on ho-

mogeneous materials such as metal parts, or surface cracks in heterogenous materials such

as concrete.

This chapter addresses the limitations in both traditional image processing techniques

and current deep neural network techniques with respect to SHM. A damage diagnosis

framework is proposed, which is capable of detecting internal damage in structures and

also automating the feature generation process. The methodology is applied to images from

thermography experiments, thus providing the capability for internal damage diagnosis.

The rest of the chapter is organized as follows. Section 5.2 presents the proposed dam-

age diagnosis framework. Section 5.3 discusses the generation of a large volume of data

using finite element computer simulations and real-world laboratory experiments. The de-

tails of the proposed deep convolutional neural network methodology for damage diagnosis

are presented. We also discuss data preparation, model training, and model performance

on simulated as well as real-world data sets. Section 5.4 presents the Bayesian inference of

the deep convolutional neural network model using Monte Carlo simulations on Dropout

models. Lastly, Section 5.5 provides a brief summary of contributions.
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5.2 Proposed Methodology

As mentioned earlier, the proposed methodology aims to fill the research gap between

the interior damage detection capability of traditional image processing techniques (such

as line and edge detections, which are mostly based on the analyst‘‘s experience and judge-

ment and specific descriptions of the features) and the surface damage detection capability

reported thus far with deep neural networks. The proposed methodology also handles the

problem of limited experimental datasets by augmenting it with finite element simulation

data and taking advantage of transfer learning techniques. Even though the methodology

is illustrated in this chapter for SHM of concrete (a heterogeneous material), the method-

ology itself is general and can be used in a wide range of applications, such as SHM of

homogeneous materials with relatively small datasets.

The proposed methodology has two major steps. The first step is training data genera-

tion using finite element models to simulate the laboratory experiments of the same setup.

And the second step is to take advantage of transfer learning using convolutional cores of a

selected pre-trained neural network, which has been trained using a large dataset of many

different types of images and has shown significant performance in computer vision tasks

such as object detection.

5.2.1 Data generation from computer simulations and laboratory experiments

5.2.1.1 Data set from laboratory thermal tests

The training data generation consists of two parts, laboratory data and computer sim-

ulated data. The laboratory experiments should be designed based on the practical appli-

cation conditions. For example, in the laboratory experiments illustrated in this chapter,

a concrete specimen is placed on the top of a heating mat, which is programmed to pro-

vide a pre-designed heating profile. During the heating-cooling process, a thermal camera

is placed on the other side of the specimen to record the temperature field information of
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the specimen. The design of the heating-cooling profile should heat up / cool down the

specimen as far away from room temperature as possible and as fast as possible to increase

the contrast of the impact and damaged parts. On the thermal camera side, temporal sam-

pling frequency of the camera is selected to balance the accuracy and the limitations of

the hardware (thermal camera and data acquisition equipment). The relative positions of

the concrete sample and the equipment can be found in [125], which has a very similar

experimental setup. We seek to generate a large amount of data samples from computer

simulations for training and testing the deep neural network model.

5.2.1.2 Data generation from computer simulations

For computer simulation-based data generation, the finite element models should be

built to cover as many damage scenarios as possible. For instance, finite element models

should cover various damage locations and damage geometries. The thermal conditions

and data acquisitions in the computer simulation are based on the laboratory experiment or

field condition. We would like the finite element model to closely represent the physical

data collection condition as much as possible and cover as many different damage scenarios

as possible.

The size of the data set plays an essential role in successful training of machine learn-

ing models. Large data sets contribute to the recent superior performance of deep neural

networks over other traditional machine learning models. However, in SHM, the prepara-

tion and monitoring of thousands of actual concrete samples with various health conditions

demands significant expense in finance, labor, and time. Therefore, we take advantage of

computer simulations using finite element (FE) models built in the Abaqus software.

Using the Abaqus FE model, we simulate concrete samples with various damage loca-

tions and shapes by changing the model parameters. In the FE model, we design the dimen-

sion of the model to be the same as the physically monitored specimen/structure. The FE

model needs material properties, such as density, thermal conductivities in intact condition
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Figure 5.1: Finite element model in Abaqus

and of damaged condition, and specific heat capacity. These properties can be found in

literature or through preliminary laboratory testing. The finite element model simulation

follows the same thermal load profile (heating and cooling) as used for the thermography

experiment in the laboratory.

Thousands of finite element model simulations to train the CNN can face significant

computational expense. Therefore, it is critical to carefully choose the model parameters

such that there is balance between computational expense and model accuracy. The can-

didate parameters are the number of CPUs, mesh size, and the duration of the time steps.

The number of CPUs represents the computational power. The mesh size indicates the spa-

tial resolution of the finite element model, specifically the number of elements along the

z-dimension, i.e., along the thickness Lz. The duration of time steps is another issue that

affects the FE model prediction. The metrics we use to decide the values of these param-

eters are CPU time and r-value. The r-value shown in equation 5.1 should be lower than

0.5 to fulfill the Courant-Friedrich-Lewy (CFL) requirement for a stable result in the finite

element simulation [126].
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r =
α∆t

∆2
x

< 0.5 (5.1)

, where

α =
K

ρCp
(5.2)

Here, ∆t stands for the time step duration, ∆x stands for the mesh size (same in all three

dimensions), K stands for the material’s thermal conductivity, ρ stands for density, and Cp

stands for specific heat capacity. As shown in equation 5.2, given the material properties

(density, specific heat capacity, and thermal conductivity), α should be a constant value.

