
RESOURCE MANAGEMENT ALGORITHMS FOR EDGE-BASED,

LATENCY-AWARE

DATA DISTRIBUTION AND PROCESSING

By

Shweta Prabhat Khare

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

February 29, 2020

Nashville, Tennessee

Approved:

Dr. Aniruddha Gokhale

Dr. Hongyang Sun

Dr. Kaiwen Zhang

Dr. Julien Gascon-Samson

Dr. Xenofon Koutsoukos

Dr. Akos Ledeczi

To my respected parents Dr. Kalpana Khare and Dr. Prabhat Khare,

my dear brother Ankit Khare,

and

my beloved husband Nishant Ranjan Das

ii

ACKNOWLEDGMENTS

Pursuing my PhD has been a truly life-changing experience and I have many people to

thank for their constant support, guidance and kindness without which this journey would

not have been possible. First and foremost, I would like to express my heart-felt gratitude

towards my advisor, Dr. Aniruddha Gokhale for his invaluable time, guidance and encour-

agement throughout my program. Dr. Gokhale believed in me and provided me with every

opportunity to succeed. He was always available for research discussions and his guidance

was paramount in shaping my research work. His humbleness, empathy and approachabil-

ity made me feel very supported and I am very thankful for his graciousness. I thank my

committee members Dr. Hongyang Sun, Dr. Kaiwen Zhang, Dr. Julien Gascon-Samson,

Dr. Xenofon Koutsoukos and Dr. Akos Ledeczi for their time and advice. I feel very grate-

ful for the weekly skype sessions with Dr. Zhang and Dr. Julien. Their time investment,

input and guidance was tremendously helpful in evolving research ideas into concrete work.

I thank Dr. Sun for the many hours he invested in discussing the problem formulation with

me. I am inspired by his brilliance, expertise in optimization theory and his willingness to

engage in a variety of different research problems. I am also very thankful to Dr. Kout-

soukos for insightful discussions and incisive critique which helped in making our research

work stronger. I thank Dr. Sumant Tambe for his collaboration, motivation and guidance in

publishing my very first paper. Dr. Tambes superior command on programming languages

and software engineering principles and his zeal for continuous learning is truly inspiring.

I relied on him time and again for input during my studies and I thank him for his help. I

thank my friends Anirban Bhattacharjee, Robert Canady, Shunxing Bao, Travis Brummett,

Yogesh Barve, Zhuangwei Kang, and Ziran Min for their collaboration and encouragement.

I thank Dr. Faruk Caglar, Dr. Kyoungho An, Dr. Shashank Shekhar, Dr. Prithviraj Patil,

and Dr. Subhav Pradhan for their mentorship. Last but not the least, I thank my family:

my parents Dr. Kalpana Khare and Dr. Prabhat Khare, my brother Ankit Khare, my uncle

iii

Dr. Dinesh Verma, my brother-in-law Kaushik Ranjan, my parents-in-law Nina Ranjan and

Prem Ranjan, and the rest of my family for their unwavering support. I especially thank

my loving and supportive husband Nishant Ranjan for his encouragement, emotional pres-

ence, stability and support. Finally, I thank National Science Foundation (NSF) and Air

Force Office of Scientific Research (AFOSR) for their financial support without which this

research work would not have been possible.

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . x

LIST OF FIGURES . xi

Chapter

1 Introduction . 1

1.1 Emerging Trends . 1

1.2 Key Research Challenges . 4

1.2.1 Challenge-1: Latency-Aware Data Distribution and Processing at the

Edge . 4

1.2.2 Challenge-2: Realizing Effective Abstractions for Edge-Based DAG

Stream Processing . 5

1.2.3 Challenge-3: Latency-Aware DAG Stream Processing at the Edge . . . 6

1.2.4 Challenge-4: Application of Research Ideas to a Real-World Edge Use-

Case . 7

1.3 Dissertation Research . 7

1.3.1 Contribution-1: Latency QoS Assurance for Topic-Based Pub/Sub . . . 7

1.3.2 Contribution-2: Programming Model to Unify Data Distribution and

Processing . 8

1.3.3 Contribution-3: Latency-Aware DAG Placement 8

1.3.4 Contribution-4: Bringing It All Together 8

1.4 Dissertation Organization . 9

2 Latency-Aware Data Distribution in Topic-Based Publish/Subscribe 10

2.1 Introduction . 10

2.2 Related Work . 13

v

2.3 Problem Statement . 16

2.3.1 Motivational Use Case . 16

2.3.2 System Model and Notations . 17

2.3.3 Assumptions . 17

2.3.4 K-Topic Co-location Problem (k-TCP) 18

2.4 Latency Prediction Model and its Sensitivity Analysis 20

2.4.1 Experimental Setup . 21

2.4.2 Sensitivity Analysis . 21

2.4.3 Key Insights from Sensitivity Analysis 23

2.4.4 Latency Prediction Model . 24

2.4.5 Limitations of the Model . 26

2.5 NP-Completeness of k-TCP and Heuristics-Based Solutions 27

2.5.1 Feasibility Function . 27

2.5.2 Complexity Analysis . 28

2.5.3 Heuristics . 29

2.5.3.1 First Fit Decreasing . 30

2.5.3.2 Largest Feasible Set . 31

2.5.3.3 Hybrid Solution . 32

2.6 Experiments . 32

2.6.1 Experimental Testbed and Setup . 32

2.6.2 K-Topic Co-location Model Learning 35

2.6.3 Performance of k-TCP Heuristics . 37

2.6.4 Performance of LFSk′+FFDk . 39

2.7 Conclusion and Discussions . 40

3 Reactive Stream Processing for Data-Centric Publish/Subscribe 42

3.1 Introduction . 42

3.2 Related Work . 46

vi

3.3 Design of the Rx4DDS.NET Library . 48

3.3.1 Overview of OMG DDS Data-Centric Pub/Sub Middleware 48

3.3.2 Microsoft Reactive Extensions (Rx) 48

3.3.3 Challenges in our Imperative Solution 49

3.3.4 Rx4DDS.NET: Integrating Rx and DDS 50

3.4 Evaluating Rx4DDS.NET Based Solution 52

3.4.1 Case Study: DEBS 2013 Grand Challenge Problem 52

3.4.2 Qualitative Evaluation of the Rx4DDS.NET Solution 54

3.4.2.1 Automatic State Management 54

3.4.2.2 Concurrency Model to Scale-Up Multi-Core Event Processing . 56

3.4.2.3 Library for Computations based on Time-Windows 57

3.4.2.4 Flexible Component Boundaries 58

3.4.2.5 Program Structure . 59

3.4.2.6 Backpressure . 60

3.4.3 Quantitative Evaluation of Rx4DDS.NET 62

3.5 Conclusions . 68

4 Latency-Aware Edge Stream Processing . 70

4.1 Introduction . 70

4.2 Problem Formulation and Heuristic Solution 73

4.2.1 Models and Assumptions . 74

4.2.2 Cost Trade-Off and Complexity . 75

4.2.3 Greedy Placement Heuristic . 76

4.3 Developing a Latency Prediction Model . 78

4.3.1 Critical Considerations for Model Building 79

4.3.2 DAG Linearization Transformation Rules 81

4.3.3 Training the k-Chain Co-location Latency Prediction Model 84

vii

4.4 Experimental Validation . 86

4.4.1 Experiment Testbed and Setup . 87

4.4.2 Validating the k-Chain Co-location Latency Prediction Model 87

4.4.3 Performance Evaluation of the LPP Approach 90

4.4.3.1 LPP Prediction Results . 91

4.4.3.2 LPP Placement Results . 91

4.5 Related Work . 93

4.5.1 Operator Placement for DAG Makespan Minimization 93

4.5.2 Operator Graph Transformation . 93

4.5.3 Edge-Based Operator Placement . 94

4.5.4 Latency Minimization for Publish/Subscribe Systems 94

4.6 Conclusions . 95

4.6.1 Summary of Research Contributions 95

4.6.2 Discussions and Directions for Future Work 96

5 Bringing It All Together . 98

5.1 Introduction . 98

5.2 Use-Case: Automatic License Plate Recognition Application 100

5.3 Implementation of ALPR as a Distributed Data-Flow 103

5.3.1 RxZmq . 103

5.3.2 Experiment Setup and Testbed . 106

5.4 Application of LPP for Latency-Aware Placement of ALPR 107

5.4.1 Linearization Rules . 108

5.4.2 k-Chain Co-location Latency Prediction Model 110

5.4.3 Performance Evaluation of LPP for Placement of ALPR 113

5.5 Conclusion . 116

6 Summary . 117

6.1 Summary of Research Contributions . 117

viii

6.2 List of Publications . 120

BIBLIOGRAPHY . 125

ix

LIST OF TABLES

Table Page

2.1 Accuracy of k-topic co-location model . 35

3.1 Mapping of DDS concepts to Rx concepts 51

3.2 Comparison of Our Imperative and Reactive Solutions 59

3.3 Performance Comparison of Rx4DDS.NET over Imperative Solution 62

4.1 Accuracy of k co-location classification model 89

4.2 Accuracy of k co-location regression model 89

5.1 Image Preprocessing for ALPR . 102

5.2 Accuracy of k-chain co-location regression models for placing ALPR 112

x

LIST OF FIGURES

Figure Page

2.1 Sensitivity analysis for latency modeling 20

2.2 Performance of latency prediction model 34

2.3 Performance of k-TCP heuristics for varying n 37

2.4 Performance of LFSk′+FFDk for varying k′ 39

3.1 High Level Data Flow Architecture of DEBS 2013 Grand Challenge 54

3.2 Marble Diagram of CombineLatest Operator 56

3.3 Marble Diagram of Scan Operator . 57

3.4 Marble Diagram of Time-window Aggregator 58

3.5 Performance of Imperative Strategies over Single Threaded implementation . 64

3.6 Performance of Different Rx schedulers over Single Threaded implementation 66

3.7 Input Vs Output data rate for Rx4DDS.NET implementation of Query 1 and

Query 3 with ThreadPoolScheduler . 67

4.1 Impact of incoming data rate and DAG structure on the observed latency . . . 77

4.2 Linearization rule for fork operator . 80

4.3 Linearization rule for join operator . 80

4.4 Linearization and latency prediction results for the DAG shown in Figure 4.1a. 82

4.5 Performance of k-chain co-location latency prediction model for k = 3 90

4.6 LPP makespan prediction accuracy (for various randomly generated DAGs) . 90

4.7 Comparison of LPP with SUM and CONST approaches (for various ran-

domly generated DAGs) . 91

5.1 Example Images for License Plate Detection Application 101

5.2 ALPR Application DAG-1 . 102

5.3 Impact of DAG Structure and Co-location on Latency 106

5.4 Linearization for fork operator . 109

xi

5.5 Linearization for join operator . 109

5.6 Performance of k-chain co-location latency prediction models 113

5.7 Application DAG Structures . 114

5.8 LPP Predicted vs Observed for different DAG Structures 114

5.9 Comparison of LPP with SUM and CONST approaches (Application DAG-1) 115

xii

Chapter 1

INTRODUCTION

1.1 Emerging Trends

The Internet of Things (IoT) [1] paradigm has enabled a large number of physical de-

vices or ”things” equipped with sensors and actuators to get connected over the Internet

to exchange information. According to Gartner [2], ∼20 billion devices will be connected

to the Internet by 2020. In many IoT applications, the sensor data produced by these

devices is continuously processed in an online/streaming manner to gain insights, which

are subsequently distributed to interested endpoints for intelligent control and actuation

of the system. Often, both the data distribution and information processing needs to hap-

pen in near real time to meet the latency requirements of IoT applications. For exam-

ple, SmartDriver [3] is a real-time personalized recommendation service deployed in the

city of Seville in Spain to improve driving efficiency and road safety. Here, each driver

publishes their biometric information, such as heart-rate and vehicle information every 10

seconds to the SmartDriver server. The SmartDriver processes this information to mon-

itor each driver’s stress level, and to provide personalized recommendations for safe and

fuel-efficient driving. In addition to sending their own vehicle information, drivers also

subscribe to receive information about all nearby drivers (within 100 meters) to assess traf-

fic conditions. Given the time- and location-sensitivity of the provided information, IoT

applications such as SmartDriver impose strict response time requirements on both: data

distribution and processing.

To meet the data distribution needs of IoT applications, the publish/subscribe (pub/-

sub) [4] communication paradigm is typically used [5] since it supports scalable, asyn-

chronous and anonymous many-to-many communication between publishers (i.e., data

producers) and subscribers (i.e., data consumers). In a pub/sub system, subscribers specify

1

their interest in the form of subscriptions whereas publishers send data publications. The

underlying pub/sub system matches subscriptions and publications to distribute data to all

interested subscribers. Many different types of pub/sub systems exist that can be classified

based on the expressiveness of subscriptions [4]. Of these, the topic-based pub/sub is the

most commonly used type due to its simplicity and ease of use. In topic-based pub/sub,

a topic represents a logical channel of communication which is uniquely identified by its

name. Subscribers specify their subscriptions for specific topic names and publishers tag

their publications with topic names. A topic-based pub/sub system dispatches all messages

sent on a topic to all interested subscribers. MQTT [6], Kafka [7], ActiveMQ [8], OMG

Data Distributed Service (DDS) [9] etc. are examples of widely used topic-based pub/sub

systems.

To meet the online, stream processing needs of IoT applications, normally the Dis-

tributed Stream Processing Systems (DSPS) are used [10]. In a DSPS, an application is

structured as a Directed Acyclic Graph (DAG) composed of vertices, which represent op-

erators that process incoming data, and directed edges, which represent the flow of data

between operators. The operators can perform any user-defined computation. Apache

Storm [11], Apache Spark [12], Apache Flink [13], Millwheel [14], etc. are examples of

widely used cloud/cluster-based DSPSs.

Despite the availability and maturation of these technologies, employing existing cloud-

based pub/sub and DSPS solutions to support the data distribution and processing needs of

IoT applications will entail sending a huge amount of data produced by devices present

at the network edge to data centers located at the core of the network [15]. For example,

a shared ride safety application that analyzes in-vehicle video streams can easily require

uploading in the order of petabytes of data each day [16]. A concrete example illustrates

this challenge. For example, according to the statistics provided in [17], in 2017 around

45,787 Uber rides took place every minute. Assuming an average duration of 20 minutes

for a ride, and 100MB size for a one minute video, roughly ∼9PB of data would need to

2

be uploaded each day [16].

Sending data over bandwidth-constrained WAN links can incur large unpredictable la-

tencies and a heavy cost. Therefore, a cloud-only approach is not a viable solution to re-

alize large-scale, latency-sensitive IoT applications [18]. To address this limitation, the

edge computing [19] paradigm has been proposed, which allows computations to take

place near the source of data on low-cost edge devices and small-scale data centers called

cloudlets [20]. This eliminates the need to send all the data to the cloud; instead data can

be processed near the source and local results can be disseminated quickly while only rel-

evant information is sent to the remote cloud back-end. Edge-based deployment of several

interactive applications have shown latency and network cost benefits [21, 22].

Despite these advances, a straightforward deployment of a cloud-based pub/sub and

DSPS solution at the edge to meet the data distribution and processing requirements of

latency-sensitive IoT applications does not work due to the following reasons:

1. The edge comprises resources that are fairly constrained in their resource capacities.

Existing cloud-based pub/sub and DSPS solutions have been designed for a resource-

rich environment and hence cannot be directly applied to the edge.

2. In order to support latency-sensitive IoT applications, the solutions must be designed

to be latency-aware. The computation overhead of running a task on a resource-

constrained device and the impact of interference due to co-location of tasks on the

same resource-constrained device can quickly eclipse the network latency benefits of

using the edge. This trade-off between computation overhead and network cost must

be expressly accounted for in such solutions.

Developing an edge-based, latency-aware data distribution and processing solution

for IoT applications is the objective of this proposed research. To that end, we first elaborate

on the key research challenges that must be addressed (Section 1.2), followed by a brief

description of our proposed solution to address each of these challenges (Section 1.3). Each

3

solution approach is then described in detail as a self-contained chapter in this dissertation

as outlined in Section 1.4.

1.2 Key Research Challenges

The key research challenges addressed by this research in developing an edge-based,

latency-aware data distribution and processing solution are described as below:

1.2.1 Challenge-1: Latency-Aware Data Distribution and Processing at the Edge

None of the existing, widely used topic-based pub/sub systems, such as Kafka [7],

MQTT [6], ActiveMQ [8], RabbitMQ [23], DDS [9], etc. provide any Quality-of-Service

(QoS) assurance on end-to-end latency of data delivery and processing all at once. Provid-

ing latency QoS assurance is critical for latency-sensitive IoT applications. Increasingly,

pub/sub solutions deployed at the edge also support light-weight processing on incoming

topic data streams. This allows some local data processing close to the source while only

aggregated/anonymized data is sent to the cloud [24, 25, 26, 27, 28, 29]. These systems are

referred to as publish-process-subscribe systems [24]. The end-to-end latency in a publish-

process-subscribe system will be determined primarily by the processing load at the broker

in addition to network transmission delay.

A large number of factors can affect a topic’s observed end-to-end latency in a publish-

process-subscribe system, which includes number of subscribers connected to the topic,

number of publishers connected to a topic, a topic’s cumulative publishing rate, duration

of per-sample processing performed for each data sample received over a topic, impact of

processing load of other co-located topics hosted at the same broker, network link char-

acteristics, etc. A publish-process-subscribe system that provides assurance on end-to-end

latency on a per-topic basis must consider all these factors while making its topic place-

ment decisions, i.e., topics must be placed together on pub/sub brokers in a latency-aware

manner such that none of the topics in the system violate their desired latency QoS. Addi-

4

tionally, due to constrained and fluctuating resource availability at the edge, the placement

solution must be resource-efficient and make use of minimal number of pub/sub brokers.

1.2.2 Challenge-2: Realizing Effective Abstractions for Edge-Based DAG Stream

Processing

Widely used DSPS such as Storm [11], Spark [12], Flink [13], etc., have been designed

and optimized to run within a single data center. These systems have a master-worker

architecture [30], where a master node distributes computations over a cluster of worker

nodes for large-scale processing. However, with the advent of edge computing, stream-

based processing of data will span across the entire geo-distributed resource spectrum from

edge to cloud. Therefore, existing cloud-based DSPS solutions are not directly applica-

ble [26, 31, 32] in an edge computing environment.

Geo-distributed, stream processing application can instead be viewed as a distributed

dataflow [33, 34, 35], where both data distribution and processing occur seamlessly. This

distributed dataflow assumes a DAG structure, where vertices represent individual process-

ing stages (edge/cloud nodes) and directed edges represent the flow of data between these

processing stages. Although the pub/sub pattern addresses the data distribution needs for

such a distributed dataflow, the data processing aspects which are local to the individual

stages are often not implemented as a dataflow. Due to a lack of generality and compos-

ability of Application Programming Interface (API) of pub/sub systems, local processing

aspects are developed using the Observer pattern. The observer pattern is known to have

many limitations [36] such as: (1) inversion of control, (2) non-composability of callbacks,

(3) manual state management, and (4) unpredictability in the order of arrival of callbacks.

Thus, there is a need for an intuitive programming model for pub/sub systems which pre-

serves this end-to-end dataflow structure. This programming model for pub/sub systems

must provide first-class abstraction for data streams, be composable and support reusable

coordination primitives for joining, splitting and operating on data streams.

5

1.2.3 Challenge-3: Latency-Aware DAG Stream Processing at the Edge

To support latency-sensitive, stream-based IoT applications deployed at the edge, it

is necessary that constituent operators of the application DAG are placed over resource-

constrained edge devices intelligently in a manner that is both resource aware and satisfies

the latency needs of the applications. Accordingly, a desirable operator placement is one

that minimizes the end-to-end response time or makespan of the application DAG by intel-

ligently trading off communication costs incurred due to distributed placement of operators

across edge devices, and interference costs incurred due to co-location of operators on the

same edge device [37].

Framework-specific solutions for operator placement [38, 39, 40] have been designed

specifically for a given DSPS, such as storm [11]. As such, these solutions are not appli-

cable at the edge. Existing framework-agnostic placement solutions [41, 42, 43, 37, 44]

make simplifying assumptions about the interference cost of co-located operators. These

solutions do not consider the impact of DAG structure-imposed execution semantics and

the incoming data rate on DAG’s response time. Due to these simplifying assumptions,

their estimation of response time is less accurate and placement produced on the basis of

this response time estimation is less effective.