Therefore, we select different combinations of ∆t and ∆x, and track the corresponding CPU

time and r-value. After a systematic parametric study, we build the computer simulated

models with chosen optimal parameters and collect the results to form the training dataset

for the damage diagnosis model.

5.2.2 Damage diagnosis based on convolutional neural network

The dataset from computer-simulated and laboratory experiments contains the inter-

nal health conditions of the structure. And the assumption is that the health condition of

the structure will affect the thermal properties of the material. As mentioned earlier, with

these dataset, traditional image processing based structural health monitoring techniques

will spend much effort manually to develop damaged criteria based on features, such as

gradients and edges. The proposed damage diagnosis framework uses convolutional neural

network, which can be viewed as a type of multi-scale/multi-resolution analysis, to auto-

mate the feature generation process. This architecture decompose the original images into

elementary features and, as the information pass through layers, these elementary features

start to form various combinations to describe more complex image features, which previ-

ously require extremely complex calculation, such as Scale-invariant feature transformation

(SIFT). Further, we use transfer learning to build the diagnosis model; i.e., a sophisticated
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CNN model already trained on a large dataset containing millions of images is used as an

initial model, and new layers are added to this initial model based on the training data to

tailor it to the particular specimen considered for damage diagnosis.

Figure 5.2: Proposed deep neural network architecture for damage diagnosis

To simplify the model and to reduce the computational cost, we set the model inputs to

be the images obtained when the temperature changes the most, thus increasing the contrast

between the intact and damaged areas. The work flow of the proposed methodology is

shown in the Fig. 5.2. The first half of the model is the convolutional core of a pre-trained

sophisticated deep CNN, trained on millions of samples with state-of-the-art performance

on image processing and computer vision tasks. As the selected convolutional core has

many layers with tens of millions of connections, it can be viewed as an automatic multi-

scale analyzing process for generating and selecting valuable features. To connect the

convolutional core, the second half of the model are sub-neural networks, each of which
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focuses on a specific prediction, such as horizontal and vertical locations of the damage,

and damage shape. Detailed information regarding the specific damage diagnosis model

developed using this approach is provided in Section 5.2.

5.2.2.1 Deep neural network model

As described above, we use the pre-trained CNN core as the base and append additional

fully connected layers to map the computed feature values and perform damage diagnosis

for a specific specimen. The inputs are chosen to be the temperature field on the top surface

of the structure of interest. And the outputs of the damage diagnosis framework are values

of quantities related to the structural health condition, such as damage location, damage

size and damage shape.

We demonstrate the damage diagnosis model development using VGG-19 as an exam-

ple. VGG-19 has a deep neural network architecture, and has shown excellent performance

in many image processing and computer vision tasks. The inputs of the original VGG-19

architecture are images in RGB format (three channels for the third dimension). Therefore,

we set the inputs as three consecutive thermal images at a specific time, as thermal images

in the thermography experiment are captured and stored as two-dimensional matrices with

numerical values.

The dimension of the outputs from a chosen CNN core is usually very large, a vector

with thousands of entries. This large vector is found to encapsulate the input images in

various directions [127]. Therefore, building upon these feature values offers significant

power in various computer vision assignments [128]. It also provides advantages in com-

putational expense and storage cost [129, 130]. Meanwhile, these thousands of entries can

be treated as a source of features, which are generated by the multi-scale multi-resolution

architecture of deep convolutional neural networks. This automatic generation of features

saves tedious manual feature tuning effort.

The quantities of interest (QOI‘‘s) in structural health monitoring can be multiple, and
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the proposed damage diagnosis model is designed to be capable of adjusting to the desired

QOI‘‘s. As shown in Fig. 5.2, the number of sub-networks is determined by the number

of QOI‘‘s. Each of the sub-networks takes care of one specific prediction. For instance,

the output of sub-network A can be damage shape, the output of another sub-network B

can be the damage size, and so on. The performance of the model depends on how we

address the following questions. Do we treat this as a regression problem or classification

problem? How many categories for classification? How to select the inputs? How to

encode the outputs? In the illustration in Section 5.3, one of the major issues is that, given

the limitation of computational resources, the finite element model has a coarse mesh with

limited resolution in the x− y plane. This limits the choices of damage locations, and

therefore the number of samples generated for the training data. As a result, a quantitative

prediction model will have low accuracy.