Estimation of response times for arbitrary DAG structures is a hard problem. A large

number of factors, such as DAG structure imposed execution semantics, processing interval

of constituent operators, incoming data rate, impact of operator co-location and network

link characteristics must be considered to make an accurate estimate of DAG’s response

time under a given placement. Moreover, there can be a very large number of possible

placements for a given DAG. Searching through the entire space of possible placements

to find one that minimizes the response time will be prohibitively expensive. Therefore,

an efficient solution is needed which makes operator placement decisions for makespan

minimization on the basis of accurate response time estimation.

6

1.2.4 Challenge-4: Application of Research Ideas to a Real-World Edge Use-Case

Contributions made to address research challenges 1.2.1, 1.2.2 and 1.2.3 have been

presented in a stand-alone fashion, implemented using different technologies and tested on

different hardware resources. The solution contribution for Challenge 1.2.3 has only been

validated using synthetic application DAGs for single core edge devices. To overcome these

limitations, there a need to demonstrate the applicability and effectiveness of presented

research solutions in the context of a real-world, edge-based application. Additionally,

solution for Challenge 1.2.3 must also be tested on multi-core edge devices to validate its

generality.

1.3 Dissertation Research: Latency-Aware Data Distribution and Processing at the

Edge

To meet the low-latency data distribution and processing needs of IoT applications de-

ployed at the edge, solutions must be designed in a latency-aware manner. In this context,

this doctoral research has identified four key research challenges as discussed in Section 1.2

and proposes the following solutions to address each challenge:

1.3.1 Contribution-1: Latency QoS Assurance for Topic-Based Pub/Sub

To address research Challenge-1 (Section 1.2.1), in Chapter 2 we have presented a

solution to provide QoS specified as the desired per-topic 90th percentile latency for a

publish-process-subscribe system. To incorporate the impact of various pub/sub features

on a topic’s 90th percentile latency, such as number of publishers, number of subscribers,

cumulative publishing rate, impact of co-located topic load, etc., our solution first learns a

latency prediction model for a publish-process-subscribe broker. Subsequently, the learned

model is used to inform the placement of topics on brokers such that latency QoS require-

ment for all topics is met, while making efficient use of constrained system resources.

7

1.3.2 Contribution-2: Programming Model to Unify Data Distribution and Process-

ing

To address research challenge-2 (Section 1.2.2), in Chapter 3 we have presented a so-

lution which combines pub/sub-based data distribution with reactive programming to pre-

serve the end-to-end distributed dataflow structure. Reactive programming provides a ded-

icated abstraction for data streams and a reusable set of stream processing operators. Thus,

this integration allows even the local processing stages at edge/cloud sites to be imple-

mented as a dataflow.

1.3.3 Contribution-3: Latency-Aware DAG Placement

To address research challenge-3 (Section 1.2.3), in Chapter 4 we have presented a so-

lution which learns a data-driven latency prediction model that incorporates DAG-based

execution semantics, incoming data rates and operator processing times to estimate the

latency of all paths in a DAG. This latency prediction model is subsequently used by a

heuristic-based solution to find a placement which minimizes the makespan of the DAG.

Learning a latency prediction model which predicts the latency of all paths in arbitrary

DAG structures is complex. To reduce the model training cost, our solution learns a model

to predict the latency of multiple co-located linear chains instead. Then, given any arbitrary

DAG, our solution first linearizes the DAG into an equivalent set of linear chains only for

the purposes of making placement decisions, and uses the latency prediction model for co-

located linear chains to approximate the latency of all paths in the original DAG structure

but deploys the original DAG according to the placement decisions.

1.3.4 Contribution-4: Bringing It All Together

To address research challenge-4 (Section 1.2.4), in Chapter 5 we have demonstrated the

application of presented research solutions in the context of a real-world edge-based ap-

plication for Automatic License Plate Recognition (ALPR). ALPR continuously processes

8

video streams to identify vehicle license plate numbers and can be used in a wide range

of applications such as parking automation, ticket-less parking fee management, road toll

collection, traffic surveillance, etc. Sending large volumes of video data to the cloud for

processing can become prohibitively expensive, which makes ALPR a good edge-based ap-

plication use-case for validating our proposed research solutions. ALPR was implemented

using our unified programming model presented in Chapter 3 and our latency-aware so-

lution for DAG placement presented in Chapter 4 was used to place ALPR’s application

DAG on a cluster of quad-core Raspberry Pi devices, which also helps to demonstrate the

solution’s applicability to multi-core hardware platforms.

1.4 Dissertation Organization

This research dissertation is organized as follows: Chapter 2 describes our solution for

latency-aware data distribution at the edge; Chapter 3 describes our solution for end-to-

end distributed dataflow programming; Chapter 4 describes our solution for latency-aware

placement of DAG operators at the edge; and Chapter 5 presents our proposed solution for

reliable edge stream processing. Finally, Chapter 6 summarizes the research contributions

made by this dissertation.

9

Chapter 2

SCALABLE EDGE COMPUTING FOR LOW LATENCY DATA DISSEMINATION IN

TOPIC-BASED PUBLISH/SUBSCRIBE

2.1 Introduction

The Internet of Things (IoT) is a paradigm in which a plethora of devices across many

domains are interconnected to provide and exchange data. Over the last few years, the IoT

landscape has grown tremendously, with some studies estimating the number of connected

devices to be in the range of tens of billions [45]. In many IoT applications, large amounts

of data are produced by sensors deployed at scale, and rapidly consumed in order to provide

fast decision-making. This is notably the case in many Smart City applications [46] in

which data acquired from many sensors must be rapidly processed in an online/streaming

manner to provide low-latency results for closed-loop actuation. Therefore, a scalable and

low-latency solution for both data dissemination and in-network processing is needed for

IoT applications.

The Publish/Subscribe (pub/sub) [4] communication pattern is considered highly suit-

able for the data dissemination needs of IoT applications [5], since it provides scalable,

asynchronous and anonymous many-to-many communication between data producers (pub-

lishers) and data consumers (subscribers). In pub/sub systems, subscribers specify their

interests in receiving data in the form of subscriptions. Publishers transmit publication

messages that are disseminated by the underlying system to the relevant subscribers. The

literature distinguishes between many flavors of pub/sub; the most prevalent being topic-

based pub/sub, which is the subject of this research proposal. In topic-based pub/sub,

subscriptions are expressed over topics, which can be used to model communication chan-

nels. Topics are specified by topic names, subscribers declare their subscriptions to specific

topic names, and publishers tag their messages with topic names. The topic-based pub/sub

10

system dispatches all the messages published on a topic to all interested subscribers.

In addition to data dissemination, IoT applications also require real-time processing

of streaming data. Traditionally, data produced at the network edge is sent to the cloud

for processing. However, this approach can consume very high bandwidth and incur un-

predictable and large latencies. Therefore, cloud-based processing and dissemination is

not the best choice for latency-critical IoT applications [18]. Recently, edge [19, 20, 21],

fog [47] and mobile-cloud computing [48] models have been proposed to address these

concerns and support execution of computations near the source of data on low-cost edge

devices and small-scale datacenters called cloudlets [20].

Edge computing, combined with the pub/sub communication model, which together is

referred to as the publish-process-subscribe [24] paradigm, provides a promising approach

for enabling low-latency data distribution and processing for IoT systems. In this model,

computations take place on published streams of data directly at the pub/sub brokers de-

ployed near the edge. This approach has several advantages: (1) results can be disseminated

to local subscribers quickly; (2) only aggregated results are sent to the cloud backend to

reduce bandwidth consumption; and (3) data can be anonymized before being sent to the

cloud for privacy.

Although pub/sub brokers that perform streaming analytics are increasingly being used

to enable latency-critical IoT applications, existing solutions seldom provide any Quality-

of-Service (QoS) assurance on latencies experienced by the system. Providing some mea-

sure of response time assurance is imperative for the practical utility of many IoT appli-

cations. To address these concerns, in this chapter, we present a solution to provide QoS

specified as the desired per-topic 90th percentile latency for a publish-process-subscribe

system. Per-topic 90th percentile latency QoS implies that 90% of the messages received

by all subscribers for a topic will have latencies below the specified QoS value. To ensure

more reliable system performance, we use QoS specified as the 90th percentile latency as

opposed to average latency [49]. Our solution first learns a latency prediction model of

11

the publish-process-subscribe broker, and subsequently uses the learned model to deter-

mine the number of edge-based pub/sub brokers needed, as well as the placement of topics

on these brokers, so that the QoS requirement is met, while making efficient use of the

constrained system resources.

In this regard, we makes the following key contributions:

• Sensitivity analysis: We present a sensitivity analysis of the impact of different

pub/sub features including number of subscribers, number of publishers, publishing

rate and per-sample processing interval, on a topic’s 90th percentile latency, both in

an isolated case where no other topics are hosted at the broker and in a co-located

case where other topics are simultaneously hosted at the broker.

• Latency prediction model: We present a model for predicting a topic’s 90th per-

centile latency based on its publishing rate, per-sample processing interval, as well

as a characterization of the background load imposed by other co-located topics on

a broker. Neural network regression is used to learn a separate model for hosting a

different number of co-located topics on a broker up to a maximum degree of co-

location k. The learned models are demonstrated to have ∼97% accuracy and ex-

perimental results show that only up to ∼10% of the messages in the system are not

able to meet the desired latency QoS as a result of prediction error and subsequent

incorrect topic placement.

• Topic co-location heuristics: We formulate a k-Topic Co-location Problem (k-TCP)

of finding a resource-efficient co-location scheme for a collection of topics on brokers

such that their desired QoS in terms of 90th percentile latency is not violated. Here,

the degree of co-location k specifies the maximum number of topics that can be

hosted by any broker. We show that k-TCP is NP-hard for k ≥ 3 and present three

heuristics that use the latency prediction model for placement of topics on brokers.

The performance of these heuristics is evaluated and compared through extensive

12

experiments.

The rest of this chapter is organized as follows: Section 2.2 presents related work and

compares our solution to some existing pub/sub systems. Section 2.3 gives a formal state-

ment of the problem we are studying. Section 4.3 shows the results of a sensitivity analysis

and the learned latency prediction model. Section 4.2.3 presents the complexity analysis

of the topic co-location problem and the proposed heuristic-based solutions. Section 4.4

presents experimental results to validate our solutions. Finally, Section 5.5 offers conclud-

ing remarks and describes future work.

2.2 Related Work

Based on the expressiveness of subscriptions supported, a pub/sub system can be: (1)

Content-based [50], where subscribers specify arbitrary boolean functions on the content of

the messages; (2) Attribute-based [51], where subscribers specify predicates over attribute

values associated with the messages; or (3) Topic-based [52], where messages are tagged

with a topic name and subscribers that are interested in a specific topic receive all messages

associated with that topic.

Matching published data with subscriptions for data dissemination occurs over an over-

lay network of pub/sub brokers. Brokers in a pub/sub system may be organized into a

tree-based overlay [53], cluster-based overlay [54], structured/unstructured peer-to-peer

overlay [55, 56] or cloud-based overlay [51, 52]. Tree-based, cluster-based and peer-to-

peer overlays incur multi-hop routing latencies, lack reconfiguration flexiblity and require

maintenance of costly state information. Increasingly, single-hop, topic-based pub/sub sys-

tems, such as MQTT [6], ActiveMQ [8] , Amazon IoT [57], are being used for develop-

ing IoT applications. These systems comprise a single flat layer of pub/sub brokers that

are generally deployed in the cloud. Therefore, in our solution we focus on topic-based,

single-hop, pub/sub systems similar to MQTT.

Many well-known and commercially-available, topic-based pub/sub systems, such as

13

MQTT, Redis [58], Kafka [7] and ActiveMQ have been used to build IoT applications.

For example, the SmartSantander [59] IoT testbed uses ActiveMQ to distribute a variety of

sensor data. MQTT is used to create a smart parking application [60] and the SmartDriver

application described previously uses Kafka.

Very few pub/sub systems provide QoS guarantees [61, 62] on latency, which is much

desirable for supporting latency critical IoT applications. IndiQoS [62] reserves network

level resources over a peer-to-peer overlay of brokers to ensure QoS of data delivery. How-

ever, it is not always practical to make network-level resource reservations. Harmony [63]

is a peer-to-peer pub/sub system which continuously monitors link quality and adapts rout-

ing paths for low-latency data dissemination. Harmony can also make use of priority-based

scheduling of messages if the underlying network supports it. DCRD [64] dynamically

switches among next-hop downstream nodes for reliable and time-bound data delivery.

Brokers in DCRD maintain a sorted list of next-hop nodes for each subscriber on the basis

of expected delay and reliability of delivery via the next-hop node. Although these solu-

tions support QoS for latency of data delivery, they are designed for peer-to-peer, multi-hop

networks and are not directly applicable for single-hop, topic-based pub/sub systems like

MQTT, ActiveMQ, etc. Moreover, these solutions primarily focus on re-routing paths for

data delivery in response to changes in network link characteristics. They do not consider

the impact of existing broker load on latency.

With the adoption of edge computing concepts of processing near the source of data,

many pub/sub sytems have emerged that implement the publish-process-subscribe [24, 26]

pattern and additionally support computation at the pub/sub brokers. Latencies in publish-

process-subscribe systems will be affected significantly by processing delays at the bro-

ker in addition to network link characteristics. Therefore, managing the load at pub/sub

brokers is important for ensuring acceptable performance. Typically, load in topic-based

pub/sub systems is managed by placing the topics on multiple brokers and distributing the

connected endpoints across these brokers. Kafka supports manual rebalancing of topic

14

load, while Dynamoth [52] performs this rebalancing dynamically when the empirically

set network thresholds are exceeded. However, both Kafka and Dynamoth do not per-

form load-balancing in a latency aware manner for QoS assurance. MultiPub [65] finds an

optimal placement of topics across geographically distributed datacenters for ensuring per-

topic 90th percentile latency of data delivery, but it only considers inter-datacenter network

latencies and assumes that each datacenter has a local load balancing algorithm. On the

contrary, FogMq [66] uses a distributed flocking algorithm to migrate the entire pub/sub

broker between edge sites to ensure bounded tail latency of computation.

To addresss the need to balance loads at publish-process-subscribe brokers for provid-

ing latency QoS of data delivery, our solution learns a latency model for pub/sub broker

load and uses the learned model for distributing the topic load across brokers such that data

delivery QoS is provided in a resource efficient manner.

We use a data-driven approach instead of closed-form, analytical solutions, to model

the impact of broker load on a topic’s latency. Closed-form, analytical solutions, such

as queueing models have been used extensively for performance modeling [67] [68][69].

However, we use a data-driven approach since simple queueing models do not incorpo-

rate the impact of interference by other co-located topics on a topic’s latency and typically

assume Poisson arrivals. In IoT deployments, it is more likely that sensors publish infor-

mation at constant rate. Practical use of queueing models requires us to explicitly measure

the processing capacity of the broker per topic. Although it can be indirectly estimated by

measuring the number of queued samples per topic, many commercial off-the-shelf pub/-

sub libraries do not expose this metric. To the best of our knowledge, a machine-learning

based approach for modeling the performance of publish-process-subscribe systems has

not been presented before.

15

2.3 Problem Statement

In this section, we first describe a use case to motivate the need for latency-bounded,

edge-based publish-process-subscribe systems (Section 2.3.1). We then present the system

model (Section 2.3.2) and assumptions made (Section 2.3.3). Finally, we provide the for-

mal statement of k-Topic Co-location (k-TCP) optimization problem that meets the QoS

requirements while making efficient use of the broker resources (Section 2.3.4).

2.3.1 Motivational Use Case

We use the DEBS Grand Challenge dataset [70] on New York taxi trips as our moti-

vational use case — a near real-time, city-wide taxi navigation and dispatch service. The

service divides New York into 500m×500m regions and taxis within each region send their

location updates on its region’s gps topic. Additionally, taxis also subscribe to its region’s

update topic to receive processed information such as most profitable regions of operation,

traffic and dispatch information. All topics are hosted by a publish-process-subscribe sys-

tem running on brokers near the edge, called edge brokers, inside a small-scale datacenter.

The RIoTBench paper [71] has benchmarked some stream processing pipelines built for the

New York taxi dataset, such as ETL (Extract Transform Load), prediction, model training

and statistical aggregation. While ETL and prediction pipelines take 10-40ms, statistical

summarization and model training take ∼50 seconds. Model training and statistical sum-

marization are good examples of latency-insensitive processing that can be offloaded to a

more resourceful cloud backend, while ETL and prediction can be performed at the edge

brokers to provide low-latency inference.

Given the time-sensitive nature of GPS position, traffic and dispatching information [72],

we consider the response time requirement for the application to be sub-second, i.e., pre-

processing of data on the gps topic should happen within one second and the updates pub-

lished on the update topic should also be disseminated to all taxis within one second.

16

2.3.2 System Model and Notations

We now introduce the system model and notation used in this chapter. Consider a

system where the cloud provider operates a set of homogeneous server brokers that are de-

ployed on fog/edge resources. Let T = {t1, t2, · · · , tn} be a collection of n pub/sub topics that

need to be allocated on the brokers. Each topic ti ∈ T is characterized by several parameters,

including the number of publishers, overall publishing rate, per-sample processing interval

in the broker, number of subscribers, etc. Since each topic may only occupy a fraction of

resources in a broker – the amount of which will be determined by a combination of its pa-

rameters described above – multiple topics can be co-located on the same broker for better

resource utilization. Co-located topics, however, affect each other’s performance [73, 74],

thus increasing their end-to-end delays and hence 90th percentile latencies. We allow a

maximum of k topics to be co-located, where k ≥ 1 is a constant parameter that represents

the degree of co-location. The value of k can be determined empirically by examining the

overhead of managing multiple co-located topics as well as the severity of interference in

terms of the latency degradation.

Let τ denote the desired 90th percentile latency that should not be exceeded by all

topics. Given τ and k, to solve the proposed k-Topic Co-location (k-TCP) problem, we

consider the following two sub-problems:

(1) Design a latency prediction model for the 90th percentile latencies of up to k co-

located topics based on their input parameters.

(2) Find a topic co-location scheme to minimize the number of brokers used, which is

needed due to the resource-constrained nature of the edge yet ensuring that all topics

satisfy the desired 90th percentile latency τ .

2.3.3 Assumptions

Our system model makes the following assumptions:

17

(1) We only consider the impact of a broker load’s on a topic’s latency. In practice, a

topic’s latency will also be influenced by the fluctuating network conditions. We

assume constant network latency and bandwidth.

(2) For simplicity of discourse, we assume that all topics have the same latency QoS

requirement τ , although our system can support differentiated per-topic QoS require-

ments.

(3) We assume that the per-sample processing performed at the broker is CPU-bound.

(4) We assume that all edge brokers are homogeneous, i.e., they have the same hardware

specification.

2.3.4 K-Topic Co-location Problem (k-TCP)

We present a formal definition of the topic co-location problem. For a collection T =

{t1, t2, . . . , tn} of n topics, a degree of co-location k, and a latency bound τ , a topic co-

location scheme S : T → B assigns the topics to a set B = {b1,b2, . . .} of edge brokers.

The goal is to minimize the number |B| of edge brokers used while ensuring that each topic

satisfies the desired latency τ .

Under a particular co-location scheme, let y j to be a binary variable that indicates

whether broker b j is used, i.e.,

y j =


1 if broker b j is used

0 otherwise

and let xi j be a binary variable that indicates the assignments of topics to brokers, i.e.,

xi j =


1 if topic ti is assigned to broker b j

0 otherwise

18

Also, for each topic ti ∈ T , let Ti ⊆ T denote its set of co-located topics (including ti itself)

on the same broker, i.e., Ti = {ti′ ∈ T |xi j = xi′ j = 1}, and let `i(Ti) denote its 90th percentile

latency, which can be computed by the latency predictive model (Section 4.3). If topic ti

is assigned to a server alone without other co-located topics, we simply use `i to denote its

90th percentile latency. The following describes a natural property on the latency model.

Property 1. (a) `i ≤ τ for all ti ∈ T ; (b) `i(T
′′

i)≤ `i(T
′

i) if T
′′

i ⊆ T
′

i for all ti ∈ T .