One way to overcome this challenge is to treat the problem as a classification problem

and to reduce the number of targets. For example, the image can be divided into a coarse

grid. Instead of predicting the exact x and y coordinates (numerical values), we can predict

the cells of the grid as targets (categorical values). We use one-hot encoding for the categor-

ical values, which has been widely used in encoding categorical data [131, 132, 133]. The

length of the encoded vector depends on the number of categories, and each of the elements

in the vector corresponds to a specific category. For instance, if we want to encode four

categories of damage: surface crack, internal crack, rust, and loose bolt, the corresponding

one-hot encoding is shown in Table 5.1

Category Results of one-hot encoding
surface crack 1000
internal crack 0100

rust 0010
loose bolt 0001

Table 5.1: An example of one-hot encoding

Next we discuss the selection of inputs. As described in Section 5.2.1.2, the training
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data are a series of thermal images sampled over several hours. Thus, each sample in the

dataset is very large. To reduce the computational effort and storage, we select images at

one critical time instant. From previous work, we know that during the heating-cooling

cycle, the images with the highest contrast are usually most helpful to perform damage

diagnosis. And, these images are often obtained when the thermal condition in the sample

is unstable, especially during the heating process [117, 134].

We consider two options (two different time steps) for input images. The first one is

based on the outputs of the finite element model. The images we obtain from the finite

element model are a series of temperature fields with limited resolution in pixels. There-

fore, for each pixel of the top surface, we take its temperature time-series profile and plot

the first derivatives. These plots help us to identify the time step with the highest rate of

change. Therefore, one option is to select the temperature field with as many peak first

derivatives as possible. The second approach is to select based on the heating-cooling pro-

file for the heating mat. We can select the time steps on the rising segment, before it reaches

the designed highest temperature.

Another issue is the resolution of the images (inputs to the model). The thermal images

from the finite element models usually have low resolution due to the use of the coarse mesh

(limited by the computational cost). However, the convolutional cores of the pre-trained

initial CNN usually have many pooling layers. The sizes of the images will generally

be reduced into halves after each pooling layers. Therefore, to maintain a relatively high

resolution regarding the original field in the later layers (that are specific to the structure

being monitored), the input images cannot be too low in each dimension. Interpolation of

the thermal images from finite element models is one way to overcome this issue.

5.2.3 Model training and validation

In the model training, we use the concept of transfer learning and take the advantage of

sophisticated CNN architectures already available in the public domain. These parameters
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have been trained on millions of samples on datasets such as ImageNet. We use the CNN

core as the initial layer and only train the parameters within each subsequent sub-network.

The finite element dataset is partitioned randomly into training and testing subsets. The

loss function is set to be cross-categorical entropy, with Adam optimizer used for the train-

ing. Cross-categorical entropy (CE) is defined in Eq.5.3 below, where ti represents the

ground truth and si represents the score for each class i in C. f () represents the activa-

tion function [135]. Adam optimizer is a widely used optimization algorithm for training

deep neural networks, and it has many advantages over the classical stochastic gradient

descent optimizer, such as suitability for noisy gradients, straightforward implementation,

computational efficiency, and low memory requirement [39].

CE =−Σ
C
i tilog( f (si)) (5.3)

The validation of the model is done in two steps. The first step is from the reserved

dataset from the finite element models. This step mainly checks the training effectiveness of

the model. Decrease of loss function and improvement in prediction accuracy are expected.

Comparison of the accuracy on both training and testing data can be used to check under-

fitting and over-fitting conditions. The second step of the validation is from the laboratory

experiments with real samples. This step checks the performance of the trained model on

real-world data. Section 5.3 discusses the validation results of the machine learning model

with both simulated and laboratory datasets for a concrete specimen.

5.3 Illustrative Example

This section presents an example of structural health monitoring with deep convolu-

tional neural network on a concrete specimen. The following steps are discussed below:

(1) data generation with computer simulated models and laboratory experiments; (2) selec-

tion of inputs and outputs; (3) training of the model; and (4) performance assessment of the
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model on both simulated and laboratory datasets.

5.3.1 Data set description and generation

5.3.1.1 Dataset from laboratory simulations

Figure 5.3: Placement of reactive aggregates in the test specimen

A concrete block with dimensions 60.96cm× 60.96cm× 15.24cm was cast and cured

at Vanderbilt University. Each of the four quadrants of the concrete block has a different
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type of reactive aggregate (single layer, mid-thickness, about 4 inches in diameter) that is

prone to alkali silica reaction (ASR). As shown in the Fig. 5.3, the aggregate types used in

each quadrant were amorphous silica (top left), Maine coarse aggregate (top right), Ontario

coarse aggregate ( bottom right), and New Mexico coarse aggregate (bottom right). The

concrete block is cured in alkali solution under 60◦C and 100%humidity for over a year

to produce ASR damage. After 10 months of curing, cracks appeared on the two outside

edges of the top left quadrant and on the horizontal edge of the bottom right quadrant,

followed by gel effluent. The gel effluent was subjected to chemical characterization and

the presence of ASR was confirmed [136]; the thermography experiment was performed

subsequently.

Before the thermography experiment, the concrete specimen is removed from the oven

and rested for a sufficiently long time to allow cooling to room temperature. During the

thermography experiment, the specimen is placed on top of a heating mat; the other sides

of the specimen are freely in contact with the ambient environment maintained at constant

temperature [117]. The heating mat is programmed to provide the thermal load depicted

in Figure 5.4. Temperature images of the top surface of the specimen are collected us-

ing an FLIR®Infrared (IR) camera every 30 seconds. The details of the sample and the

experimental setup can be found in [137, 138, 139, 140].

5.3.1.2 Dataset from computer simulations

As mentioned in Section 5.2, we use finite element models to prepare the training data

for the deep neural network. Brittle damage in concrete, such as cracking, could result in

a significant reduction in its thermal conductivity [141]. Therefore, in the FE model, we

simulate the damaged area by specifying its thermal conductivity to be 20% lower than

the intact area’s thermal conductivity based on Ref. [141]. The material properties of the

concrete specimen are summarized in Table 5.2

The thermal load profile (heating and cooling) that was used for the thermography
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Property Value Unit
Density 0.0003262 kg/m3

Thermal conductivity (intact) 0.0015681 w / (m k)
Thermal conductivity (damage) 0.0009271 w / (m k)
Specific heat capacity 0.0009271 J/(kg k)

Table 5.2: Concrete material properties used in finite element models [1]

experiment in the laboratory is shown in Figure 5.4. The finite element simulation follows

the same thermal profile as that of the laboratory experiment. The specific heating-cooling

cycle in the experiment lasts about 10 hours in real-time.

Figure 5.4: Heating and cooling profile of the experiment

To select appropriate parameters for the finite element models, we performed two

rounds of tests for parametric study. The first round focuses on the number of CPUs.

We fixed the mesh size and time step at ∆x =
Lz
6 and ∆t = 15′′, and choose various numbers

of CPUs to perform the simulation; the results are shown in Table 5.3

Number of CPUs Computational time (′)
1 6
2 4
4 3
8 5

Table 5.3: Computational time of the standard test (time-step = 15sec and finite element
size = Lz

6 ) with different numbers of CPUs
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The computational time deteriorates with the number of CPUs, due to the initialization

time for parallel computing, and the communication between the nodes. Therefore, for

further computer simulation, we choose only a single CPU. For the second round of the

parametric study, we focus on how the combinations of different ∆x and ∆t values affect

the computational time and simulation stability. The results are listed in Table 5.4

Time step(′′) Elements along Lz CPU time(′) r-value
7.5 3 6 6.37×10−5

7.5 6 14 2.55×10−4

7.5 12 83 1.02×10−3

15 3 3 1.27×10−4

15 6 8 5.10×10−4

15 12 41 2.04×10−3

30 3 2 2.55×10−4

30 6 4 1.02×10−3

30 12 40 4.08×10−3

Table 5.4: CPU time and r-value at different time steps and meshing sizes

As shown in the Table 5.4, for all combinations of ∆x and ∆t , the r-values are all much

less than 0.5 (i.e., the CFL condition holds and the simulations are all stable). However,

the CPU time varies significantly, from 4 minutes to 83 minutes. To better understand

the accuracy of different simulations, we select the central point on the top surface as a

reference and plot the temperature time-series during the entire heating-cooling process for

different parametric combinations. The result is shown in Figure 5.5. The results from the

simulations with different parameter combinations closely match each other, and the largest

difference between the outputs at two parameter settings is about 1%. Thus the parametric

combination ∆t = 15′′ and ∆x =
Lz
6 appears to give satisfactory accuracy and computing

effort.

With the model properties above, we represent damage by assigning a lower thermal

conductivity, as mentioned before. Three different damage shapes are considered, as shown

in Figure 5.6. (Note that this is a very small number of shapes, only for the sake of illustra-

tion, and limited by computational resources; real-world applications will need to consider
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Figure 5.5: Temperature time-series plot for various parameter combinations

many more). We create models with all possible damage locations in x-y coordinates. We

assign the damaged material to the middle two layers in the z dimension. Totally, we have

over 1500 different damage conditions from the FE simulations.

5.3.2 Deep neural network model training and results

5.3.2.1 Deep neural network model

In this example, we use the convolutional core from the VGG-19 architecture. A brief

description of VGG-19 can be found in Section 2.7. The detailed information about the

setup of this specific damage diagnosis model is shown in Fig. 5.7. The inputs are selected
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Figure 5.6: Damage shapes considered

thermal images of the top surface of the concrete samples, and the outputs are the horizontal

and vertical damage locations, and the damage shape.

The output from the core CNN layers of VGG-19 has 4096 nodes, i.e., the output from

the VGG-19 CNN core is a vector of size 4096×1.