In particular, the property states that: (a) each topic always satisfies the latency require-

ment when assigned alone to a broker1; and (b) removing a topic from a set of co-located

topics on a broker will not increase the latency for any of the remaining topics.

Now, we formulate the k-Topic Co-location Problem (k-TCP) as the following integer

linear program (ILP):

Minimize |B|= ∑
j

y j

Subject to ∑
j

xi j = 1, ∀ti ∈ T (2.1)

∑
i

xi j ≤ k, ∀b j ∈ B (2.2)

`i(Ti)≤ τ, ∀ti ∈ T (2.3)

xi j,y j ∈ {0,1}, ∀ti ∈ T,∀b j ∈ B (2.4)

In the above formulation, Constraint (2.1) requires each topic to be assigned to exactly

one broker, Constraint (2.2) allows no more than k co-located topics on each broker, Con-

straint (2.3) ensures the latency satisfiability for all topics, and Constraint (2.4) requires the

decision variables to be binary. Section 4.2.3 shows the complexity of k-TCP and presents

several heuristic solutions.
1Otherwise, the topic must be split into two or more topics, e.g., by splitting publishing rate [52] for any

solution to be feasible. The design of topic splitting policies is out of the scope of this work.

19

(a) Impact of subscription size (b) Impact of topic co-location (one-to-many)

(c) Impact of publishing rate (d) Impact of topic co-location (many-to-one)

Figure 2.1: Sensitivity analysis for latency modeling

2.4 Latency Prediction Model and its Sensitivity Analysis

Solutions to the proposed k-TCP problem rely on an accurate understanding of the 90th

percentile end-to-end latency values per topic under different topic co-location scenarios.

To that end, we build a latency prediction model to determine the latency satisfiability of

any set of topics to be placed on a broker. However, building such a prediction model first

requires a critical understanding of the impact of pub/sub features and topic co-location on

per-topic latencies. Therefore, we first conduct a set of sensitivity analysis experiments to

study the impact of several pub/sub features, such as number of subscribers or subscription

size, publishing rate, per-sample processing interval and background load on a topic’s per-

formance. This helps us to identify the dominant pub/sub features that should be used to

build the latency prediction model.

Accordingly, we first describe our pub/sub system and the experimental testbed used to

conduct the sensitivity analysis experiments in Section 2.4.1, following which Section 2.4.2

20

presents the sensitivity analysis results. Section 2.4.4 describes our latency prediction

model, followed by discussions about its limitations in Section 2.4.5.

2.4.1 Experimental Setup

We implemented our pub/sub system using the Java language binding of the ZMQ [75]

sockets library. Our system architecture is similar to Kafka, where topics are hosted on a

flat layer of pub/sub brokers managed by Zookeeper [76], which is a centralized service

for distributed coordination and state maintenance. Publishers and subscribers connect to

the broker that hosts their topics of interest to send and receive data, respectively. We

have used the matrix-product CPU stressor provided by the stress-ng [77] tool to emulate

variable intervals of per-sample processing performed at the broker in accordance with

the publish-process-subscribe paradigm. All experiments are performed for a broker node

hardware with four 2.5GHz Intel Xeon E5420 cores, 4GB RAM and 1Gb/sec network

capacity. Separate machines were used for hosting the publisher and subscriber endpoints.

Network Time Protocol (NTP) [78] was used for time synchronization of all machines.

Publishers tag their messages with a time-stamp and subscribers upon reception of the

message use this time-stamp to compute the end-to-end latency of data delivery.

2.4.2 Sensitivity Analysis

In our motivational use-case described in Section 2.3.1, IoT workload is either of type

one-to-many or of type many-to-one. In the one-to-many type, a single/few publishers send

processed data to a large number of subscribers for actuation. For example, in our motiva-

tional use case, taxis receive information about the most profitable region of operation on

the update topic. In the many-to-one type, a large number of publishers send their data to a

few subscribers for processing. For example, all taxis in a region send their gps coordinates

on the gps topic. The publishing rate in the one-to-many case is expected to be low, while

the cumulative publishing rate for the many-to-one case is expected to be much higher.

21

We first study the impact of number of subscribers on a topic’s performance for one-

to-many type of data dissemination (recall that a topic’s performance is characterized by

the end-to-end 90th percentile latency experienced by its subscribers). Figure 2.1a shows

the impact on latency when we increase the number of subscribers connected to a topic

hosted at a broker in isolation (i.e., there are no other topics hosted along with this topic at

the broker) for different values of per-sample processing interval. As this is a one-to-many

type of workload, we connect a single publisher, which sends messages with a payload

size of 4KB at a low rate of 1 message/second. We observe that although latency increases

with increasing number of subscribers, the impact on latency is very small, especially if

sub-second delivery bounds are considered, such as in our taxi use case. From our analysis

of the New York taxi data-set over a five-day period, the maximum number of taxis in a

region was found to be 240. Figure 2.1a shows that 240 subscribers/taxis can easily be

sustained without incurring a significant performance penalty.

However, a topic will seldom be hosted in isolation at the broker given the resource-

constrained nature of edge-based systems. Therefore, we also study how co-located topics

can impact the performance of a topic of type one-to-many. We refer to the topic under

consideration as the foreground topic, while the other co-located topics are referred to as

the background topics. Figure 2.1b shows how the latency of the foreground topic with

200 connected subscribers and per-sample processing of 50ms is affected as we increase

the number of background topics. Here, each background topic is of type many-to-one with

10 connected publishers- each publishing at the rate of one message/second, one connected

subscriber and 50ms per-sample processing interval. The number of background topics

is increased until CPU utilization at the broker saturates. We see that the latency of the

foreground topic increases significantly with increasing load at the broker, but it is still

well below the sub-second latency bound despite broker CPU saturation.

We perform similar sensitivity analysis experiments for the many-to-one scenario. Fig-

ure 2.1c shows how an isolated topic’s latency is impacted as publishing rate or number of

22

connected publishers increases for different per-sample processing intervals. Here, each

topic has one connected subscriber and each publisher publishes at the rate of one mes-

sage/second. We observe that a topic’s latency increases linearly up to a threshold rate

after which the increase in latency becomes exponentially large. Beyond the threshold

publishing rate, the processing capacity of the broker is exceeded by the incoming rate of

messages, which results in large queuing delay at the broker and therefore, an exponential

increase in the observed latency [79]. The threshold rate for a given per-sample processing

interval decreases due to the impact of background load imposed by other co-located top-

ics as shown in Figure 2.1d. This shows that the threshold rate for a topic with per-sample

processing interval of 20ms reduces from 38 messages/second in the isolated case to 15

messages/sec when co-located with 7 other background topics and to 8 messages/second

when co-located with 11 other background topics. In these experiments, the background

topics were of type many-to-one, with randomly chosen publishing rates and per-sample

processing intervals.

2.4.3 Key Insights from Sensitivity Analysis

The sensitivity analysis results show that a topic’s latency in a publish-process-subscribe

system increases with increasing subscription size, publishing rate, per-sample processing

interval and background load. Depending on the broker hardware capacity, the measured

values, such as, latency, threshold rate of publication, etc. may be different. However,

observed behaviors will remain the same.

The sensitivity analysis experiments show that number of subscribers, publishing rate,

per-sample processing interval and background load all impact a topic’s latency. For sub-

second latency requirements, the results show that even for 200 connected subscribers, the

latency for a topic is not significantly impacted despite the broker being saturated. For

applications where the number of connected subscribers per topic is much larger than 200,

a topic can be replicated and the number of connected subscribers can be distributed [52]

23

to ensure that the latency QoS is met. Topic partitioning and replication is beyond our

solution’s scope and we assume that a topic can be safely placed at a broker in isolation.

For sub-second latency bounds, as the number of subscribers does not significantly impact

latency, we did not include it in the latency prediction model. It is important to note,

however, that the number of subscribers may need to modeled for systems with stricter

latency requirements. Figure 2.1b shows a 147% increase in latency from 72ms to 180ms

as the background load increases for the foreground one-to-many topic with 200 connected

subscribers.

2.4.4 Latency Prediction Model

The sensitivity analysis experiments show that a topic’s per-sample processing interval

and publishing rate prominently impact its latency. Hence, we have considered these two

pub/sub features and features derived from them for learning our latency prediction model.

More concretely, we used six input features for learning the model, of which the first three

characterize the foreground topic and the remaining three characterize the background load.

These input features are described below, where t f denotes the foreground topic and TB

denotes the set of background topics at a broker:

• p f , i.e., per-sample processing interval of t f ;

• r f , i.e., publishing rate of t f ;

• d f , i.e., foreground load which is the product of per-sample processing interval p f

and publishing rate r f ;

• ∑tb∈TB pb, i.e., the sum of per-sample processing intervals of all background topics;

• ∑tb∈TB rb, i.e., the sum of publishing rates of all background topics;

• ∑tb∈TB db, i.e., the sum of load (product of per-sample processing interval and pub-

lishing rate) of all background topics.

24

For a topic in isolation, the background load is zero. Therefore, to learn the latency

model for a topic in isolation, we have only considered the per-sample processing interval

p and publishing rate r of the topic as input features. We found that polynomial regression

of degree 4 accurately models the latency curve for a topic in isolation. We describe the

isolated topic model accuracy results in more detail in Section 2.6.2.

However, for two or more co-located topics, i.e., k≥ 2, we found that simple regression

techniques could no longer capture the complex, non-linear impact of the background top-

ics’ loads on a foreground topic’s latency. Since neural networks generally perform well

in capturing non-linear functions of a problem [80], we use it to learn latency models for

k≥ 2. Neural networks comprise multiple layers, namely, an input layer, one or more inter-

mediate layers called hidden layers and an output layer. Each layer comprises nodes called

neurons which are linked to neurons in another layer by weighted connections. The input

layer simply feeds the input features of the training data to the network via these weighted

connections. Neurons of the hidden and output layer sum the incoming weighted input sig-

nals, apply a bias term and an activation function to produce the output for the next layer

(in case of a hidden layer) or the output of the network (in case of the output layer). Hidden

layers and/or non-linear activation functions are used for modeling the non-linearity of the

problem.

The architecture of a neural network, specifically the number of hidden layers, number

of neurons in each hidden layer and the regularization factor, greatly impact the perfor-

mance of the model. If the chosen architecture is too complex, it may result in over-fitting

the data and may not generalize to perform well outside of the training data. In this case,

training error is very low, but the error on the validation data is high and the model is said

to suffer from high variance [81]. On the other hand, if the chosen architecture is too sim-

ple, it fails to learn from the data (under-fitting) and performs badly on both the training

and validation data. In this case, the model is said to suffer from high bias [81]. Learning

curves [82], which plot the training and validation errors as functions of the training data

25

size can be used to select the right architecture for reducing both the bias and the variance

of the model. Specifically, the network architecture for which both training and validation

errors converge to a low value is typically chosen.

We learn a separate k-topic co-location model using neural networks for each k ≥ 2

as opposed to a unified model for reasons of higher accuracy. We plot learning curves for

several different neural network architectures for each k and select the one which minimizes

both bias and variance. While simpler network architectures perform well for lower values

of k, more complex architectures are needed for higher values of k as the search space

increases. Section 2.6.2 shows the learning curves and accuracy of the learned models.

2.4.5 Limitations of the Model

It is important to note the limitations of the k-topic co-location models. The learned

latency models are specific to a broker hardware type. Therefore, separate latency models

need to be learned for each new hardware type. Model learning overhead for different

hardware architectures can be reduced by incorporating hardware-specific input features

in the learned models so that a single model can be used across different architectures.

Transfer learning [83] can also be used for learning the latency models for different broker

architectures on the basis of existing models for a specific hardware architecture. Finally,

our model also assumes that the per-sample processing performed at each topic is CPU-

bound.

The learned latency model is used by our topic placement heuristics for k-TCP (see

Section 4.2.3) so that the latency QoS of the topics is not violated on a broker. However,

subject to the inaccuracy of the latency prediction model, the produced placement for some

topics in the system may be incorrect and may result in QoS violation for those topics.

Hence, our approach does not provide hard guarantees on meeting the specified latency

QoS. To address this issue, our approach can be augmented with a feedback-based mech-

anism where subscribers experiencing QoS violations can inform the system, which can

26

then place this topic on another broker and also use this information to update the learned

latency model. Employing a latency model as opposed to relying solely on a subscriber’s

feedback has the following benefits: 1) QoS violations can be prevented proactively for

most of the cases where the latency model makes accurate predictions; and 2) subscriber

feedback-based mechanism can incur a large overhead as the system scales.

2.5 NP-Completeness of k-TCP and Heuristics-Based Solutions

In this section, we analyze the computational complexity of k-TCP and show that it is

NP-hard for k ≥ 3, which represents a fairly small degree of co-location. We then propose

some heuristics to solve k-TCP sub-optimally.

2.5.1 Feasibility Function

Before analyzing the complexity and proposing a solution for k-TCP, we first rely on

the latency prediction model to define a feasibility function F , which indicates whether a

given set of at most k topics can be feasibly co-located on a broker. Specifically, for any

T
′ ⊆ T and |T ′| ≤ k, we can rely on the k′ co-location model for k′ = |T ′| to predict the

latencies for all topics in T
′
, while using the individual parameters for each topic, i.e., the

per-sample processing interval pi and publishing rate ri, as the input features for the model

as described in Section 2.4.4. We define:

F (T
′
) =


1 if `i(T

′
)≤ τ for all ti ∈ T

′

0 otherwise

Hence, according to Property 1, we have:

F (T
′
) = 1 for any |T

′
|= 1 (2.5)

F (T
′
) = 1 implies F (T

′′
) = 1 for any T

′′
⊆ T

′
(2.6)

27

Note that, for a constant degree of co-location k, the set of all possible inputs to the

feasibility function F can be encoded by at most ∑
k
k′=1

(n
k′
)
= O(nk) bits, i.e., polynomial

in the number of topics.

2.5.2 Complexity Analysis

We now show the computational complexity of k-TCP.

Theorem 1. For k ≤ 2, k-TCP can be solved in polynomial time.

Proof. The claim is obvious for k = 1 (i.e., 1-TCP). In this case, each topic must be as-

signed to a broker alone, and the number of required brokers is therefore |B|= |T |.

For k = 2 (i.e., 2-TCP), construct a graph G = (V,E), where |V |= |T | and each vertex

vi ∈ V represents a topic ti ∈ T . An edge ei j exists between two vertices vi and v j if the

corresponding two topics ti and t j can be feasibly co-located, i.e., F ({ti, t j}) = 1. Finding

a maximum matching M of G, which can be computed in polynomial time [84], will lead

to an optimal solution, where each pair of matched vertices (topics) are co-located on a

broker and the unmatched ones are each assigned to a broker alone. The optimal number

of required brokers is in this case |B|= |T |− |M|.

Theorem 2. For k ≥ 3, k-TCP is NP-hard.

Proof. We prove the NP-completeness for the decision version of k-TCP, which for a given

instance asks whether the collection of topics can be co-located on m or fewer brokers. The

problem is clearly in NP: given a co-location scheme, we can verify in polynomial time

that it takes at most m brokers and that the set of co-located topics on any broker has a

cardinality at most k and form a feasible set (via the feasibility functions).

To show that the problem is NP-complete, we use a reduction from k-Dimensional

Matching (k-DM), which is a generalization of the well-known 3-Dimensional Matching

(3-DM) problem. For k-DM, we are given k disjoint sets X1,X2, . . . ,Xk, where all X j’s have

the same number m of elements. Let M be a subset of X1×X2×·· ·×Xk, that is, M consists

28

of k-dimensional vectors (x1,x2, . . . ,xk) such that x j ∈ X j for all 1 ≤ j ≤ k. The question

is whether M contains a perfect matching M
′ ⊆ M, that is, |M′| = m, and for any distinct

vectors (x
′
1,x

′
2, . . . ,x

′
k) ∈M

′
and (x

′′
1,x

′′
2, . . . ,x

′′
k) ∈M

′
, we have x

′
j 6= x

′′
j for all 1 ≤ j ≤ k. It

is known k-DM is NP-complete for k ≥ 3 [85].

Given an instance I1 of k-DM, we construct an instance I2 of k-TCP by creating km

topics, each corresponding to an element in I1. For each vector (x1,x2, . . . ,xk) ∈ M in I1,

we set the corresponding set of topics to be feasible in I2, i.e., F ({x1,x2, . . . ,xk}) = 1, and

derive the other feasible sets using Equations (2.5) and (2.6) while leaving all the remaining

sets to be infeasible. Finally, the bound on the number of brokers in I2 is set to be m.

Clearly, if I1 admits a perfect matching of size m, then we can co-locate the corresponding

sets of topics in I2 using m brokers. On the other hand, if all topics in I2 can be co-located

using m brokers, since there are km topics in total and each broker can accommodate at

most k topics, then each broker must contain exactly k distinct topics, which based on the

reduction must come from the elements in one of the k-dimensional vectors of I1. Thus,

using the sets of co-located topics in I2, we can get a perfect matching M
′
for I1.

2.5.3 Heuristics

Given the NP-hardness result for k ≥ 3, we propose heuristic solutions to solve k-TCP

sub-optimally. Recall that the goal is to find a co-location scheme for a collection T of

topics on a minimum set B of brokers. Equivalently, the topics could be considered to form

a partition of B disjoint subsets {T (b1),T (b2), . . . ,T (b|B|)} such that each broker b j hosts

a feasible subset T (b j)⊆ T of topics, i.e.,
⋃

b j∈B T (b j) = T and T (b j)
⋂

T (b j′) = /0 for any

b j 6= b j′ .

In the following, we first describe two heuristics that are inspired by the greedy algo-

rithms in bin packing and set cover problems, respectively, and apply them to the k-TCP

context. We then present a hybrid heuristic that combines the two algorithms.

29

Algorithm 1: FirstFitDecreasing (FFDk)
Input: Collection T = {t1, t2, . . . , tn} of n topics, latency `i for each topic ti ∈ T when assigned to a

broker in isolation, degree of co-location k, and feasibility function F
Output: A partition of topics {T (b1),T (b2), . . . ,T (b|B|)} for a set B of brokers with each broker

b j ∈ B hosting a subset T (b j)⊆ T of topics
1 begin
2 Sort the topics in decreasing order of latency when assigned to a broker in isolation, i.e.,

`1 ≥ `2 ≥ ·· · ≥ `n;
3 Initialize |B| ← 0;
4 for topic ti (i = 1 . . .n) do
5 mapped← f alse;
6 for broker b j (j = 1 . . . |B|) do
7 if |T (b j)|= k then
8 continue;
9 end

10 if F (T (b j)
⋃
{ti}) = 1 then

11 T (b j)← T (b j)
⋃
{ti};

12 mapped← true;
13 break;
14 end
15 end
16 if mapped = f alse then
17 |B| ← |B|+1;
18 Start a new broker b|B| with T (b|B|) = {ti};
19 end
20 end
21 end

2.5.3.1 First Fit Decreasing

The first heuristic is inspired by a greedy algorithm in the bin packing problem, which

we call First Fit Decreasing, or FFDk for a given degree of co-location k, and its pseudocode

is presented in Algorithm 1. First, the algorithm sorts all topics in decreasing order of

latency when they are assigned to a broker in isolation (line 2). Then, it considers each

topic in sequence and finds the first broker that can feasibly host it together with the existing

topics that have already been assigned to the broker (lines 6-15). If no such broker can be

found, it starts a new broker and assigns the topic there (lines 16-19), which according

to Property 1(a) is always feasible. The complexity of the algorithm is O(n logn+ n|B|),

where |B| is the total number of brokers in the solution. Since |B| ≤ n, the algorithms runs

in O(n2) time in the worst case.