In this example, our objectives are to predict the horizontal and vertical locations (x, y)

and the shape of the damage. The neural network has three branches (sub-networks) after

the VGG-19 CNN core. One sub-network is for horizontal location, another for vertical

location, and the third for damage shape. We first tried to build the network to predict the x

and y coordinates with numerical values. However, the performance of the model remained

very poor even after extensive training and parameter tuning. One of the major reasons

is that, given the limitation of computational power, the finite element model has only a

24× 24 coarse mesh in the x− y plane. This limits the choices for damage locations, and

the number of samples that we can generate for the training dataset. Thus, the information

that can be learned by the model is rather limited. In this example, we divide the image into

a 4× 4 grid. Then, the proposed damage diagnosis model predicts the possible locations
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Figure 5.7: Proposed deep neural network architecture for damage diagnosis

within these 4 horizontal and 4 vertical locations on the grid. We use the following one-hot

encoding for the locations and shapes in Table 5.5.

x locations Results by one-hot encoding
0.00 0.25 1000
0.25 0.50 0100
0.50 0.75 0010
0.75 1.00 0001

Table 5.5: One-hot encoding for x locations

As mentioned earlier, the proposed neural network has three branches. After passing the

input images through the VGG-19 CNN core, sub-network 1 takes the outputs from VGG-

19 CNN core and uses two additional fully connected (FC) layers of 256 nodes each (FC-

256), and one additional FC layer with 4 nodes (FC-4) to predict the encoded horizontal

location x. Similarly, sub-network 2 takes the outputs from the VGG-19 CNN core, and
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uses two additional FC-256 layers and one additional FC-4 to predict the encoded vertical

location y. Sub-network 3 also has two FC-256 layers and one FC-3 layer for the damage

shape (since we have three different shapes in our data set).

The first derivatives of the temperature profiles are shown in Fig.5.8. From the figure,

it is seen that time step 185 has the most number of counts. Therefore, we set the input

images to be the temperature fields at time steps 184, 185, 186. An alternative approach

is based on the heating-cooling profile, as shown in Fig.5.4. We can select the time steps

based on the rising segment (left). Thus we select time steps 29, 30, and 31 to form the

second option of the input data set.

As mentioned earlier, the original thermal images from the finite element models have

a resolution of 24× 24. And there are 5 max-pooling layers in the VGG-19 CNN core

that we use for transfer learning. Each time when an image passes through one of these

max-pooling layers, its size reduces by 50% in each dimension. Besides, each convolu-

tion calculation with a 3×3 filter results in a reduction of 2 pixels along both dimensions.

Therefore, in order to fully take advantage of transfer learning using the pre-trained CNN

core, we have to obtain images with high resolution. Therefore, we use the idea of inter-

polation and transfer the original images to a resolution of 128× 128. This interpolation

process is applied to the entire data set, which has over 1500 images.

Figure 5.8: First derivatives of the temperature profiles of each pixels on the top surface
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5.3.2.2 Model Training

The proposed damage diagnosis model is trained in Python with Scikit-learn and Ten-

sorFlow packages. In the TensorFlow architecture, we build on the VGG-19 CNN core

with the pre-trained parameters on ImageNet data set. We randomly divide the data into

two subsets, 80% for training and 20% for validation. Since we have three sub-networks

for the prediction of x, y, and damage shape, we freeze the CNN core from VGG-19 and

only train the parameters within each sub-network. We set the loss function to be cross-

categorical entropy and used Adam optimizer used for the training.

The GPU computing cluster at Vanderbilt University‘‘s ACCRE (Advanced Center for

Computing Research and Education) facility is used. ACCRE uses Nvidia Pascal Archi-

tecture, and each GPU has 3584 CUDA cores. Each of the nodes has 12GB GPU memory.

Each of the three sub-networks is assigned one GPU node and is trained individually for

1000 epochs. The validation calculation follows the training calculation in each epoch. The

total process for each sub-network takes about 45 minutes on one GPU node.

5.3.3 Results

5.3.3.1 Results on simulated dataset

As described in the previous section, we have 2 options for input selection and 2 options

for output encoding. For the input image selection, we have one based on the top surface

temperature profile and one based on the temperature profile of the heating mat at the

bottom of the specimen. For the output encoding, we categorize and encode the outputs for

damage locations into 4×4 grids. In this case, the last layer (output layer) in sub-networks

1 and 2 has four nodes, and each of them has an activation function of softmax to match

the one-hot encoding. And the loss function is chosen to be cross-categorical entropy. We

can also map the output for x and y into the range of [0,1]. For this output setting, the last

layer (output layer) in sub-networks 1 and 2 has only one node, and its activation function
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Figure 5.9: Accuracy of x on the training and validation data sets during the learning

is set to be sigmoid to force the value into the range [0,1]. And the loss function needs to

be changed to ”RMS” instead of ”cross-categorical entropy”.

RMS =
1
n

Σi(Ȳi−Yi)
2 (5.4)

After training for 1000 epochs, we find that 3 out of 4 input/output combinations are

not satisfactory. Setting input images based on the top surface temperature profile results in

an accuracy of at most 60%. This is because the contrast between the elements on the top

surface becomes milder with increased heating. Thus, each of the samples from this group

brings less information than the ones with better contrast among each element. Therefore,

many more samples are needed to improve the model accuracy. For the setting of the

outputs that have been mapped within the range [0,1], the model has an accuracy of about

30% with the same training effort. An explanation for this is that the samples in our data
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Figure 5.10: Accuracy of y on the training and validation data sets during the learning

set locate on a grid of 24×24 and we have at most 3 samples (shapes) at each grid point.

Thus we do not have enough samples for an accurate regression model, and the model is

under-fitted.

However, when we select the second category of input images (based on the heating-

cooling profile of the heating mat), and the categorical one-hot encoded outputs, to build

a classification model, the performance is much better. The performance for x and y pre-

diction is shown in Fig. 5.9 and Fig. 5.10. Sub-network 1 for x prediction shows over

95% accuracy for the training data set and close to 90% accuracy for the validation data

set. The performance of the sub-network 1 exceeds 90% accuracy after about 200 epochs

of training and reaches convergence after about 800 epochs. Sub-network 2 for y predic-

tion shows over 95% accuracy for both training and validation data sets. This sub-network

exceeds 90% accuracy after about 100 epochs of training and reaches convergence at about

900 epochs.
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Figure 5.11: Accuracy of shape predictions on the training and validation data sets during
the learning

Sub-network 3, as mentioned earlier, is designed to identify the geometric shape of the

damage. The outputs of the shape are encoded into vectors of 3 elements each by one-

hot encoding. The output layer of the sub-network has a softmax activation function on

each of the 3 nodes. The loss function is based on cross-categorical entropy as mentioned

in Section 5.2. This sub-network is also trained for 1000 epochs with 80% of the data

(randomly selected), and the validation task uses the remaining 20% of the data. As a result,

as shown in Fig. 5.11, model accuracy increases rapidly and reaches over 95% accuracy

with the training data set and over 90% with the validation data set. Similarly, after about

900-epoch training, the model reaches a steady performance in terms of accuracy.

To sum up, in this section, we discussed the setup of the 3 sub-networks, and the cor-

responding training and validation details. We discussed two choices for input images and

two choices for output encoding methods. The best performance results from using the

images obtained when the heating mat’s temperature ascends rapidly as inputs and one-
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hot encoding for the outputs. This combination brings over 90% accuracy (both training

and validation) in all three sub-networks (i.e., damage location (x, y) and damage shape).

Whereas, the accuracies failed to reach about 50% from building a similar deep convolu-

tional neural network from scratch.

5.3.3.2 Validation with laboratory experiments

Figure 5.12: Core extraction from the concrete specimen

As described in Section 5.3.1.1, we carried out thermography testing of the concrete
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specimen in the laboratory. The heating-cooling profile used in thermography testing is

the same as for the finite element simulations used to train the machine learning model.

The thermal image obtained from the laboratory experiment at the same time instant as

the training data set is used to test the model. The trained model identifies the top-left

quadrant of the concrete slab as the most probable damaged region, and the third damage

shape (the plus sign) as most probable. We validated the result regarding the location by

extracting cores from each of the four quadrants of the slab as shown in Fig. 5.12. It

was observed that the top-left quadrant had a large void, as a result of which the core

from this quadrant could only be extracted in multiple pieces. Detailed information of

the concrete specimen and results from core testing can be found in [137]. The top left

quadrant had a large amount of damage, and the lower-left and lower-right quadrants had

small cracks caused by alkali‘‘silica reaction (ASR). Thus the proposed model is able to

correctly identify the most damaged region. Since the model is constructed to predict only

the single most probable location of damage, it did not identify regions with smaller cracks

at the lower portions of the concrete specimen. This result shows that the transfer learning

with a deep convolutional neural network can be used to identify damage locations. The

identification of damage shape was inconclusive due to two limitations: (1) only three

shapes were used in the model training, and the model identified the cross shape as most

likely; and (2) the core was extracted in multiple pieces due to the large void. The validation

of damage shape identification will need model training with many more possible shapes

(this is computationally demanding), and the induced damage in the experiment will need

to be less drastic so that an intact core could be extracted and then carefully cut to identify

the damage shape. Further improvement is also needed in the machine learning model in

future so that it can identify multiple possible damage locations; currently it only identifies

the most damaged location.
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5.4 Uncertainty Quantification in the Deep Neural Network Model

Though deep learning architectures show tremendous performance in various machine

learning applications, these models do not capture the model uncertainty in regression and

classification tasks [142, 143]. Gal and Ghahramani developed a theoretical framework

based on the dropout technique in training a deep neural network to achieve approximate

Bayesian inference and quantify the model uncertainty. Since then, researchers have used

dropout to study the uncertainty in various models, such as recurrent neural networks [144,

145, 146, 147].

The application of dropout was proposed by Srivastava et al. to handle the over-fitting

problem in deep neural network training[148]. The idea is that each of the nodes in a

dropout layer has a given probability to be turned off during the training epoch. The pro-

cess can be visualized in Figure 5.14. The dropout process is carried out in each layer

individually. The dropout probability of each node, called dropout rate, only affects the

nodes within a single layer. In practice, researchers usually keep the same dropout rate for

all the selected layers within one deep neural network model.

Figure 5.13: Dropout Process in Deep Neural Network

In our case, our dropout layers were set as the last two fully connected (FC) layers.

95



To implement that in Keras, we appended a Dropout layer after each of the FC layers.