30

Algorithm 2: LargestFeasibleSet (LFSk)
Input: Collection T = {t1, t2, . . . , tn} of n topics, degree of co-location k, and feasibility function F
Output: A partition of topics {T (b1),T (b2), . . . ,T (b|B|)} for a set B of brokers with each broker

b j ∈ B hosting a subset T (b j)⊆ T of topics
1 begin
2 Initialized |B| ← 0;
3 while T 6= /0 do
4 while ∃T ′ ⊆ T s.t. F (T

′
) = 1 and |T ′ |= k do

5 |B| ← |B|+1;
6 Start a new broker b|B| with T (b|B|) = T

′
;

7 T ← T\T ′ ;
8 end
9 k← k−1;

10 if k = 2 then
11 MaximumMatching(T);
12 end
13 end
14 end

2.5.3.2 Largest Feasible Set

The second heuristic is inspired by the greedy algorithm in the set cover problem and

the set packing problem. We call it Largest Feasible Set, or LFSk for a given degree of

co-location k, and its pseudocode is presented in Algorithm 2. Specifically, the algorithm

works in iterations. At each iteration, it finds any largest feasible set of k topics and co-

locates them on a new broker (lines 4-8). If no such set can be found anymore, the maxi-

mum degree of co-location k is then decremented by 1 (line 9), and the process continues

until k is reduced down to 2, in which case we can run the maximum matching algorithm

(lines 10-12) as described in the proof of Theorem 1 that guarantees to co-locate the re-

maining topics in an optimal fashion. The complexity of the algorithm is O(nk) dominated

by enumerating all possible subsets of k topics in the worst case for the feasibility test. Note

that although the complexity is polynomial in the number n of topics, the running time can

be prohibitive for a high degree of co-location (e.g., k > 4) on even moderate n. We resolve

this problem below with a hybrid heuristic.

31

2.5.3.3 Hybrid Solution

We now present a heuristic that combines the benefits of top-down search of LFS and

low complexity of FFD. In particular, the algorithm takes a parameter k′ ≤ k as input, and

Algorithm 3 shows its pseudocode. We call the algorithm LFSk′+FFDk. Similarly to LFSk,

this hybrid solution also works in iterations, but an iteration now consists of two steps. In

the first step, any feasible set of k′ topics (if any) are found and co-located on a new broker

(lines 4-7). This is followed by the second step, which uses the first fit heuristic to maximize

the degree of co-location up to k on this broker (lines 8-16) based on a sorted sequence of

the remaining topics (line 2). This two-step iteration continues until no feasible set of

k′ topics can be found. In this case, the algorithm resorts to LFS with parameter k′− 1

for assigning the remaining topics (line 18). The overall complexity of the algorithm is

O(nk′+n2/k′), with the two parts coming from running LSF initially (using parameter k′)

and FFD (on at most n/k′ brokers), respectively. Note that when the parameter satisfies

k′ = k the algorithm becomes exactly LFSk, and when k′ = 1 it becomes FFDk. Thus, for

a suitable choice of k′, the algorithm combines the two previous heuristics while offering a

lower complexity solution to the problem.

2.6 Experiments

In this section, we present experimental results to validate our proposed solution for

providing latency QoS of data delivery in publish-process-subscribe systems. We first de-

scribe the testbed used for conducting the experiments, and then present the accuracy re-

sults of the k-topic co-location model and the performance results for the proposed k-TCP

heuristics.

2.6.1 Experimental Testbed and Setup

Our testbed comprises 25 heterogeneous machines running Ubuntu 14.04, of which 13

are homogeneous machines with four 2.5GHz Intel Xeon E5420 cores, 4GB RAM and

32

Algorithm 3: LFSk′+FFDk
Input: Collection T = {t1, t2, . . . , tn} of n topics, latency `i for each topic ti ∈ T when assigned to a

broker in isolation, degree of co-location k, parameter k′ ≤ k, and feasibility function F
Output: A partition of topics {T (b1),T (b2), . . . ,T (b|B|)} for a set B of brokers with each broker

b j ∈ B hosting a subset T (b j)⊆ T of topics
1 begin
2 Sort the remaining topics in decreasing order of latency when assigned to a broker in isolation;
3 Initialized |B| ← 0;
4 while ∃T ′ ⊆ T s.t. F (T

′
) = 1 and |T ′ |= k′ do

5 |B| ← |B|+1;
6 Start a new broker b|B| with T (b|B|) = T

′
;

7 T ← T\T ′ ;
8 for topic ti(i = 1 . . . |T |) do
9 if |T (b|B|)|= k then

10 break;
11 end
12 if F (T (b|B|)

⋃
{ti}) = 1 then

13 T (b|B|)← T (b|B|)
⋃
{ti};

14 T ← T\{ti};
15 end
16 end
17 end
18 LargestFeasibleSet(T , k′−1);
19 end

1Gb/s network adapter, which were used for running the brokers. The k-topic co-location

models are learned for this hardware type. The remaining machines were used to host the

publisher/subscriber endpoints and the Zookeeper coordination service. We benchmarked

the machines used to run the endpoints to find the maximum number of endpoints that can

be run on them reliably. This was done to minimize the effect of resource contention on

the experimental results. All machines were time synchronized using NTP.

Drawing from our motivational use case (Section 2.3.1) and the RIoTBench [71] re-

sults in which the ETL and prediction stream processing pipelines for the New York taxi

data were benchmarked to take between 10ms and 40ms, the per-sample processing in-

terval for any topic in our experiments was set to be either 10ms, 20ms, 30ms or 40ms.

Publisher endpoints send 4KB messages at the rate of 1 message/second for two minutes

(i.e., a total of 120 messages per publisher) to ensure that any experiment runs for a reason-

able length of time. If a topic t in an experiment is configured with per-sample processing

33

(a) 1-topic co-location model (b) 2-topic co-location model

(c) 6-topic co-location model (d) 6-topic co-location model

(e) 4-topic co-location learning curve (f) 6-topic co-location learning curve

Figure 2.2: Performance of latency prediction model

interval p and publishing rate r, then the broker is configured to execute stress-ng

matrix-product so that it takes p per-sample processing time. Additionally, one sub-

scriber and r publisher endpoints for topic t are created. All subscriber and publisher

endpoints connect to the system before starting the experiment to ensure the fidelity of ex-

perimental results. In computing the 90th percentile latency of a topic, the latency values

for some initial messages on the topic are not considered since they are observed to be very

high due to initialization and connection setup.

34

Table 2.1: Accuracy of k-topic co-location model

k
#datapoints
(training)

accuracy
(training)

accuracy
(test)

#datapoints
(validation)

accuracy
(validation)

2 2000 .987 .985 100 .972
3 3000 .985 .978 150 .976
4 4000 .983 .979 200 .984
5 5000 .981 .978 250 .951
6 6000 .981 .956 300 .968

2.6.2 K-Topic Co-location Model Learning

In order to learn the k-topic co-location model for k≥ 2, we first learn the latency model

for a topic in isolation, i.e., when k = 1. In particular, the 1-topic co-location model takes

the per-sample processing interval p and publishing rate r of a topic t as inputs and predicts

its 90th percentile latency `. We can use this model to estimate the maximum sustainable

publishing rate rmax for the topic with per-sample processing time p beyond which the 90th

percentile latency for the topic will violate its desired QoS τ . This maximum rate rmax is

used to ensure Property 1(a), i.e., a topic can always be placed on a broker in isolation,

otherwise topic replication and partitioning of publishers over topic replicas [52] will be

needed.

We found that polynomial regression of degree 4 provides the best fit for the 1-topic

co-location model with a training and test accuracy of .975 and .97, respectively. We used

a dataset with 180 datapoints; 60% of which were used for training and the remaining

40% were used for testing. Figure 2.2a shows the fit of the polynomial curve in degree 4

over experimentally observed 90th percentile latency values. Here, the x-axis shows the

publishing rate r in messages/second and the y-axis shows the 90th percentile latency in

milliseconds for p values of 10ms, 20ms, 30ms and 40ms. Using the model, we found the

rmax for sub-second 90th percentile latencies to be 78 messages/second, 37 messages/sec-

ond, 24 messages/second and 20 messages/second for p values of 10ms, 20ms, 30ms and

40ms, respectively.

35

We then used rmax found under the 1-topic co-location model to create the training

dataset for k-topic co-location models with k ≥ 2. To create the training dataset, for each

topic, p was uniformly randomly chosen from the set {10ms, 20ms, 30ms, 40ms} and r was

uniformly randomly chosen from the range [1,rmax]. For each k-topic co-location model,

we trained over 1,000 different randomly generated test configurations, and each configu-

ration contains k datapoints, one for each of the k topics. This gives 1000k datapoints for

each k-topic co-location model. A test runs for∼3 mins and it took∼11 days to collect the

training data to learn these offline latency models. In all of these experiments, the network

utilization was kept well below the 1Gb/sec network capacity of the broker to make sure

that network saturation does not impact the gathered results.

We tested different neural network architectures for each k-topic co-location model,

and found that a neural network with two hidden layers composed of 40 neurons each

performed well for k ≤ 5. Figure 2.2e shows the learning curve for k = 4. The learning

curve shows that the chosen neural network architecture has low bias and variance since

both training and validation errors converge to a low value of∼3%. A more complex neural

network architecture was needed for k = 6 as the parameter space increases. In this case,

a neural network with two hidden layers composed of 100 neurons each performed well.

Figure 2.2f shows the learning curve for the 6-topic co-location model. Again, we see that

the chosen neural network architecture has both low bias and low variance.

As described in Section 4.3, the input features for the model are p f , r f , d f , ∑tb∈TB pb,

∑tb∈TB rb and ∑t∈TB db. Table 4.2 shows the accuracy of the learned models for k up to 6. We

used the logarithm of the 90th percentile latency as the output for the model as it performed

better than using the 90th percentile latency value itself. Rectified Linear Units (ReLu) was

used as the activation function, the limited memory Broyden-Fletcher-Goldfarb-Shanno

(lbfgs) solver was used and the L2 regularization factor was set to 0.1. We used 95% of

the datapoints for training and the remaining 5% for testing. A separate validation dataset

was created by running 50 different test configurations for each k. The performance of the

36

learned models on the validation dataset is also shown in Table 4.2. We see that the learned

models have an accuracy of ∼97%.

Figure 2.2b shows the performance of the 2-topic co-location model on the validation

dataset. We see that the predicted latency tracks the experimentally observed latency values

closely. Similarly, Figure 2.2c and Figure 2.2d show the performance of the 6-topic co-

location model on test data points for which the experimentally observed latency values are

below and above τ , respectively. There are cases where the model makes inaccurate latency

predictions, resulting in both false-positives and false-negatives. Figure 2.2c shows a false-

positive occurrence where the predicted value is greater than τ and the experimentally

observed 90th percentile latency is below τ . Figure 2.2d shows a false-negative occurrence

where the predicted 90th percentile latency is below τ and the experimentally observed 90th

percentile latency is above τ . False negatives result in QoS violations and false positives

result in inefficient resource utilization.

2.6.3 Performance of k-TCP Heuristics

(a) Average broker count (b) Average solution time (c) Average broker load

(d) Average 90th percentile latency (e) Average %messages (missed QoS) (f) Average %topics (missed QoS)

Figure 2.3: Performance of k-TCP heuristics for varying n

We now study how each of the three k-TCP heuristics, namely FFDk, LFSk, and LFSk′+

37

FFDk, perform for k = 6 as the number of n topics to be placed increases. We set the

parameter k′ of the hybrid heuristic to be k′ = 3. In Figure 2.3, we present results averaged

over 5 random placement requests for each value of n. The performance of these heuristics

is compared along the following six dimensions: 1) number of brokers needed for hosting

n topics; 2) time to find a placement solution for n topics; 3) average CPU utilization of

all brokers used for hosting n topics; 4) average 90th percentile latency of all n topics; 5)

percentage of all messages across n topics with latency greater than τ (1 second); and 6)

percentage of n topics whose 90th percentile latency is greater than τ .

In Figure 2.3a, we observe that the three heuristics perform similarly to each other in

terms of the number of brokers used for placing the topics. LFSk is able to find a placement

which uses less number of brokers than both FFDk and LFSk′+FFDk for most of the cases.

However, as seen in Figure 2.3b, LFSk takes a much longer time to find a placement than

FFDk. As expected, LFSk′+FFDk, being a hybrid of the other two, takes less time than LFSk

but more time than FFDk. Average CPU load of the brokers in the system for the placement

produced by FFDk, LFSk and LFSk′+FFDk as seen in Figure 2.3c, does not show a wide

variation.

Figure 2.3d shows the average 90th percentile latency across all n topics in the system

for the placements produced by the three heuristics. FFDk and LFSk′+FFDk have compara-

ble performance in most cases, while LFSk yields a lower average 90th percentile latency

for all values of n. Figure 2.3e shows that up to 9% of all messages in the system are not

able to meet their latency QoS. The percentage of messages that miss their QoS is com-

parable for both FFDk and LFSk′+FFDk in most cases, while LFSk performs better with a

lower percentage of messages with QoS violations. Similarly in Figure 2.3f, we see that

the percentage of topics that miss their QoS is comparable for FFDk and LFSk′+FFDk in

most cases, while LFSk yields a lower percentage of topics with missed QoS in almost all

cases except for n = 70. It shows that up to 13% of the topics in the system miss their QoS

due to incorrect broker assignment, and we are able to meet the QoS requirements for 87%

38

of the topics in the system. As discussed in Section 4.3, our solutions can be used along

with a subscriber feedback mechanism to place the topics experiencing QoS violation on

another broker.

These results show that while LFSk heuristic performs better than FFDk and LFSk′+FFDk,

it has a prohibitively large running time. On the other hand, FFDk takes much less time to

compute the placement and performs comparably well with LFSk′+FFDk. Hence, by toler-

ating some degradation in performance, simpler heuristics such as FFDk can be employed

in favor of computationally more expensive heuristics like LFSk.

2.6.4 Performance of LFSk′+FFDk

(a) Average broker count (b) Average solution time (c) Average broker load

(d) Average 90th percentile latency (e) Average %messages (missed QoS) (f) Average %topics (missed QoS)

Figure 2.4: Performance of LFSk′+FFDk for varying k′

Finally, we study how the hybrid heuristic LFSk′+FFDk performs with varying value of

k′. As discussed earlier in Section 4.2.3, LFSk′+FFDk behaves as FFDk for k′ = 1 and as

LFSk for k′ = k. Figure 2.4 shows the results when k′ varies from 1 to 6. For each value

of k′, we present results averaged over the same 5 random placement requests for n = 50

topics.

39

As expected, for higher values of k′, LFSk′+FFDk finds a placement that uses fewer bro-

kers, as seen in Figure 2.4a. However, the time to find the solution also increases with k′ as

seen in Figure 2.4b. Average CPU utilization of the brokers does not show much variation

for different values of k′, as seen in Figure 2.4c. Average 90th percentile latency increases

for higher values of k′ as seen in Figure 2.4d, since the placement of topics produced is

more compact. Once again, the QoS requirement is not always met in the placement so-

lution produced by the hybrid heuristic. Up to 6% of the messages and up to 12% of the

topics experience QoS violations as seen in Figure 2.4e and Figure 2.4f.

2.7 Conclusion and Discussions

Many emerging IoT applications are latency critical in nature and require both real-time

data dissemination and information processing. The Publish/Subscribe (pub/sub) pattern

for many-to-many communications is often used to meet the scalable data dissemination

needs of IoT applications. With the emergence of edge computing that promotes processing

near the source of data, the pub/sub system has been extended to support processing at the

edge-based pub/sub brokers, making it the publish-process-subscribe pattern. It is in this

context that end-to-end quality of service (QoS) for data dissemination and processing

must be satisfied to realize the next generation of edge-based, performance-sensitive IoT

applications.

To provide desired latency QoS for data dissemination and processing, our solution

learns a latency prediction model for a set of co-located topics on an edge broker and uses

this model to place the topics in a latency-aware manner. Our solution makes the following

contributions: (a) a sensitivity analysis on the impact of different pub/sub features including

the number of subscribers, number of publishers, publishing rate, per-sample processing

interval and background load, on a topic’s 90th percentile latency; (b) a latency prediction

model for a topic’s 90th percentile latency, which was then used for the latency-aware

placement of topics on brokers; and (c) an optimization problem formulation for k-topic

40

co-location to minimize the number of brokers used while providing QoS guarantees.

The following lessons were learned from and insights into different dimensions of fu-

ture work were informed by this research:

• The accuracy of the k-topic co-location model has a significant impact on QoS sat-

isfaction and resource efficiency. More advanced machine learning methods for

learning the k-topic co-location model could be investigated. For higher values of k,

training over a larger search space is needed for good accuracy, but this will require

significant additional resources for model learning. Online methods for updating the

prediction model can also be explored, e.g., via reinforcement learning [86]. Transfer

learning [83] of the k-topic co-location models for different hardware architectures

on the basis of some learned models is another direction that can be explored.

• Currently, our load balancing decisions are made statically including the topic place-

ment decisions. Future work can therefore involve dynamic load balancing decisions

including elastic auto-scaling of the number of brokers used. Proactive provisioning

of resources can also be performed on the basis of workload forecasting. Finally,

network link state can also be incorporated.

The source code and experimental apparatus used in the research is made available in

open source at https://github.com/doc-vu/edgent.

41

https://github.com/doc-vu/edgent

Chapter 3

REACTIVE STREAM PROCESSING FOR DATA-CENTRIC PUBLISH/SUBSCRIBE

3.1 Introduction

The Internet of Things (IoT) is a significant expansion of the Internet to include physical

devices; thereby bridging the divide between the physical world and cyberspace. These de-

vices or “things” are uniquely identifiable, fitted with sensors and actuators, which enable

them to gather information about their environment and respond intelligently [87]. IoT has

helped realize critical applications, such as smart-grids, intelligent transportation systems,

advanced manufacturing, health-care tele-monitoring, etc. These applications share several

key cross-cutting aspects. First, they are often large-scale, distributed systems comprising

several, potentially mobile, publishers of information that produce large volumes of asyn-

chronous events. Second, the resulting unbounded asynchronous streams of data must be

combined with one-another and with historical data and analyzed in a responsive manner.

While doing so, the distributed set of resources and inherent parallelism in the system must

be effectively utilized. Third, the analyzed information must be transmitted downstream

to a heterogeneous set of subscribers. In essence, the emerging IIoT systems can be un-

derstood as a distributed asynchronous dataflow. The key challenge lies in developing a

dataflow-oriented programming model and a middleware technology that can address both

distribution and asynchronous processing requirements adequately.

The distribution aspects of dataflow-oriented systems can be handled sufficiently by

data-centric publish/subscribe (pub/sub) technologies [88], such as Object Management

Group (OMG)’s Data Distribution Service (DDS) [9]. DDS is an event-driven publish-

subscribe middleware that promotes asynchrony and loose-coupling between data publish-

ers and subscribers which are decoupled with respect to (1) time (i.e., they need not be

present at the same time), (2) space (i.e.,they may be located anywhere), (3) flow (i.e., data

42

publishers must offer equivalent or better quality-of-service (QoS) than required by data

subscribers), (4) behavior (i.e., business logic independent), (5) platforms, and (6) pro-

gramming languages. In fact, as specified by the Reactive Manifesto [89], event-driven

design is a pre-requisite for building systems that are reactive,i.e. readily responsive to

incoming data, user interaction events, failures and load variations- traits which are de-

sirable of critical IoT systems. Moreover, asynchronous event-based architectures unify

scaling up (e.g., via multiple cores) and scaling out (e.g., via distributed compute nodes)

while deferring the choice of the scalability mechanism at deployment-time without hid-

ing the network from the programming model. Hence, the asynchronous and event-driven

programming model offered by DDS makes it particularly well-suited for demanding IoT

systems.

However, the data processing aspects, which are local to the individual stages of a

distributed dataflow, are often not implemented as a dataflow due to lack of sufficient com-

posability and generality in the application programming interface (API) of the pub/sub

middleware. DDS offers various ways to receive data such as, listener callbacks for push-

based notification, read/take functions for polling, waitset and read-condition to receive

data from several entities at a time, and query-conditions to enable application-specific fil-

tering and demultiplexing. These primitives, however, are designed for data and meta-data

delivery 1 as opposed to processing. Further, the lack of proper abstractions forces pro-

grammers to develop event-driven applications using the observer pattern– disadvantages

of which are well documented [36].

A desirable programming model is one that provides a first-class abstraction for streams;

and one that is composable. Additionally, it should provide an exhaustive set of reusable co-

ordination primitives for reception, demultiplexing, multiplexing, merging, splitting, join-

ing two or more data streams. We go on to argue that a dataflow programming model that

provides the coordination primitives (combinators) implemented in functional program-

1Strictly, DDS API is designed for retrieving the state of an object rather than individual updates about an
object

43

ming style as opposed to an imperative programming style yields significantly improved

expressiveness, composability, reusability, and scalability. 2 A desirable solution should

enable an end-to-end dataflow model that unifies the local as well as the distribution as-

pects.

To that end we have focused on composable event processing inspired by Reactive Pro-

gramming [90] and blended it with data-centric pub/sub. Reactive programming languages

provide a dedicated abstraction for time-changing values called signals or behaviors. The

language runtime tracks changes to the values of signals/behaviors and propagates the

change through the application by re-evaluating dependent variables automatically. Hence,

the application can be visualized as a data-flow, wherein data and respectively changes

thereof implicitly flow through the application [91, 92]. Functional Reactive Programming

(FRP) [93] was originally developed in the context of pure functional language, Haskell.

and has since been implemented in other languages, for example, Scala.React (Scala) [36],

FlapJax (Javascript) [94], Frappe (Java) [95].

Composable event processing–a modern variant3 of FRP–is an emerging new way to

create scalable reactive applications [96], which are applicable in a number of domains in-

cluding HD video streaming [97] and UIs. It offers a declarative approach to event process-

ing wherein program specification amounts to “what” (i.e., declaration of intent) as opposed

to “how” (looping, explicit state management, etc.). State and control flow are hidden from

the programmers, which enables programs to be visualized as a data-flow. Furthermore,

functional style of programming elegantly supports composability of asynchronous event

streams. It tends to avoid shared mutable state at the application-level, which is instru-

mental for multicore scalability. Therefore, there is a compelling case to systematically

blend reactive programming paradigm with data-centric pub/sub mechanisms for realizing

emerging IoT applications.

2Microsoft Robotics Coordination and Concurrency Runtime (CCR) and Robot Operating System (ROS)
http://wiki.ros.org/

3without continuous time abstraction and denotation semantics

44

To demonstrate and evaluate our research ideas, we have combined concrete instances

of pub/sub technology and reactive programming. The data-centric pub/sub instance we

have used is OMG’s DDS, more specifically the DDS implementation provided by Real

Time Innovations Inc; while the reactive programming instance we have used is Microsoft’s

.NET Reactive Extensions (Rx.NET) [98]. We make the following contributions:

1. We show the strong correspondence between the distributed asynchronous dataflow

model of DDS and the local asynchronous dataflow model of Rx. We integrated the

two technologies in the Rx4DDS.NET open-source library. The remarkable overlap

between the two technologies allows us to substitute one for the other and overcome

the missing capabilities in both, such as the lack of a composable data processing

API in DDS and the lack of interprocess communication and back-pressure support

in .NET Rx; 4

2. We present the advantages of adopting functional style of programming for real-time

stream processing. Functional stream abstractions enable seamless composability of

operations and preserve the conceptual “shape” of the application in the actual code.

Furthermore, state management for sliding time-window, event synchronization and

concurrency management can be delegated to the run-time which is made possible

by the functional tenets, such as the immutable state.

3. We evaluate the Rx4DDS.NET library using a publicly available high-speed sensor

data processing challenge [101]. We present the ease and the effect of introducing

concurrency in our functional implementation of “queries” running over high-speed

streaming data. Our dataflow programming admits concurrency very easily and im-

proves performance (up to 35%).

4. Finally, we compare our functional implementation with our imperative implemen-

tation of the same queries in C#. We highlight the architectural differences and the

4 Reactive Streams project [99], RxJava [100] support backpressure

45

lessons learned with respect to “fitness for a purpose” of stream processing, state

management, and configurability of concurrency.

The remaining chapter is organized as follows: Section 3.2 compares our proposed

solution with prior efforts; Section 3.3 describes our reactive solution that integrates Rx

and DDS; Section 3.4 reports on both our qualitative and quantitative experience building

a reactive solution to solve a specific case study problem; and finally Section 3.5 provides

concluding remarks and lessons learned.

3.2 Related Work

A research roadmap towards applying reactive programming in distributed event-based

systems has been presented in [102]. In this work the authors highlight the key research

challenges in designing distributed reactive programming systems to deal with “data-in-

motion”. Our work on Rx4DDS.NET addresses the key open questions raised in this prior

work. In our case we are integrating Reactive Programming with DDS that enables us to

build a loosely coupled, highly scalable and distributed pub/sub system, for reactive stream

processing.

Nettle is a domain-specific language developed in Haskell, a purely-functional pro-

gramming language, to solve the low-level, complex and error-prone problems of network

control [103]. Nettle uses Functional Reactive Programming (FRP) including both the

discrete and continuous abstractions and has been applied in the context of OpenFlow soft-

ware defined networking switches. Although the use case of Nettle is quite different from

our work in Rx4DDS.NET, both approaches aim to demonstrate the integration of reactive

programming with an existing technology: we use DDS where as Nettle uses OpenFlow.

The ASEBA project demonstrates the use of reactive programming in the event-based

control of complex robots [104]. The key reason for using reactive programming was the

need for fast reactivity to events that arise at the level of physical devices. Authors of

the ASEBA work argue that a centralized controller for robots adds substantial delay and

46

presents a scalability issue. Consequently, they used reactive programming at the level of

sensors and actuators to process events as close to the source as possible

Our work on Rx4DDS.NET is orthogonal to the issues of where to place the reactive

programming logic. In our case such a logic is placed with every processing element, such

as the subscriber that receives the topic data.

Prior work on Eventlets [105] comes close to our work on Rx4DDS.NET. Eventlets

provides a container abstraction to encapsulate the complex event processing logic inside

a component so that a component-based service oriented architecture can be realized. The

key difference between Eventlets and Rx4DDS.NET is that the former applies to service

oriented architectures and component-based systems, while our work is used in the con-

text of publish/subscribe systems. Although this distinction is evident, there are ongoing

efforts to merge component abstractions with pub/sub systems such that we may be able to

leverage component abstractions in our future work.

Functional programming style (akin to Rx) has been used effectively in Spark Stream-

ing [106] in the context of Lambda Architecture (LA) [107] to write business logic just

once using functional combinator libraries and reuse that implementation for both real-

time and batch processing of data. In a typical LA, the batch layer maintains the master

data whereas the “speed layer” compensates for the high latency of the batch layer and also

trades accuracy for speed. Business queries represented using the functional style abstract

away the source of data (batch/streaming) and improve code reuse.

An ongoing project called Escalier [108] has very similar goals as our work. Escalier

provides a Scala language binding for DDS. The future goals of the Escalier project are

to provide a complete distributed reactive programming framework, however, we have not

yet found sufficient related publications nor are we able to determine from their github

site whether this project is actively maintained or not. Similarly, OpenDDS [109] and

OpenSplice [110] describe integration of DDS with Rx and other functional-style stream

processing technologies. However, to the best of our knowledge, our work includes the

47

most comprehensive comparison and evaluation of the two technologies together.

3.3 Design of the Rx4DDS.NET Library

We now describe our approach to realizing Rx4DDS.NET. To better understand our

solution, we first provide a brief overview of DDS and Rx. We then illustrate some draw-

backs of our imperative solution implemented only using DDS, which motivates the need

for Rx4DDS.NET.

3.3.1 Overview of OMG DDS Data-Centric Pub/Sub Middleware

OMG DDS is a data-centric middleware that understands the schema/structure of “data-

in-motion”. The schemas are explicit and support keyed data types much like a primary key

in a database. Keyed data types partition the global data-space into logical streams (i.e.,

instances) of data that have an observable lifecycle.

DDS DataWriters (belonging to the publisher) and DataReaders (belonging to the sub-

scriber) are endpoints used in DDS applications to write and read typed data messages

(DDS samples) from the global data space, respectively. DDS ensures that the endpoints

are compatible with respect to the topic name, data type, and the QoS policies.

3.3.2 Microsoft Reactive Extensions (Rx)

Microsoft Reactive Extensions (Rx) [98] is a library for composing asynchronous and

event-based programs. Using Rx, programmers represent asynchronous data streams with

Observables, query asynchronous data streams using a library of composable functional

Operators, and parameterize the concurrency in the asynchronous data streams using Sched-

ulers. Rx offers many built-in primitives for filtering, projecting, aggregating and compos-

ing multiple sources of events. Rx has been classified as a “cousin of reactive program-

ming” [90] since Rx does not provide a dedicated abstraction for time-changing values

which can be used in ordinary language expressions (i.e. automatic lifting of operators to

work on behaviors/signals); rather it provides a container (observable) and the programmer

48

needs to manually extract the values from this container and encode dependencies between

container values explicitly (i.e. manual lifting of operators).

3.3.3 Challenges in our Imperative Solution

We implemented the DEBS 2013 grand-challenge queries [101] in an imperative style

using DDS and C#. This experience highlighted a number of challenges with our imper-

ative solution which motivates our work on Rx4DDS.NET. We describe these challenges

below:

• Lack of built-in streaming constructs – We had to manually code the logic and

maintain relevant state information for merging, joining, multiplexing, de-multiplexing

and capturing data dependencies between multiple streams of data.

• Lack of a concurrency model to scale up event processing by employing multiple

cores – Since DDS utilizes a single dedicated thread for a DataReader to receive an

input event, there was a need to manually create threads or a thread pool to exploit

available cores for concurrent data processing.

• Lack of a reusable library for sliding time windows – A system for complex

event processing typically requires handling events based on different sliding time-

windows (e.g., last one hour or one week). A reusable library for sliding time-

windows which also operates with other streaming constructs is required. In our

imperative approach, we had to reinvent the solution every time it was needed.

• Lack of flexibility in component boundaries – In DDS, data-writers/readers are

used for publishing/subscribing intermediate results between processing stages. How-

ever, this approach incurs overhead due to serialization and de-serialization of DDS

samples across the data writer-reader boundary, even if event processing blocks are

deployed on the same machine. The use of data-writers/readers imposed a hard com-

ponent boundary and there was no way to overcome that transparently.

49

3.3.4 Rx4DDS.NET: Integrating Rx and DDS

To address the challenges with our imperative approach, we designed our reactive pro-

gramming solution that integrates .NET Reactive Extensions (Rx) framework with DDS.

This solution is made available as a reusable library called Rx4DDS.NET. We describe our

design by illustrating the points of synergy between the two.

In Rx, asynchronous data streams are represented using Observables. For example, an

IObservable<T> produces values of type T. Observers subscribe to data streams much

like the Subject-Observer pattern. Each Observer is notified whenever a stream has a new

data using the observer’s OnNext method. If the stream completes or has an error, the

OnCompleted, and OnError operations are called, respectively. IObservable<T>

supports chaining of functional operators to create pipelines of data processing operators

(a.k.a. combinators).

Some common examples of operators in Rx are Select, Where, SelectMany,

Aggregate, Zip, etc. Since Rx has first-class support for streams, Observables can be

passed and returned to/from functions. Additionally, Rx supports streams of streams where

every object produced by an Observable is another Observable (e.g.,IObservable<IOb-

servable<T�). Some Rx operators, such as GroupBy, demultiplex a single stream of

T into a stream of keyed streams producing IObservable<IGroupedObservable<

Key,T�. The keyed streams (IGroupedObservable<Key,T>) correspond di-

rectly with DDS instances as described next.

In DDS, a topic is a logical data stream in the global data-space. DataReaders receive

notifications when an update is available on a topic. Therefore, a topic of type T maps

to Rx’s IObservable<T>. DDS supports a key field in a data type that represents a

unique identifier for data streams defined in a topic. A data stream identified by a key is

called instance. If a DataReader uses a keyed data type, DDS distinguishes each key in

the data as a separate instance. An instance can be thought of as a continuously changing

row in a database table. DDS provides APIs to detect instance lifecycle events including

50

Table 3.1: Mapping of DDS concepts to Rx concepts

DDS Concept Corresponding Rx Concept and the Rx4DDS.NET API
Topic of type T An IObservable<T> created using DDSObservable.fromTopic<T>(...). Produces a

hot observable. Internally creates a DataReader<T>.
Topic of type T with key-type=Key An IObservable<IGroupedObservable<Key,T� created using

DDSObservable.fromKeyedTopic<Key, T>(keySelector) where keySelector
maps T to Key. Internally uses a DataReader<T>. Produces a hot observable.

A new instance in a topic of type T An IGroupedObservable<Key,T> with Key==instance’s key. Notified using
IObserver<IGroupedObservable<Key,T�.OnNext(IGroupedObservable<Key,T�)

Disposal an instance (graceful) Notified using IObserver<IGroupedObservable<Key,T�.OnCompleted()
Dispose an instance (not alive, no writers) Notified using IObserver<IGroupedObservable<Key,T�.OnError(err)
DataReader<T>.take() Push new values of T using IObserver<T>.OnNext(T). The fromTopic<T>() and

fromKeyedTopic<Key,T>() factories produce hot observables.
DataReader<T>.read() Push potentially repeated values of T using IObserver<T>.OnNext(T). The

readFromDataReader<T>() and readFromDataReader<Key,T>() factories produce
cold observables.

A transient local DataReader<T> with his-
tory = N

IObservable<T>.Replay(N) which caches the last N samples.

Hard error on a DataReader Notified using Observer.OnError(err)
Entity status conditions (e.g., deadline
missed, sample lost etc.)

Separate IObservable<T> streams per entity where T is communication status types.
For example, IObservable<DDS::SampleLostStatus>.

Built-in discovery topics Keyed observables for each built-in topic. For ex-
ample, IObservable<IGroupedObservable¡Key, T� where
T=Subscription/Publication/Participant BuiltInTopicData and Key=BuiltinTopicKey.

Read Conditions (parameterizes sample
state, view state, and instance state)

IObservable<T>.Where() for filtering on sample state; New
IGroupedObservable<Key,T> instance for new view state; and
IObserver<IGroupedObservable<Key,T�.OnCompleted() for disposed instance
state.

Query Conditions IObservable<T>.Where() for content-based filtering.
SELECT * in content-based filter topic
(CFT) expression

IObservable<T>.Select(elementSelector) where elementSelector maps T to *

FROM “Topic” in CFT expression DDSObservable.FromTopic<T>(“Topic”) or DDSObservable.FromKeyedTopic<Key,
T>(“Topic”) if keyed

WHERE in CFT expression IObservable<T>.Where(...)
ORDER BY in CFT expression IObservable<T>.OrderBy(...)
MultiTopic (INNER JOIN) IObservable<T>.selectMany(nestedSelector) where nestedSelector maps T to and

IObservable<U>. Other alternatives are Join, CombineLatest, and Zip
Time-based filter IObservable<T>.Sample(...)

Create, Read, Update, and Delete (CRUD). Since each instance is a logical stream by

itself, a keyed topic can be viewed as a stream of keyed streams thereby mapping to Rx’s

IObservable<IGroupedObservable<Key,T�.

Thus, when our Rx4DDS.NET library detects a new key, it reacts by producing a new

IGroupedObservable<Key,T> with a new key. Subsequently, Rx operations can

be composed on the newly created IGroupedObservable<Key, T> for instance-

specific processing. As a result, pipelining and data partitioning can be implemented very

elegantly using our integrated solution.

Table 3.1 summarizes how various DDS concepts map naturally to a small number of

51

Rx concepts. DDS provides various events to keep track of communication status, such as

deadlines missed and samples lost between DataReaders and DataWriters. For discovery of

DDS entities, the DDS middleware uses special types of DDS entities to exchange discov-

ery events with remote peers using predefined built-in topics. As introduced in the table,

discovery events using built-in topics and communication status events can be received and

processed by Rx4DDS.NET API, but they are currently not implemented in our library and

forms part of our ongoing improvements to the library.

Due to the similarity in the dataflow models, Rx and DDS are quite interchangeable.

Table 3.1 forms the basis of our integration and the Rx4DDS.NET library. The contract

between any two consecutive stages composed with Rx Observables is based on only two

notions: (1) the static type of the data flowing across and (2) and the pair of IObservable

and IObserver interfaces that represents the lifecycle of a data stream. These notions

can be mapped directly to DDS in the form of strongly typed topics and the notion of

instance lifecycle. No more (or less) information is required for a successful mapping as

long as default QoS are used in DDS. The converse is also true, however, only a subset

of QoS attributes can be mapped to Rx operators as of this writing. For example, DDS

time-based filters can be mapped to Rx’s Sample operator; Durability QoS with history

maps to the Replay operator.

3.4 Evaluating Rx4DDS.NET Based Solution

This section reports on our qualitative and quantitative experience in evaluating our

Rx4DDS.NET based solution. For the evaluations we have used a case study, which we

also describe briefly.

3.4.1 Case Study: DEBS 2013 Grand Challenge Problem

The ACM International Conference on Distributed Event-based Systems (DEBS) 2013

Grand Challenge problem comprises real-life data from a soccer game and queries in event-

52

based systems [101]. Although the data is recorded in a file for processing, this scenario

reflects IoT use cases where streamed data must be processed at runtime and not as a batch

job.

The sensors are located near each player’s cleats, in the ball, and attached to each goal

keeper’s hands. The sensors attached to the players generate data at 200Hz while the ball

sensor outputs data at 2,000Hz. Each data sample contains the sensor ID, a timestamp in

picoseconds, and three-dimensional coordinates of location, velocity, and acceleration. The

challenge problem consists of four distinct queries that must be executed on the incoming

streams of data. Figure 3.1 shows the high-level view of the four query components and

the flow of data between them. For brevity we only describe queries 1 and 3 for which we

also present experimental results later.

Query 1: The goal of query 1 is to calculate the running statistics for each player.

Two sets of results – current running statistics and aggregate running statistics must be

returned. Current running statistics should return the distance, speed and running intensity

of a player, where running intensity is classified into six states (stop, trot, low, medium,

high and sprint) based on the current speed. Aggregate running statistics for each player

are calculated from the current running statistics and must be reported for four different

time windows: 1 minute, 5 minutes, 20 minutes and entire game duration.

Query 3: Query 3 requires heat map statistics capturing how long each player stays

in various pre-defined regions of the field. The soccer field is divided into four grids with

x rows and y columns (8x13, 16x25, 32x50, 64x100) and results should be generated for

each grid type. Moreover, distinct calculations are required for different time windows. As

a result, query 3 must output 16 result streams (a combination of 4 different grid sizes and

4 time windows).

53

Query 3

Query 4

Query 2

Query 1

Sensor Data
Generator

Average
Processor

Current
Running Analyzer

Aggregate Running
Analyzer

Player Sensors
(200Hz)

Ball Sensors
(2000Hz)

Players
(50Hz)

Players
(50Hz)

Players
(50Hz)

Player Ball Possession
Processor

Team Ball Possession
Processor

Ball
(50Hz)

Accumulating
Heat Map Processor

Heat Map ProcessorPlayers
(1Hz)

Players
(50Hz)

Shot On Goal
Processor

Players
(when possession updated)

Ball In Field
Processor

Players and Ball
(50Hz)

Ball
(50Hz)

Client

Current 1 min 5 min 20 min Whole

1 min 5 min 20 min WholeCurrent

16 streams
(4 time windows * 4 grid sizes)

Current

Players
(when a hit occurs)

Figure 3.1: High Level Data Flow Architecture of DEBS 2013 Grand Challenge

3.4.2 Qualitative Evaluation of the Rx4DDS.NET Solution

We now evaluate our Rx4DDS.NET based solution along the dimensions of challenges

expounded in Section 3.3.3 and compare it qualitatively with our imperative solution for

the case study.

3.4.2.1 Automatic State Management

Recall that the imperative approach requires additional logic to maintain state and de-

pendencies. For example, in the case study, to calculate average sensor data for a player

from the sensor readings, we had to cache the sensor data for each sensor id as it arrives

in a map of sensor id to sensor data. If the current data is for sensor id 13, then the corre-

sponding player name is extracted and a list of other sensors also attached to this player is

retrieved. Subsequently using the retrieved sensor ids as keys, the sensor data is retrieved

from the map and used to compute the average player data.

In the functional style, there is no need to store the sensor values. We can obtain the

latest sample for each sensor attached to the player with the CombineLatest function

and then calculate the average sensor values. CombineLatest stream operator can be

used to synchronize multiple streams into one by combining a new value observed on a

stream with the latest values on other streams.