A Dropout layer in Keras is a layer, whose nodes will be turned on and off following a

Bernoulli distribution during the training and prediction steps. The dropout rate is typically

set as the one that gives the minimum accuracy difference between the training and vali-

dation processes. With the trained model using the selected dropout rate, we can perform

Monte Carlo simulation and quantify the uncertainty in diagnosis.

Figure 5.14: Dropout Model for Bayesian Inference

Consider the prediction of x location of damage as an example. We explore the dropout

rate within a range of values and found that 0.04 provides us with the lowest training vs

validation accuracy gap and a prediction accuracy over 90%. With the trained model, we

perform 1000 Monte Carlo simulations. In our case, we used one-hot encoding and the

output of the sub-network has 4 nodes. Within each Monte Carlo run, we have predicted

values for each of the 4 nodes. After 1000 runs, we plot the histogram of the predictions

in Figure 5.15. As shown in Section 5.3, the model predicts location 0 as the x-location for

damage and the coring results also agree on that. With the Monte Carlo dropout model, we

can predict the x-location with a probability with uncertainty.

Applying Monte Carlo simulation with dropout in deep learning models thus helps in
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Figure 5.15: Monte Carlo of Dropout Model as Bayesian Inference

quantifying the model uncertainty. The computational effort added to a model with dropout

layers is not too significant compared with that without dropout (15% more time on average

). This mitigates the problem of representing uncertainty in deep learning models with

reasonable computational cost and prediction accuracy.

5.5 Conclusion

This chapter investigated the use of transfer learning and deep neural network in struc-

tural health monitoring, and illustrated the methodology for concrete damage diagnosis.

The proposed methodology overcomes several challenges in practical SHM. The first prob-

lem is the lack of data since real-world laboratory experiments on structures are time-

consuming and expensive. We overcome this using two strategies, one focusing on data

generation and one on model construction. We use finite element-based computer simula-

tions to generate the training data. We study the resource selection for simulation to balance
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the accuracy and computational cost. With the carefully designed and simulated models,

we generated over 1500 samples with different damage shapes at various locations.

For model construction, we proposed using the idea of transfer learning and used the

pre-trained CNN core from VGG-19, which is a powerful deep convolutional neural net-

work trained with a large volume of image data. The proposed deep neural network model

for damage diagnosis has three sub-networks (branches) added to the VGG-19 model. Each

sub-network focuses on one output parameter (x location, y location, and damage shape),

and all three are trained in parallel. We tested different selections for input images and out-

put encoding. With the optimal selection, the proposed model achieved over 90% accuracy

in predicting the horizontal and vertical locations and the damage shape in both the train-

ing and validation data sets. We also tested the model with data from physical laboratory

experiments with concrete specimens subjected to alkali-silica reaction, and the model was

able to correctly identify the most damaged location. In addition, we also used the model

to classify which shape the damage is closest to. Lastly, we also quantified the diagnosis

uncertainty of the proposed deep convolutional neural network model using the dropout

technique during training, followed by Monte Carlo simulation of the diagnosis inference.
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Chapter 6

Conclusion

This dissertation work explored data-driven methods for structural health monitoring

by considering two monitoring techniques and quantified the uncertainty in the diagnosis

result of each technique. The proposed methodologies were applied using heterogenous

material concrete) in the examples; however, the idea and potential application is gen-

eral for both homogenous and heterogenous materials. First, traditional image processing

with thermography was considered for internal damage diagnosis. Next, the new damage

sensitive features were developed for damage detection and localization with time-series

vibration data. Third, the dissertation explored feature automation and interior damage

diagnosis with deep convolutional neural network and transfer learning in problems with

limited and small datasets. In each case, the reliability of the data-driven method was

assessed through uncertainty and robustness analyses. Specific contributions under each

method are summarized below.

6.1 Summary of Accomplishments

Chapter 3 investigated thermal image processing for internal damage diagnosis in con-

crete. Detection, localization, as well as quantification of the damage were considered.

An important feature of the investigation is uncertainty quantification in the damage diag-

nosis result, by aggregating various sources of uncertainty introduced at each step of the

image processing. Further, global sensitivity analysis is applied to identify the dominant

contributors to diagnosis uncertainty. Based on the results of uncertainty quantification and

global sensitivity analysis, a Bayesian technique is formulated to identify the optimal val-

ues of parameters to be selected at each step of the image processing, in order to minimize

the uncertainty in diagnosis. An illustrative example of damage diagnosis of a concrete

99



slab is used to examine the effectiveness of the damage diagnosis technique as well as the

uncertainty quantification and parameter selection methods.

Chapter 4 developed a damage diagnosis methodology that overcomes difficulties faced

by most SHM methods aiming for homogenous materials and is capable of detecting and lo-

calizing the damage, using harmonic vibration tests with swept and sinusoidal waveforms.