54

In Listing 3.1, sensorStreamList is a list that contains references to each sensor stream

associated with sensors attached to a player. For example, for player Nick Gertje with at-

tached sensor ids (13, 14, 97, and 98), sensorStreamList for Nick Gertje holds references

to sensor streams for sensors (13, 14, 97 and 98). Doing a CombineLatest on sen-

sorStreamList returns a list (lst in Listing 3.1) of latest sensor data for each sensor attached

to this player. returnPlayerData function is then used to obtain the average sensor values.

The Marble diagram5 for CombineLatest is shown in Figure 3.2.

Listing 3.1: CombineLatest Operator Example Code

L i s t <I O b s e r v a b l e<SensorData>> s e n s o r S t r e a m L i s t =

new L i s t <I O b s e r v a b l e<SensorData >>();

O b s e r v a b l e

. CombineLa te s t (s e n s o r S t r e a m L i s t)

. S e l e c t (l s t => r e t u r n P l a y e r D a t a (l s t)) ;

As another example of automatic state management, in query 1 the current running

statistics need to be computed from average sensor data for each player (PlayerData). The

distance traveled and average speed of a player (observed in the interval between the ar-

rivals of two consecutive PlayerData samples) is calculated. Since our computation de-

pends on the previous and current data samples, we can make use of the built-in Scan

function and avoid maintaining previous state information manually. Scan is a runtime

accumulator that will return the result of the accumulator function (optionally taking in a

seed value) for each new value of source sequence. Figure 3.3 shows the marble diagram

of the Scan operator. In the imperative approach, we employed the middleware cache to

maintain previous state.

5Marble diagrams are a way to express and visualize how the operators in Rx work. For details see
http://rxwiki.wikidot.com/marble-diagrams.

55

http://rxwiki.wikidot.com/marble-diagrams

1 2

1 2

1 2

1

1

1

1

1

1

2

1

1

2

2

1

1

2

2

2

1

sensor_id = 98

sensor_id = 97

sensor_id = 14

sensor_id = 13

average
sensor data

player_name = Nick Gertje

Figure 3.2: Marble Diagram of CombineLatest Operator

3.4.2.2 Concurrency Model to Scale-Up Multi-Core Event Processing

Rx provides abstractions that make concurrency management declarative, thereby re-

moving the need to make explicit calls to create threads or thread pools. Rx has a free

threading model such that developers can choose to subscribe to a stream, receive notifica-

tions and process data on different threads of control with a simple call to subscribeOn

or ObserveOn, respectively. Delegating the management of shared state to stream op-

erators also makes the code more easily parallelizable. Implementing the same logic in

the imperative approach incurred greater complexity and the code was more verbose with

explicit calls for creating and managing the thread pools.

In Query 1, the current running statistics and aggregate running statistics get com-

puted for each player independently of the other players. Thus, we can use a pool of

threads to perform the necessary computation on a per-player stream basis. In Listing 3.2,

56

1 2 3 4
player_id =
Nick Gertje

b c d
Scan

(Distance and
Avg. Speed of
Nick Gertje)

a

Figure 3.3: Marble Diagram of Scan Operator

player streams represents a stream of all player streams i.e., an IObservable<IGroupedO-

bservable<String,PlayerData>>. Each player stream, which is an IGroupedObservable<

String,PlayerData> keyed on player’s name, is then processed further on a separate thread

by using ObserveOn.

Listing 3.2: Concurrent Event Processing with Multi-threading

p l a y e r s t r e a m s . s e l e c t M a n y (p l a y e r s t r e a m =>

{

r e t u r n p l a y e r s t r e a m

. ObserveOn (S c h e d u l e r . D e f a u l t)

. C u r r e n t R u n n i n g A n a l y s i s () ;

}) . S u b s c r i b e () ;

3.4.2.3 Library for Computations based on Time-Windows

One of the recurrent patterns in stream processing is to calculate statistics over a mov-

ing time window. All four queries in the case study require this support for publishing

aggregate statistics collected over different time windows. In the imperative approach we

had to reimplement the necessary functionality and manually maintain pertinent previous

state information for the same because DDS does not support a time-based cache which

can cache samples observed over a time-window.

Rx provides the “window abstraction” which is most commonly needed by stream pro-

57

cessing applications, and it supports both discrete (i.e., based on number of samples) and

time-based windows. Figure 3.4 depicts aggregation performed over a moving time win-

dow.

Current Running Analysis
Nick Gertje

cb da e

abcab bcda cde
Aggregate Running Analysis

Nick Gertje

Figure 3.4: Marble Diagram of Time-window Aggregator

3.4.2.4 Flexible Component Boundaries

Interchangeability of Rx and DDS provides incredible flexibility to the developer in

demarcating their component boundaries or points of data distribution. In fact, the points

of distribution can be chosen at deployment-time. The imperative solution often does not

possess a composable dataflow-oriented structure. Hence, more often than not, developers

tend to over-commit to various interprocess communication mechanisms by hard-coding

the dependency and eliminating the choice of an alternative mechanism. If scale-out or

placement of these components on different machines is required, then this design is desir-

able, otherwise overcommitment to a specific distribution mechanism isolates the compo-

nents and imposes “hard” component boundaries. The resulting structure is very rigid and

hard to co-locate efficiently. For example, each query processor in our imperative solution

is a component. Moving the functionality of one into another is intrusive and cannot be

easily accomplished.

In Rx4DDS.NET, a stream of intermediate results can either be distributed over a DDS

topic for remote processing or can be used for local processing by chaining stream oper-

ators. The details of whether the “downstream” processing happens locally or remotely

can be abstracted away using the Dependency Injection pattern [111]. As a consequence,

58

component boundaries become more agile and the decision of data distribution need not be

taken at design time but can be deferred until deployment.

In our implementation, developers may choose to distribute data over DDS by simply

passing a DDS DataWriter to the Subscribe method. Alternatively, for local processing,

a Subject<T> could be used in place of DDS DataWriter. The choice of a Subject

versus a DataWriter is configurable at deployment-time.

Table 3.2 summarizes the key distinctions between our imperative and Rx4DDS.NET

based solution for the case-study along each dimension of the challenges.

Table 3.2: Comparison of Our Imperative and Reactive Solutions

Imperative Solution Reactive Solution
State Management Manual state management State-management can be delegated to stream

operators
Concurrency
Management

Explicit management of low level concurrency Declarative management of concurrency

Sliding Time-window
Computation

Manual implementation of time window ab-
straction

Built-in support for both discrete and time-
based window

Component
Boundaries

Inflexible and hard component boundaries Flexible and more agile component boundaries

3.4.2.5 Program Structure

The composability of operators in Rx allows us to write programs that preserve the

conceptual high-level view of the application logic and data-flow. For example, Query 1

computes the AggregateRunningData for each player for 1 minute, 5 minutes, 20 minutes

and full game duration, as shown in Listing 3.3.

In Listing 3.3, player streams is a stream of streams (e.g. IObservable<IGroupedObser-

vable<String,PlayerData� comprises a stream for each player). Each player stream, rep-

resented by the variable player stream is processed on a separate pooled thread by means

of a single code statement, ObserveOn(ThreadPoolScheduler.Instance). The CurrentRu-

nningData for each player (curr running stream in Listing 3.3) is computed by the function

CurrentRunningAnalysis() and is subsequently used by AggregateRunning*() to compute

the AggregateRunningData for each player for 1 minute, 5 minutes, 20 minutes and full

59

game durations, respectively. The use of Publish() and Connect() pair ensures that a single

underlying subscription to curr running stream is shared by all subsequent AggregateRun-

ning*() computations otherwise the same CurrentRunningData will get re-computed for

each downstream AggregateRunning*() processing pipeline.

Listing 3.3: Program Structure of Query 1

p l a y e r s t r e a m s . S u b s c r i b e (p l a y e r s t r e a m =>

{

v a r c u r r r u n n i n g =

p l a y e r s t r e a m

. ObserveOn (T h r e a d P o o l S c h e d u l e r . I n s t a n c e)

. C u r r e n t R u n n i n g A n a l y s i s ()

. P u b l i s h () ;

c u r r r u n n i n g . AggregateRunningTimeSpan (1) ;

c u r r r u n n i n g . AggregateRunningTimeSpan (5) ;

c u r r r u n n i n g . AggregateRunningTimeSpan (2 0) ;

c u r r r u n n i n g . Aggrega teRunningFul lGame () ;

c u r r r u n n i n g . Connect () ;

}

3.4.2.6 Backpressure

Integration of Rx with DDS allows us to leverage DDS QoS configurations and Real

Time Publish Subscribe (RTPS) protocol to implement backpressure across the data reader-

writer boundary. DDS offers a variety of QoS policies like Reliability, History and Re-

source Limits QoS policies that can be tuned to implement the desired backpressure strat-

egy. Reliability QoS governs the reliability of data delivery between DataWriters and

DataReaders. It can be set to either BEST EFFORT or RELIABLE reliability. BEST EFF-

ORT configuration does not use any cpu/memory resources to ensure guaranteeded delivery

60

of data samples. RELIABLE configuration, on the other hand, uses ack/nack based proto-

col to provide a spectrum of reliability guarantees from strict to best-effort. Reliability can

be configured with History QoS, which specifies how many data samples must be stored

by the DDS middleware cache for the DataReader/DataWriter subject to Resource Limits

QoS settings. It controls whether DDS should deliver only the most recent value (i.e., his-

tory depth=1), attempt to deliver all intermediate values (i.e., history depth=unlimited), or

anything in between. Resource Limits QoS controls the amount of physical memory allo-

cated for middleware entities. If BEST EFFORT QoS setting is used, the DataWriter will

drop the samples when the writer side queue (queue size determined by History and Re-

source Limits QoS) becomes full. We can use this strategy to cope with a slow subscriber

or bursty input data rates if the application semantics support transient loss of data. On the

other hand, if we use RELIABLE configuration, backpressure can be supported across the

data reader-writer boundary. If the DataReader is not fast enough, it will start buffering

the incoming samples upto a pre-configured limit (including unlimited, as configured using

History and Resource Limits QoS) before throttling down the DataWriter in accordance

with the reliability protocol semantics. However, this backpressure is only limited to work

across two DDS entities. Local processing stages implemented in Rx .NET do not sup-

port backpressure. Hence, if operators with unbounded buffer sizes (e.g., ObserveOn, Zip)

are used then we may observe an unbounded increase in queue lengths, arbitrarily large

response times or out-of-memory exceptions.

Unlike Rx NET., the Reactive-Streams specification [99] implements a dynamic push-

pull model for implementing backpressure between local processing stages. Their model

can shift dynamically from being push-based (when the consumer can keep up with incom-

ing data rate) to a pull-based model if the consumer is getting overwhelmed. The consumer

specifies its “demand” using a backpressure channel to throttle the source. The producer

can also use the “demand” specifications of downstream operators to perform intelligent

load-distribution. In the future, we plan to integrate the Reactive-Streams specification

61

with DDS for end-to-end backpressure semantics.

3.4.3 Quantitative Evaluation of Rx4DDS.NET

To assess and compare the performance of Rx4DDS.NET library with that of the im-

perative approach, we implemented the DEBS 2013 Grand Challenge queries in an im-

perative style using C# so that both implementations used C#. Specifically, we compare

the performance of our imperative and Rx4DDS.NET solutions under single threaded and

multi-threaded query implementations. All the tests have been performed on a host with

two 6-core AMD Opteron 4170 HE, 2.1 GHz processors and 32 GB RAM. The raw sensor

stream was published by a DDS publisher by reading out the sensor data file in a separate

process, while the queries were executed in another process by subscribing to the raw sen-

sor stream published over DDS. Interprocess communication happens over shared-memory.

Table 3.3: Performance Comparison of Rx4DDS.NET over Imperative Solution

Rx Scheduler over Impera-
tive Strategy

query 1
%through-
put differ-
ence

query 1
Std.
Dev.

query 3
%through-
put differ-
ence

query 3
Std.
Dev.

query 1 3
%through-
put differ-
ence

query 1 3
Std.
Dev

Rx single-thread over Imper-
ative single-thread

-9.26 6.29 -4.3 7.3 1.19 5.67

Rx NewThread scheduler
over Imperative NewThread-
PlayerData Strategy

-6.7 4.44 -8.61 2.9 -3.75 3.28

Rx ThreadPool scheduler
over Imperative ThreadPool-
SensorData Strategy

-8.73 6.55 -5.47 4.56 -5.3 6.05

Rx Partitioner Eventloop
over Imperative NewThread-
SensorData Strategy

-13.87 7.04 -15.93 6.43 -10.87 3.67

We implemented the following strategies in the imperative solution for parallelizing

query execution along the lines of available Rx schedulers: SeparateThread, Thread

Pool-SensorData, ThreadPool-PlayerData, NewThread-SensorData and

NewThread-PlayerData. In the SeparateThread strategy, SensorData is re-

ceived on one thread while the entire query execution is offloaded to a separate thread (all

player streams are processed on this separate thread). The ThreadPool-SensorData

62

strategy offloads the received SensorData on a threadpool such that each player’s Play-

erData calculation and subsequent player-specific processing happens on the thread-

pool. In the ThreadPool-PlayerData strategy, the PlayerData is calculated from

SensorData on the thread that receives SensorData from DDS; thereafter the cal-

culated PlayerData is offloaded to a threadpool for further player specific processing.

The NewThread-SensorData strategy creates a designated thread for processing each

player’s data. The received SensorData is dispatched to its specific player thread, which

computes that player’s PlayerData and processes it further. The NewThread-Playe-

rData strategy also creates a separate thread for processing each player’s data. However,

the PlayerData is calculated from SensorData on the thread that receives data from

DDS, which is then dispatched to the player-specific thread for further processing.

Figure 3.5 presents the performance of different imperative strategies over single-thread-

ed implementations of query 1, query 3 and query 1 3 (runs both queries 1 and 3 to-

gether). Each query was run ten times and the error bars in the graphs denote one standard-

deviation of values. For query 1, the average throughput gains per strategy over the single

threaded implementation of query 1 are, respectively, 29% for the SeparateThread

strategy, 35% for the ThreadPoolSensorData strategy, 23% for the ThreadPool-

PlayerData strategy, 32% for the NewThread-SensorData strategy and 24% for

the NewThread-PlayerData strategy. For query 3, the SeparateThread strat-

egy shows an average of 40%, the ThreadPool-SensorData strategy shows an av-

erage of 12%, the ThreadPool-PlayerData strategy shows an average of 3%, the

NewThread-SensorData shows an average of 15% and the NewThread-PlayerD-

ata strategy shows an average of 7% higher throughput than single-threaded implemen-

tation of query 3. For query 1 3, the SeparateThread strategy shows an aver-

age of 34%, the ThreadPool-SensorData strategy shows an average of 45%, the

ThreadPool-PlayerData strategy shows an average of 42%, the NewThread-Sen-

sorData strategy shows an average of 47% and the NewThread-PlayerData strat-

63

egy shows an average of 39% higher throughput than single-threaded implementation of

query 1 3.

0

10

20

30

40

50

separatethread threadpool SensorData threadpool PlayerData newThread SensorData newThread PlayerData

% throughput higher/lower than single thread strategy

-20

0

20

40

60

separatethread threadpool SensorData threadpool PlayerData newThread SensorData newThread PlayerData

% throughput higher/lower than single thread strategy

0

20

40

60

separatethread threadpool SensorData threadpool PlayerData newThread SensorData newThread PlayerData

% throughput higher/lower than single thread strategy

Query_1

Query_3

Query_1_3

Figure 3.5: Performance of Imperative Strategies over Single Threaded implementation

To evaluate multi-threaded query implementations in our Rx4DDS.NET solution, we

made use of the built-in Rx schedulers as shown in Listing 3.3. ObserveOn in List-

ing 3.3 causes each player stream(player stream)’s data to get offloaded on the spec-

ified scheduler and all downstream processing of that player’s PlayerData takes place

on the specified scheduler passed to ObserveOn. Hence, in this case PlayerData gets

calculated on the thread which receives data from DDS, but subsequent processing is of-

floaded to the specified ObserveOn scheduler. Rx offers many built-in schedulers such as

the EventLoopScheduler, NewThreadScheduler, ThreadPoolScheduler,

TaskPoolScheduler, etc. for parameterizing the concurrency of the application. Eve-

ntLoopScheduler provides a dedicated thread which processes scheduled tasks in a

64

FIFO fashion; NewThreadScheduler processes each scheduled task on a new thread;

ThreadPoolScheduler processes the scheduled tasks on the default threadpool while

TaskPoolScheduler processes scheduled tasks on the default taskpool. Apart from

using ObserveOn to process each player’s PlayerData using a different scheduler, we

also tested a variant test-case named Partitioner EventLoop, wherein the incoming

SensorData is de-multiplexed and offloaded onto a player-specific EventLoop (each

player has its own EventLoop) which will first calculate PlayerData and then per-

form further processing. This is similar to imperative NewThreadSensorData strat-

egy, wherein each player thread is also responsible for calculating PlayerData from

received SensorData.

Figure 3.6 presents the performance of different Rx schedulers over single-threaded im-

plementations of query 1, query 3 and query 1 3. For query 1, EventLoopSch-

eduler shows an average of 3%, NewThreadScheduler shows an average of 27%,

ThreadPoolScheduler shows an average of 23%, TaskPoolScheduler shows an

average of 25% and Partitioner EventLoop shows an average of 25% increase in

throughput over single threaded implementation. For query 3, EventLoopScheduler

shows an average of 20% lower performance, while NewThreadScheduler shows an

average of 3%, ThreadPoolScheduler shows an average of 2%, TaskPoolSchedu-

ler shows an average of .04% and Partitioner EventLoop shows an average

of 1% increase in performance over single threaded implementation. For query 1 3,

EventLoopScheduler shows an average of 12%, NewThreadScheduler shows an

average of 32%, ThreadPoolScheduler shows an average of 33%, TaskPoolSche-

duler shows an average of 30% and Partitioner EventLoop shows an average of

30% increase in performance over single threaded solution.

Query 1 processes each player’s aggregate running data for all four time-windows,

i.e. 1 min, 5 mins, 20 mins and full-game duration, which is updated for each input

PlayerData sample. Query 1 shows inherent parallelism wherein each player’s data

65

-10

0

10

20

30

40

eventLoop newThread threadpool taskpool partitioner eventloop

% throughput higher/lower than single threaded solution

-30

-20

-10

0

10

20

eventLoop newThread threadpool taskpool partitioner eventloop

% throughput higher/lower than sinlge threaded solution

0

10

20

30

40

50

eventLoop newThread threadpool taskpool partitioner eventloop

% throughput higher/lower than single thread solution

Query_1

Query_3

Query_1_3

Figure 3.6: Performance of Different Rx schedulers over Single Threaded implementation

can be processed independently of each other in parallel. The multi-threaded implemen-

tation of query 1 shows an increased performance with a maximum performance gain

of 35% over single threaded implementation. Query 3, wherein each player’s heatmap

is calculated for all four time-windows(1min, 5mins, 10mins and full-game duration), also

shows inherent parallelism in that each player’s heatmap information can be calculated in-

dependently. However, query 3 is only required to furnish an update after every 1 second

(based on sensor timestamps) unlike query 1 which furnishes an update for each input

sample. Hence in case of query 3 we find that introducing parallelism imposes a greater

overhead without significant performance gain. Figure 3.7 presents the difference in input

and output data-rates for query 1 and query 3 in our Rx4DDS.NET based implemen-

tation parameterized with ThreadPoolScheduler.

Table 3.3 compares the difference in the performance of Rx schedulers over its corre-

66

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sa
m

p
le

s/
Se

c

player_id

Query_3 (ThreadPoolScheduler)

o/p rate i/p rate

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sa
m

p
le

s/
se

c

player_id

Query_1 (ThreadPoolScheduler)

o/p rate i/p rate

Figure 3.7: Input Vs Output data rate for Rx4DDS.NET implementation of Query 1 and Query 3 with ThreadPoolScheduler

sponding imperative solution strategy. While it is expected that the Rx library will impose

some overhead, it offers several advantages due to its declarative approach towards system

development, improved expressiveness and composability. Since Rx provides abstractions

which make concurrency management declarative, testing different concurrency options

for an application requires negligible effort. By changing a few lines of code we can test

whether introducing parallelism provides increased performance gain (e.g., query 1) which

is worth the added overhead or degrades it due to greater overhead (e.g., query 3). In

contrast, gaining such insights by testing different implementation alternatives in the im-

perative approach was more complex, requiring a fair amount of changes in the code.

67

3.5 Conclusions

Reactive programming is increasingly becoming important in the context of real-time

stream processing for big data analytics. While reactive programming supports event-

driven design, most of the generated data must be disseminated from a large variety of

sources (i.e., publishers) to numerous interested entities, called subscribers while maintain-

ing anonymity between them. These properties are provided by pub/sub solutions, such

as the OMG DDS, which is particularly suited towards performance-sensitive applications.

Bringing these two technologies together helps solve both the scale-out problem (i.e., by

using DDS) and scale-up using available multiple cores on a single machine (i.e., using

reactive programming).

This chapter described a concrete realization of blending the Rx .NET reactive pro-

gramming framework with OMG DDS, which resulted in the Rx4DDS.NET library. Our

solution was evaluated and compared against an imperative solution we developed using

DDS and C# in the context of the DEBS 2013 grand challenge problem. The following

lessons were learned, which allude to future directions of research:

• The integration of Rx with DDS as done in the Rx4DDS.NET library unifies the

local and distributed stream processing aspects under a common dataflow program-

ming model. It allows highly composable and expressive programs that achieve data

distribution using DDS and data processing using Rx with a seamless end-to-end

dataflow architecture that is closely reflected in the code.

• Our quantitative results indicate that Rx parameterizes concurrency and avoids ap-

plication level shared mutable state that makes multi-core scalability substantially

easier. We showed increase (up to 35%) in performance of Query 1 by simply

configuring the schedulers in Rx.

• Rx4DDS.NET library can be enhanced to map all available DDS features with Rx.

Most commonly used stream processing constructs can be identified and made part

68

of this reusable library.

The Rx4DDS.Net framework and the implementation of the case study queries are

available for download from https://github.com/rticommunity/rticonnextdds-reactive.

69

https://github.com/rticommunity/rticonnextdds-reactive

Chapter 4

LINEARIZE, PREDICT AND PLACE: MINIMIZING THE MAKESPAN FOR EDGE-BASED

STREAM PROCESSING OF DIRECTED ACYCLIC GRAPHS

4.1 Introduction

The Internet of Things (IoT) paradigm has enabled a large number of physical devices

or “things” equipped with sensors and actuators to connect over the Internet to exchange

information. IoT applications typically involve continuous processing of data streams pro-

duced by these devices for the control and actuation of intelligent systems. In most cases,

such processing needs to happen in near real-time to gain insights and detect patterns of

interest. For example, in smart grids, energy usage data from millions of smart meters

is continuously assimilated to identify critical events, such as demand-supply mismatch,

so that corrective action can be taken to maintain grid stability [112]. Similarly, in video

surveillance systems, video streams are continuously analyzed to detect traffic violations,

such as jay walking and collisions [113].

Distributed Stream Processing Systems (DSPS) are used for scalable and continuous

processing of data streams, such as sensor data streams produced by IoT applications [10].

In DSPS, an application is structured as a Directed Acyclic Graph (DAG), where vertices

represent operators that process incoming data and directed edges represent the flow of

data between operators. The operators perform user-defined computations on the incoming

stream(s) of data. Storm [11], Spark [114], Flink [13], Millwheel [14], etc. are examples

of widely used DSPSs. These systems have, however, been designed for resource-rich,

cloud/cluster environments, where a master node distributes both data and computation

over a cluster of worker nodes for large-scale processing (e.g., as in Storm). Using such

cloud-centric solutions for IoT applications will require transferring huge amounts of sen-

sor data produced by devices at the network edge to data-centers located at the core of

70

the network [15]. However, moving data over a bandwidth-constrained backhaul network

incurs high latency cost, which makes such cloud-centric solutions infeasible for latency-

sensitive IoT applications.

To address this concern, the edge computing paradigm has been proposed [19] to en-

able computations to execute near the source of data on low-cost edge devices and small-

scale data-centers called cloudlets [20]. Edge-based stream processing systems, such as

Frontier [115], Amazon Greengrass [116], Microsoft Azure IoT [117] and Apache Ed-

gent [118], support data stream processing on multiple edge devices thereby reducing the

need for costly data transfers. However, to meet the low response time requirements of

latency-sensitive applications, it is also important to distribute the constituent operators of

the DSPS over resource-constrained edge devices intelligently. An optimal placement ap-

proach should minimize the end-to-end response time or makespan of a stream processing

DAG while trading-off communication costs incurred due to distributed placement of op-

erators across edge devices, and interference costs incurred due to co-location of operators

on the same edge device [37].

The above-mentioned edge-based stream processing platforms, however, provide only

the mechanisms for IoT stream processing but not the solution for optimal operator place-

ment. As such, framework-specific solutions for operator placement [38, 39, 40] are not di-

rectly applicable for edge-based stream processing. Likewise, existing framework-agnostic

solutions [41, 42, 43, 37, 44] for operator placement make simplifying assumptions about

the interference costs of co-located operators. These solutions do not consider the impact

of incoming data rates and DAG-based execution semantics on the response time of an

application. Due to these simplifying assumptions, their estimation of response time for a

DAG execution is less accurate and the produced placement of operators on the basis of

this response time estimation is less effective.

To address these limitations, we present our solution, in which we formulate the DAG

placement as an optimization problem and solve it using a greedy heuristic algorithm. The

71

heuristic algorithm, however, needs to conduct a what-if analysis in making its placement

decisions; i.e., it must predict the potential outcome on a (partial) DAG’s latency if it were

to take a certain operator placement decision. To enable the heuristic algorithm in mak-

ing these look-ahead decisions, we develop a data-driven latency prediction model that

incorporates DAG-based execution semantics, incoming data rates and operator processing

times on edge nodes to estimate the latency of all paths in a DAG.

Learning a latency prediction model for arbitrary DAG structures, however, has signif-

icantly high overhead in terms of computational costs and model training time, and more-

over, formulating the model training problem itself is very complex. This is compounded

by the use of edge devices which are extremely sensitive to operator co-location due to

their limited resources (e.g., with a single core). Therefore, our solution introduces a novel

transformation of a DAG into an equivalent set of linear chains, which makes learning a

latency prediction model for co-located operators significantly less expensive and easier to

construct than learning a model for arbitrary DAG structures. Accordingly, to estimate the

latency of a path in a given DAG, we first linearize the DAG into multiple linear chains

and then use the latency prediction model for co-located linear chains to approximate the

response time of the path in the original DAG. This learned latency prediction model is

subsequently used by our greedy placement heuristic to inform its operator placement de-

cisions that in turn minimizes the DAG makespan.

Our solution makes the following key contributions:

• DAG Linearization: We present an algorithm that transforms any given DAG into

an equivalent set of linear chains in order to approximate the latency of a path in the

DAG. This set includes the target path of the DAG, whose latency we are interested

in approximating, in addition to other mapped linear chains. Upon execution of this

equivalent set of linear chains, the latency of the path we are interested in is observed

to be very close to the measured latency along that path when the original DAG

structure is executed. The transformation algorithm considers both the split (or fork),

72

and join (or merge) points in DAGs.

• Latency Prediction Model: We present a model for predicting the 90th percentile

latency of a linear chain of operators on the basis of its length (i.e., number of oper-

ators in the linear chain), the incoming data rate, the sum of execution times of all

operators in the linear chain and a characterization of background load imposed by

other co-located linear chains. For higher accuracy, we learn a separate prediction

model for different numbers k of co-located chains present at an edge device. All the

learned models have a prediction accuracy of at least 92%.

• Greedy Placement Heuristic: We present a greedy placement heuristic for makespan

minimization, which leverages the DAG linearization algorithm and the latency pre-

diction model to guide its placement decisions. Experimental results show that, com-

pared with two baseline approaches, our placement heuristic significantly reduces

both the prediction error and the number of edge nodes needed to deploy the DAG,

while achieving low makespan.

The rest of this chapter is organized as follows: Section 4.2 gives a formal statement of

the problem we are studying and provides a greedy heuristic to solve it. Section 4.3 presents

our approach for DAG linearization and the latency prediction model to estimate the 90th

percentile latency of co-located linear chains. These predictions are needed for our greedy

heuristic. Section 4.4 presents experimental results to validate our solution. Section 4.5

presents related work and compares our operator placement solution to existing solutions

for makespan minimization. Finally, Section 5.5 offers concluding remarks, lessons learned

and outlines future work.

4.2 Problem Formulation and Heuristic Solution

In this section, we formally describe the operator placement problem by first introduc-

ing the models and assumptions. We then demonstrate the complex trade-offs between

73

communication and interference induced costs, and show the complexity. Finally, we

present a greedy heuristic solution for the problem.

4.2.1 Models and Assumptions

A stream processing application can be represented by a Directed Acyclic Graph (DAG)

G= (O,S), where the set of operators O= {oi} form the vertices of G and the set of data

streams S = {si j}, connecting the output of an operator oi to its downstream operator o j,

form the directed edges of G. Source operators, Osrc ⊂ O, do not have any incoming

edges and publish data into G, i.e., Osrc = {oi|@s ji ∈ S,o j ∈O}. Sink operators, Osnk ⊂O,

do not have any outgoing edges and receive the final results of G, i.e., Osnk = {oi|@si j ∈

S,o j ∈O}. All source and sink operators are no-op operators, i.e., they do not perform any

computation. Each intermediate operator, i.e., Oint = {oi|oi /∈ Osrc,oi /∈ Osnk}, performs

computation and is characterized by its: 1) execution time, ρ(oi), which defines the average

time interval of processing that oi performs on every input message, and 2) incoming rate,

λ (oi), which defines the rate at which oi receives incoming messages.

The problem requires finding a placement P : Oint → E for the set of intermediate

operators Oint over a cluster of homogeneous edge nodes E= {e j}, such that the makespan

of G, specified by its maximum end-to-end latency1 is minimized. Formally, the makespan

of a graph G under a placement P is defined as:

`P(G) = max
p∈Π

`P(p) (4.1)

where Π represents the set of all paths in G and `P(p) represents the latency of a path

p ∈ Π under placement P . Suppose the path p has n intermediate operators, i.e., p =

(os,o1,o2, . . . ,on,ok), where os ∈ Osrc, ok ∈ Osnk, and oi ∈ Oint for 1 ≤ i ≤ n. Given a

1While the model is flexible enough to incorporate different definitions of latency, we consider the 90th
percentile end-to-end latency.

74

placement P , the latency of path p can be expressed as:

`P(p) =
n

∑
i=1

ωP(oi)+
n−1

∑
i=1

dP(oi,oi+1) (4.2)

Here, ωP(oi) denotes the processing delay experienced by an operator oi under placement

P , which may be higher than the operator’s isolated execution time ρ(oi) due to potential

interference with other co-located operators [119, 120]. Typically, the more co-located op-

erators on the same edge node, the higher the processing delay. Also, dP(oi,oi+1) denotes

the communication delay between an upstream operator oi and its downstream operator

oi+1 in the path. If oi and oi+1 are placed on the same edge node under P , then no network

delay will be incurred. Otherwise, we assume a constant network delay c between any two

edge nodes, i.e.,

dP(oi,oi+1) =


0 if P(oi) = P(oi+1)

c if P(oi) 6= P(oi+1)

4.2.2 Cost Trade-Off and Complexity

The optimal solution to the makespan minimization problem described above depends

on delicately exploiting the trade-off between the communication costs incurred by de-

pendent operators located on different edge nodes and the interference cost due to the co-

location of multiple operators on the same edge nodes. For example, consider a linear

chain of n operators, i.e., 〈o1,o2, . . . ,on〉. On the one hand, placing each operator sepa-

rately on different edge nodes has zero interference, but incurs a large communication cost

between each pair of consecutive operators. On the other hand, placing all operators on

one edge node incurs zero communication cost, but incurs a large processing delay due to

performance interference among the co-located operators.

It turns out that, to place a set of n operators that form a linear chain, an optimal so-

lution that balances the two costs can be obtained, as illustrated by the following dynamic

75

programming formulation:

`∗i = min
i≤ j≤n

(
ωi, j +d(o j,o j+1)+ `∗j+1

)
(4.3)

where `∗i denotes the optimal latency for placing the sub-chain 〈oi,oi+1, . . . ,on〉, and ωi, j =

∑
j
h=i wh denotes the cumulative latency of all operators in the sub-chain 〈oi,oi+1, . . . ,o j〉

when they are co-located on the same edge node.

For placing general DAGs, however, the problem is more difficult. Many prior works

(e.g., [121, 37, 44]) have shown the NP-hardness of the problem when there is a limited

number of edge nodes. Here, we consider a model in which the amount of edge resource

is unrestricted. Indeed, additional edge nodes can always be recruited in practice to ac-

commodate the operators in order to minimize the response time of a streaming service,

which is often a more important objective than the resource usage. Even in this case, the

problem can be shown to be NP-hard via a simple reduction from a multiprocessor schedul-

ing problem with communication delays2 [122, 123]. Hence, we will focus on designing

heuristic-based solution with the primary objective of minimizing the makespan while con-

sidering the number of edge nodes used as a secondary metric.

4.2.3 Greedy Placement Heuristic

In this section, we present a greedy placement heuristic for the makespan minimization

problem formulated in Section 4.2.1. Algorithm 4 shows the pseudocode of the greedy

heuristic. Specifically, the heuristic places the operators in the intermediate set Oint one

after another in a Breadth-First Search (BFS) order (Line 2), which preserves the spatial

locality of the dependent operators, thus reducing the communication cost. For each op-

erator oi to be placed, the heuristic tries two different options: (1) co-locate oi with other

2The multiprocessor scheduling problem concerns mapping an arbitrary task graph with communication
delays onto a set of m identical processors in order to minimize the makespan. The problem is NP-hard even
when m = ∞ and all communication costs are uniform [122, 123]. This corresponds to a special case of our
problem without any performance interference due to co-located operators, thus establishing the NP-hardness
of the problem.

76

operators that have already been placed on an existing edge node (Lines 6-13); and (2)

place oi on a new edge node (Lines 14-19). In both options, the latencies of all paths

that go through operator oi will be estimated (Line 8 and Line 15). This estimation is

done using our novel DAG linearization scheme and latency prediction model develop-

ment described in Section 4.3. Note that, when operator oi is co-located with other opera-

tors on an edge node, the latencies of all paths that go through those co-located operators

also need to be estimated due to the interference caused by the placement of oi [124].

Then, the resulting partial makespan for the sub-graph Gi = (Oi,Si) that contains the set

of operators Oi = {o1,o2, . . . ,oi} up to operator oi and the set of associated data streams

Si = {s jk|o j ∈ Oi,ok ∈ O j} will be updated (Line 9 and Line 16). Finally, the option that

results in the minimum predicted makespan for Gi is selected for placing operator oi (Line

23).

1
[5]

3
[10]

4
[5]

2
[10]

5
[20]

snk2
69.8 ms
[0.4 ms]

snk1
117 ms
[2.3 ms]

src1 5 msg/s

src2 5 msg/s

(a) Example DAG-1

1
[5]

3
[10]

4
[5]

2
[10]

5
[20]

snk2
42.2 ms
[1.1 ms]

snk1
94.7 ms
[1.1 ms]

src1 5 msg/s

src2 1 msg/s

(b) Example DAG-2

1
[5]

4
[5]

3
[10]

2
[10]

5
[20] snk1

162.8 ms
[1.9 ms]

src1 5 msg/s

src2 5 msg/s

(c) Example DAG-3

1
[5]

3
[10]

2
[10]

5
[20]

4
[5]

snk1
77.2 ms
[2.8 ms]

snk2
61.4 ms
[2.2 ms]

src1 5 msg/s

(d) Example DAG-4

Figure 4.1: Impact of incoming data rate and DAG structure on the observed latency

Since each edge node hosts at least one operator, Algorithm 4 deploys at most n oper-

ators, where n = |Oint | denotes the number of intermediate operators in the graph. Let f

denote the total number of paths in the graph. As the placement of each operator exam-

ines at most n edge nodes and updates at most f paths, the complexity of the algorithm is

therefore O(n2 f).

77

Algorithm 4: Greedy Placement Heuristic
Input: Operator graph G= (O,S)
Output: A placement Pgreedy of the intermediate operator set Oint ∈O onto a set E of edge nodes

1 begin
2 Reorder all operators in the intermediate set Oint = {o1,o2, . . . ,on} in BFS order, where

n = |Oint |;
3 E← /0;
4 for each operator oi (i = 1 . . .n) do
5 `∗← ∞ and j∗← 0;

// try to place on each existing edge node
6 for each edge node e j ∈ E do
7 P(oi)← e j;
8 Predict and compute latencies of all paths that contain operators co-located in e j;
9 Update the partial makespan `P(Gi);

10 if `P(Gi)< `∗ then
11 `∗← `P(Gi) and j∗← j;
12 end
13 end

// try to place on a new edge node
14 P(oi)← e|E|+1;
15 Compute latencies of all paths that contain operator oi;
16 Update the partial makespan `P(Gi);
17 if `P(Gi)< `∗ then
18 `∗← `P(Gi) and j∗← j;
19 end
20 if j∗ = |E|+1 then
21 E← E

⋃
{e|E|+1} ; // start a new edge node

22 end
23 Pgreedy(oi)← e j∗ ;
24 end
25 end

4.3 Developing a Latency Prediction Model

In this section, we describe the development of a data-driven latency prediction model

that is used by our greedy placement heuristic (see Section 4.2.3). We first justify the

rationale for selecting the input feature vectors used in building the model. We then show

a novel approach to simplify the training for DAGs. To that end, we explain our DAG

linearization approach for transforming any arbitrary DAG into an equivalent set of linear

chains and the k-chain co-location latency prediction model used for predicting the latency

of multiple co-located linear chains.

78

4.3.1 Critical Considerations for Model Building

When training any data-driven model, it is important to identify the key input features

that must be used. In our case, the goal is to train a latency prediction model that can

predict the impact on the DAG latency if one were to co-locate an operator of that DAG

on an edge node when one or more other operators (belonging to the same or other DAGs)

already exist on that node by incorporating the impact of performance interference caused

by co-location.

Existing solutions make simplifying assumptions to estimate the cost of interference.

Some solutions [41, 42, 43] assume that the execution time of each operator becomes the

sum of execution times of all co-located operators when the underlying physical node is

single core and uses round robin scheduling. Other solutions [37, 44] ignore the impact of

operator co-location and assume constant execution time. These solutions do not consider

the impact of incoming data rate and DAG structure imposed execution semantics, both of

which have a significant impact on the observed latency as illustrated in Figure 4.1.

To that end, we first set out to pinpoint the key considerations when building a model.

We used a single core Beagle Bone Black (BBB) board [125] to run the DAGs depicted

in Figure 4.1. All intermediate vertices which process incoming data, namely vertex-1

to vertex-5, were hosted on the same BBB board while the source and sink vertices

were hosted on a separate 2.83 GHz Intel Q9550 quad core server. Source vertices send 64

Byte, time-stamped messages at a configurable rate shown on their outgoing edges. Inter-

mediate vertices perform a configurable amount of processing on each incoming message.

This execution time of intermediate vertices, measured in milliseconds, is depicted within

brackets below the vertex-ID. For intermediate vertices with multiple incoming edges,

we assume interleaving semantics [42] wherein the vertex performs processing whenever

it receives a message on any of its incoming edges. Sink vertices log the time-stamp of

reception of messages after being processed by the intermediate vertices.

Each DAG was allowed to execute for two minutes in an experimental run. Average

79

90th percentile latency and standard deviation (shown in brackets) recorded by each sink

vertex across 5 runs are shown along the incoming edge of the sink vertex. This 90th

percentile latency value recorded by a sink vertex implies that 90 percent of all messages

received along all the paths which end at that sink vertex were observed to have an end-

to-end path latency below the 90th percentile value. For example, in DAG-1 (Figure 4.1a),

90 percent of all messages received along paths 〈src1,1,3,5,snk1〉 and 〈src2,2,3,5,snk1〉,

which end at snk1, were observed to have an end-to-end latency below 117 ms (on average

across 5 experimental runs). Similarly, 90 percent of all messages received along paths

〈src1,1,4,snk2〉 and 〈src2,2,4,snk2〉, which end at snk2, were observed to have an end-to-

end latency below 69.8 ms (again on average across 5 runs). The makespan (i.e., response

time) of a DAG is the maximum 90th percentile latency across all paths, which is 117 ms

for DAG-1.