The proposed damage detection procedure uses novel features based on Singular Value De-

composition (SVD) of linearly swept waveform test data. The latter singular vectors of the

intact basis are found to be sensitive to the presence of damage. The damage localization

uses a K-factor metric calculated using sinusoidal waveform test data. The K-factor is used

to measure the deviation of a signal away from a sinusoid. The damage diagnosis method-

ology is demonstrated and validated using experiments on thin concrete slabs with drilled

holes and thicker concrete blocks with alkali-silica reaction (ASR) damage.

Chapter 5 proposed a damage diagnosis framework using a deep convolutional neural

network and transfer learning. We use thermography to study the heat transfer character-

istics and infer the presence of damage in the structure. It is challenging to get sufficient

data samples for training deep neural networks, especially in the field of structural moni-

toring. Therefore we use finite element computer simulations to generate a large volume

of training data for the deep neural network. The training data include multiple damage

shapes and locations. These computer-simulated data are used along with pre-trained con-

volutional cores of a sophisticated computer vision-based deep convolutional network to

facilitate effective transfer learning. The convolutional neural network automatically gen-

erates features for damage diagnosis as opposed to manual feature generation in traditional

image processing. Systematic parametric selection study is carried out to investigate ac-

curacy vs. computational expense in generating the training data. The methodology is

demonstrated with an example of damage diagnosis in concrete, a heterogeneous material,

using both computer simulations and laboratory experiments. The combination of finite

element simulation, transfer learning and experimental data is found to achieve high accu-
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racy in damage localization with affordable effort. We also successfully perform Bayesian

Inference on the proposed deep learning model using the dropout technique and Monte

Carlo simulation, in order to quantify the uncertainty in damage diagnosis.

6.2 Future Work

For thermal image-based diagnosis, we can investigate the performance of the ther-

mal image processing for more complicated and realistic damage scenarios in concrete.

Concrete is a heterogeneous material consisting of aggregates, reinforcement and voids;

thus damage diagnosis using thermal images might pose significant challenges for realistic

damage scenarios caused by mechanisms such as alkali silica reaction, chloride diffusion

etc. The thickness of the slab is another challenge; the example here used a relatively thin

slabs with well-defined damage (drilled holes and specific locations of ASR damage). Fu-

ture work needs to investigate the effectiveness of damage diagnosis for realistic structural

sizes and damage geometries. However, the proposed methodology for uncertainty quan-

tification, sensitivity analysis, and parameter value selection is general and can be applied

to a variety of image processing-based damage diagnosis techniques.

Considering vibration-based diagnosis, we could explore several additional investiga-

tions. First, the locations of the actuator in the experiments were based on experience.

A systematic study of the effect of different locations of the actuator would be valuable.

Second, in the harmonic vibration experiments, the frequencies of the waveforms were

selected based on the allowable range of the equipment. There might be a much better

selection of the frequencies within this range and investigation in this direction could be

helpful in improving the proposed methodology. Meanwhile, other metrics could be ex-

plored for damage detection and localization, and advanced machine learning algorithms

could be investigated to improve the overall damage diagnosis. In this work, we did not

consider the effect of temperature variation on the performance of the proposed method.

Temperature may affect sensor bonding and the resultant data, and this effect needs to be
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studied in the future. As our proposed method is data driven, we have not explicitly consid-

ered any nonlinearity in the detection and localization procedure. Finally, our experiments

focused on the performance of the methodology in localizing the damage on a 2-D plane.

Future research needs to investigate the extension of the proposed methodology to 3-D

damage localization.

For deep learning-based damage diagnosis, additional research can be pursued to im-

prove the capability and robustness of the methodology. The first direction is data gener-

ation. Due to the limitation of computational resources, we generated only 1500 samples

with three damage shapes. Investment can be made in more accurate finite element mod-

els, and generation of a larger number of samples with multiple damage shape options.

Second, in training our model, we manually selected the thermal images at a specific time

instant. Since our samples are image volumes (videos), state-of-the-art video processing

techniques can be applied to extract more information and automate the entire process.

Third, the model currently identifies only a single location as the most probable damaged

location. The model could be enhanced to identify multiple damage locations and damage

shapes in case they are present in the structure. However, this is computationally demand-

ing, since it needs the generation of a large amount of training data set using the finite

element simulations, by considering many possible damage locations and shapes.

Lastly, future work is also needed to comprehensively quantify the uncertainty in the

damage diagnosis. There are multiple sources of uncertainty, such as variability of struc-

tural properties, errors uncertainties in measurement and processing of sensor data, and

approximations in the damage diagnosis methodology. Only the uncertainty in the deep

learning model was quantified using the dropout technique in this work. Both classical

and Bayesian approaches have been proposed earlier [55, 149], for damage detection, lo-

calization and quantification; however, these are directly based on experimental data. The

methods need to be extended to the proposed diagnosis approach that combines machine

learning, transfer learning, simulation-based training data, and experimental observations,

102



by aggregating the uncertainty contributions from these multiple sources. Meanwhile, fu-

ture work also involves to investigate information fusion of multiple structural health moni-

toring techniques and the uncertainty quantification within structural health monitoring sys-

tems. Efforts can be done in finding how to make a comprehensive decision with multiple

damage diagnosis and monitoring techniques with techniques, such as Bayesian Networks.
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