1
[5]

2
[5]

3
[5]

5
[25]

4
[5] snk1

50.2 ms
[1.2 ms]

snk268.8 ms
[2.2 ms]

src1 10 msg/s

(a) Original DAG with fork operator

1
[5]

2
[5]

3
[5]

4
[5] snk1

50.6 ms
[1.9 ms]

5
[25] snk2

src1 10 msg/s

src2 10 msg/s

(b) Linearization for path-1

1
[5]

2
[5]

5
[25] snk1

67 ms
[2.3 ms]

3
[5]

4
[5] snk2

src1 10 msg/s

src2 10 msg/s

(c) Linearization for path-2

Figure 4.2: Linearization rule for fork operator

1
[5]

3
[5]2

[10]

4
[5]

5
[5] snk1

71.2 ms
[0.8 ms]

src1 5 msg/s

src2 5 msg/s

(a) Original DAG with join operator

1
[5]

3
[5]

4
[5]

5
[5] snk1

68.4ms
[1.8 ms]

2
[10]

3
[5]

4
[5]

5
[5] snk2

src1 5 msg/s

src2 5 msg/s

(b) Linearization for path-1

2
[10]

3
[5]

4
[5]

5
[5] snk1

75.2 ms
[1.3 ms]

1
[5]

3
[5]

4
[5]

5
[5] snk2

src1 5 msg/s

src2 5 msg/s

(c) Linearization for path-2

Figure 4.3: Linearization rule for join operator

Based on our experiments, we made the following two critical observations:

• Impact of data rate (i.e., publishing rate): DAG-1 in Figure 4.1a and DAG-2 in

Figure 4.1b are the same, except for the publishing rate of source vertex src2, which

generates data at 5 messages/sec in DAG-1 and at 1 message/sec in DAG-2. In DAG-

1, the 90th percentile latency at sink vertex snk1 is 117 ms and at sink vertex snk2

80

is 69.8 ms. However, due to the lower publishing rate of src2 in DAG-2, sink ver-

tices snk1 and snk2 show lower 90th percentile latencies of 94.7 ms and 42.2 ms,

respectively.

• Impact of DAG Structure: DAG-1, DAG-3 and DAG-4 in Figure 4.1a, Figure 4.1c

and Figure 4.1d, respectively, are composed of the same set of intermediate vertices,

although they are structurally different. All three DAGs show markedly different

response times on account of this difference in their DAG structures. The simplify-

ing assumptions of prior works that do not consider DAG structure imposed execu-

tion semantics, such as assuming constant execution time or sum of execution times

of all co-located vertices, can respectively underestimate or overestimate a DAG’s

makespan. For example, if we assume constant execution time for each vertex, the

latency of path 〈src1,1,3,5,snk1〉 in DAG-4 will be∼35 ms, which is much less than

the observed path latency of 77.2 ms. Similarly, if we assume each vertex’s execution

time to be the sum of execution times of all 5 co-located vertices given that we are

using a single core BBB board, then the path latency would be ∼150 ms, which is

twice the experimentally observed path latency of 77.2 ms.

Thus, it is critical to take both the data rate and the DAG-based execution semantics

into account in order to accurately estimate the response time of a DAG, which is used in

our approach for building a latency prediction model.

4.3.2 DAG Linearization Transformation Rules

Since it is expensive to train a latency prediction model for arbitrary DAG structures,

we propose a linearization-based approach, which transforms any given DAG into multiple

sets of linear chains, whose latencies will then be predicted to approximate the end-to-

end latencies of the original DAG structure. Due to the simplicity of the linear structures,

the proposed approach is able to significantly reduce the space over which the latency

prediction model needs to be learned. We arrived at these transformation rules based on

81

multiple different empirical observations.

Suppose the operators in a connected graph3 G′ are all co-located on one edge node,

and suppose G′ contains a collection {p1, p2, . . . , p f } of f paths from its source operator(s)

to its sink operator(s). The linearization scheme first transforms graph G′ into f sets of

linear chains, denoted as {L1(G′),L2(G′), . . . ,L f (G′)}. For each 1≤ k ≤ f , the set Lk(G′)

contains f linear chains in it, including a target linear chain corresponding to the path pk

in the original DAG, as well as f − 1 auxiliary linear chains to simulate the performance

interference for path pk. The latency prediction model (Section 4.3.3) is then used to predict

the latency of the target path pk in each set Lk(G′). Finally, the predicted latencies for all

the paths in {p1, p2, . . . , p f } that share the same sink operator are averaged to approximate

the end-to-end latency for messages that exit that sink operator in graph G′.

1
[5]

3
[10]

5
[20] snk1

113.4 ms
[2.6 ms]

4
[5] snk3

2
[10]

3
[10]

5
[20] snk2

4
[5] snk4

src1 5 msg/s

src2 5 msg/s

src3 5 msg/s

src4 5 msg/s

(a) Linearization for path-1

1
[5]

4
[5] snk1

55.5 ms
[3.9 ms]

2
[10]

3
[10]

5
[20] snk2

3
[10]

5
[20] snk3

4
[5] snk4

src1 5 msg/s

src2 5 msg/s

src3 5 msg/s

src4 5 msg/s

(b) Linearization for path-2

2
[10]

3
[10]

5
[20] snk1

125.0 ms
[2.7 ms]

1
[5]

3
[10]

5
[20] snk2

4
[5] snk3

4
[5] snk4

src1 5 msg/s

src2 5 msg/s

src3 5 msg/s

src4 5 msg/s

(c) Linearization for path-3

2
[10]

4
[5] snk1

86.6 ms
[3.0 ms]

1
[5]

3
[10]

5
[20] snk2

4
[5] snk4

2
[10]

3
[10]

5
[20] snk3

src1 5 msg/s

src2 5 msg/s

src4 5 msg/s

src3 5 msg/s

(d) Linearization for path-4

Figure 4.4: Linearization and latency prediction results for the DAG shown in Figure 4.1a.

We now present our approach to transform graph G′ into f sets of linear chains {L1(G′),

L2(G′), . . . ,L f (G′)}. Algorithm 5 shows the pseudocode of the linearization procedure.

Since an operator in the original graph G′ may be replicated in a set Lk(G′), we first com-
3If a graph contains several connected components, the linearization can be done separately for each

connected component.

82

Algorithm 5: DAG Linearization
Input: Operator graph G′ = (O′,S′) that contains f paths {p1, p2, . . . , p f } from its source operator(s)

to its sink operator(s).
Output: f sets of linear chains {L1(G′),L2(G′), . . . ,L f (G′)}, each with a target path pk from G′

whose latency will be predicted.
1 begin
2 Identify the set O′src of source operators of G′;
3 ti← 1 for ∀oi ∈O′src, and ti← 0 for ∀oi ∈O′\O′src;
4 Initialize an empty queue Q← /0;
5 Q.enqueue(O′src);
6 while Q 6= /0 do
7 oi← dequeue(Q);
8 for each o j ∈ oi.childen() do
9 t j← t j +1;

10 Q.enqueue(o j);
11 end
12 end
13 for k = 1 to f do
14 p′h← ph, for ∀1≤ h≤ f ;
15 t ′i ← ti, for ∀oi ∈O′;
16 t ′i ← t ′i −1, for ∀oi ∈ p′k;
17 for each p′h ∈ {p′1, p′2, . . . , p′f }\{p′k} do
18 for each oi ∈ p′h do
19 if t ′i = 0 then
20 remove oi from p′h;
21 else
22 t ′i ← t ′i −1;
23 end
24 end
25 end
26 Lk(G′)←{p′1, p′2, . . . , p′k};
27 end
28 end

pute the number of times each operator is replicated. To that end, we describe below the

linearization rules for two types of operators in a DAG structure, namely, fork and join

operators.

• Fork operator: All paths in a DAG that originate from a fork operator can be executed

concurrently. Hence, we can reason about these paths as independent linear chains.

The fork operator only executes once, so it is included in one of the multiple paths

that originate from the fork vertex. Figure 4.2 illustrates this rule.

• Join operator: Join operators have multiple incoming edges. Therefore, we can

83

argue that the join operator and all its downstream operators execute as many times

as the number of incoming edges of the join vertex. Hence, a join operator and all

downstream operators are replicated into multiple linear chains. Figure 4.3 illustrates

this rule.

Generalizing the rules above, for each operator oi in G′, we can obtain the number of

times ti it should appear in any set Lk(G′) of linear chains as the total number of paths from

the source operator(s) of G′ to oi. This can be computed by a simple breadth-first traversal

of the graph (Lines 2-12).

The algorithm then constructs the set Lk(G′) of linear chains for each 1≤ k ≤ f (Lines

13-27). Specifically, it first adds the target path pk into the set Lk(G′), and then examines

the operators from the remaining paths in sequence. If an operator oi has already appeared

ti times from the previously examined paths, it will be removed from the current and sub-

sequent paths. This ensures the correct number of replicas for each operator in the set. The

complexity of the algorithm is O(f 2|O′|).

Figure 4.4 shows the linearization results for the DAG shown in Figure 4.1a, which con-

tains two source operators, two sink operators, and four different paths: 〈1,3,5〉, 〈2,3,5〉,

〈1,4〉 and 〈2,4〉. Therefore, four corresponding sets of linear chains are constructed as

shown in Figure 4.4a to Figure 4.4d. In each set, the chain highlighted in grey represents

the target path whose latency will be predicted, and the other chains represent auxiliary

paths to simulate the performance interference.

4.3.3 Training the k-Chain Co-location Latency Prediction Model

In this section, we describe the k-chain co-location latency prediction model we trained

for predicting the latencies of k co-located linear chains. Given a set of k linear chains, our

latency prediction model first employs a classification model to determine if the placement

of these k linear chains at an edge device is feasible; i.e., the placement does not saturate an

edge node’s resources. In case of resource saturation, the observed latency values become

84

significantly high and unpredictable. If the classification model predicts that the placement

is feasible, then a regression model is used to predict each linear chain’s 90th percentile

latency.

Both the classification and regression models for a k-chain co-location take the same

set of 7 input features. Of these 7 input features, the first 3 features characterize the fore-

ground (target) linear chain, or the chain under observation, and the remaining 4 features

characterize the background load imposed by the set of background (auxiliary) chains co-

located along with the foreground chain. These input features are described below, where

c f denotes the foreground linear chain and CB denotes the set of background linear chains.

• n(c f): number of operators in c f ;

• ∑o∈c f
ρ(o): sum of execution intervals of operators in c f ;

• λ (c f): incoming data rate for c f ;

• ∑cb∈CB n(cb): sum of number of operators in all background chains;

• ∑cb∈CB ∑o∈cb
ρ(o): sum of execution intervals of all operators in all background

chains;

• ∑cb∈CB λ (cb): sum of incoming data rates over all background chains;

• ∑cb∈CB λ (cb) ·∑o∈cb
ρ(o): sum of the product of λ (cb) and ∑o∈cb

ρ(o) over all back-

ground chains.

The classification model takes these input features and outputs a binary value: 0 to

indicate that the placement is feasible and 1 otherwise. The regression model outputs the

predicted 90th percentile latency of the foreground chain co-located with a given back-

ground load. For k = 1, i.e., only one chain exists, the four input features characterizing

the background load is set to 0.

We used neural networks for learning both the classification and regression models. For

higher accuracy, we learned separate models for different numbers k of co-located chains.

85

The neural networks comprise an input layer, one or more hidden layers and an output layer,

where each layer is composed of nodes called neurons [81]. Neurons belonging to different

layers are interconnected with each other via weighted connections. The input layer feeds

the input features to the network. Neurons belonging to the intermediate and output layers

sum the incoming weighted signals, apply a bias term and an activation function to produce

their output for the next layer. The architecture of a neural network, i.e., the number of

hidden layers and number of neurons per hidden layer, choice of the activation function,

regularization factor, and the solver greatly determine the accuracy of the learned model.

Typically, learning curves [82] are plotted to understand the performance of a neural

network and to guide the selection of various parameters, such as number of layers, number

of neurons per layer, regularization factor, etc. A learning curve shows the training and

validation errors as functions of the training data size. If the learning curve shows that the

training error is low, but the validation error is high, the model is said to suffer from high

variance [82], i.e., it is over-fitting the training data and may not generalize well. If the

learning curve shows high training and validation errors, the model is said to suffer from

high bias [82], i.e., it fails to learn from the data or is under-fitting the data.

A neural network model for which both the training and validation errors converge to

a low value is selected. Such a model neither over-fits (low variance) nor under-fits (low

bias) the data and is expected to perform well. We plotted learning curves for different

architectures for each value of k in both classification and regression models to help us

select a model with low bias and variance. Section 4.4 shows the learning curves and

accuracy results for the selected k-chain co-location classification and regression models.

4.4 Experimental Validation

In this section, we present experimental results to validate our DAG linearization-based

approach for predicting the latency of arbitrary DAG structures and to evaluate our greedy

placement heuristic for minimizing the DAG makespan, which relies on the latency predic-

86

tion approach. We describe our experiment testbed first, followed by the accuracy results

for the learned k-chain co-location latency prediction models and performance results for

our greedy placement heuristic.

4.4.1 Experiment Testbed and Setup

Our experiment testbed comprises 8 Beagle Bone Black (BBB) boards running Ubuntu

18.04, where each board has one AM335x 1GHz ARM processor, 512 MB RAM and 1

Gb/s network interface card. Intermediate vertices are hosted on BBB boards whereas the

source and sink vertices are hosted on a separate quad-core 2.83 GHz Intel Q9550 server

with 8GB RAM and 1Gb/s network interface card, also running Ubuntu 18.04. We used

RTI DDS [9], a peer-to-peer topic-based publish-subscribe messaging system to model the

directed edges interconnecting the vertices. Each edge is implemented as a DDS topic over

which messages are sent and received by the upstream and downstream vertices, respec-

tively. Source vertices send 64 Byte time-stamped messages at a configurable publishing

rate λ up to 20 messages/second. Intermediate vertices process each incoming message by

performing recursive fibonacci computations for a configurable execution interval ρ , whose

value can either be 1 ms, 5 ms, 10 ms, 15 ms or 20 ms. Sink vertices log the time-stamp

of reception of processed messages to compute the end-to-end latencies. To ensure the fi-

delity of experimental results, a DAG is executed for two minutes. Some initial end-to-end

latency values logged by a sink vertex are ignored while computing the 90th percentile la-

tency value, since they are observed to be high on account of initialization and connection

setup.

4.4.2 Validating the k-Chain Co-location Latency Prediction Model

As discussed in Section 4.3, to predict the end-to-end path latency of k co-located linear

chains, we rely on two prediction models: k-chain co-location classification and k-chain co-

location regression models. First, the classification model is used to assess if the placement

87

of given k linear chains is feasible. If the classification model predicts that the placement is

feasible, then the k-chain co-location regression model is used to predict each linear chain’s

90th percentile latency.

Empirically, we observed that a BBB’s CPU gets saturated if more than 12 vertices

are placed on the node. Therefore, to create the training dataset for k-chain co-location

models, the number of vertices in each linear chain is randomly chosen such that the sum

of number of vertices across all k chains is not more than 12. The execution interval ρ for

each vertex is uniformly randomly chosen from the set {1ms, 5ms, 10ms, 15ms, 20ms}

and the incoming data rate for each chain is uniformly randomly chosen in the range [1,

20] messages/sec. We learned k-chain co-location models for k up to 4. As k increases

further, the range of possible values for the input features increases and more training data

is needed to get good prediction accuracy. We ran 600, 1500, 1950 and 1950 experiments

for k = 1,2,3 and 4, respectively. Additionally, a separate validation dataset was created

by running 50 experiments for each k.

When an experiment for k-chain co-location is run, we get k latency data-points, one

corresponding to each linear chain. Therefore, the training dataset size becomes k times

the number of experiments, i.e., 600, 3000, 5850 and 7800 data-points for k = 1,2,3 and 4,

respectively, as shown in Table 4.1. To learn the classification model, data-points for which

the observed 90th percentile latency is greater than twice the sum of execution intervals

of all vertices in all k chains are categorized as infeasible placements. While the entire

dataset comprising both feasible and infeasible data-points is used for training the classifi-

cation model, the regression model is trained only over the feasible subset of data-points.

For example, in case of k = 1, all 600 data-points are used for training the classification

model. Out of these, 186 data-points were categorized as infeasible placements and the

remaining 416 data-points as feasible placements. To learn the regression model for k = 1,

we therefore used the 416 feasible data-points as shown in Table 4.2.

We tested different neural network architectures for k-chain co-location classification

88

Table 4.1: Accuracy of k co-location classification model

k
#datapoints
(training)

accuracy
(training)

accuracy
(test)

#datapoints
(validation)

accuracy
(validation)

1 600 .98 .97 50 .98
2 3000 .98 .96 100 .98
3 5850 .96 .96 150 .97
4 7800 .96 .95 200 .94

Table 4.2: Accuracy of k co-location regression model

k
#datapoints
(training)

accuracy
(training)

accuracy
(test)

#datapoints
(validation)

accuracy
(validation)

1 416 .99 .99 38 .99
2 2268 .98 .98 84 .96
3 4083 .96 .95 108 .94
4 5376 .95 .94 128 .92

and regression models. For classification, we found that a neural network with one hidden

layer composed of 50 neurons performs well for k = 1 and k = 2, while a neural network

with one hidden layer composed of 100 neurons performs well for k = 3 and k = 4. For

regression, we found that a neural network with one hidden layer composed of 50 neu-

rons performs well for k = 1. However, for k = 2,3 and 4, a neural network regressor with

three hidden layers composed of 50 neurons each gives good accuracy. For all the mod-

els, Rectified Linear Units (ReLu) was used as the activation function, limited memory

Broyden-Fletcher-Goldfarb-Shanno (lbfgs) was used as the solver and L2 regularization

factor was set to 0.1. Figure 4.5a and Figure 4.5b show the learning curves for k = 3 clas-

sification and k = 3 regression models, respectively. Here, we see that the chosen neural

network architectures have low bias and variance since the training and cross-validation

errors converge to a reasonably low value that is at most 8%. Therefore, the model neither

over-fits nor under-fits the training data and is expected to generalize well.

Table 4.1 and Table 4.2 show the performance of trained k-chain co-location classifi-

cation and regression models on training, test and validation datasets. We used 90% of

89

(a) Classification learning curve for k = 3 (b) Regression learning curve for k = 3 (c) Validation results for k = 3

Figure 4.5: Performance of k-chain co-location latency prediction model for k = 3

(a) LPP predicted vs. observed makespan for different DAG
structures

(b) LPP predicted vs. observed makespan for different DAG
configurations

Figure 4.6: LPP makespan prediction accuracy (for various randomly generated DAGs)

data-points for training and the remaining 10% for testing. We observed that all learned

models have an accuracy of at least 92%. Figure 4.5c shows the performance of k-chain

co-location regression model on the validation dataset for k = 3. We see that the predicted

latencies track the experimentally observed values closely and the average difference be-

tween the predicted and observed latencies over all 108 validation data-points is 10.8 ms.

4.4.3 Performance Evaluation of the LPP Approach

To assess the performance of our Linearize, Predict and Place (LPP) operator place-

ment solution for makespan minimization, we generated 9 random test DAGs with three

different structures per intermediate vertex count of 6, 7 and 8. These nine test DAGs were

generated using Fan-In-Fan-Out [126] method for task-graph generation. We refer to the

DAG structure 1 with 6 intermediate vertices as v6-g1, which also exemplifies the nam-

ing convention used to identify these test DAGs. For our experiments, we set a constant

network delay of 10ms for communication between any two edge nodes.

90

(a) Observed makespan (b) Number of edge nodes (c) Prediction error

Figure 4.7: Comparison of LPP with SUM and CONST approaches (for various randomly generated DAGs)

4.4.3.1 LPP Prediction Results

Figure 4.6a compares the makespan predicted by LPP with experimentally observed

makespan upon DAG execution, for the same test DAG structure, parameter configuration

(data rate and execution intervals of all vertices) and operator placement. We see that

the LPP approach based on DAG linearization is able to make a fairly good prediction

for the makespan of all 9 test DAGs with an average prediction error of 9.8 ms. For the

same DAG structure, different DAG parameter configurations, such as incoming data rate

and execution intervals of the constituent vertices, also impact DAG latency. Figure 4.6b

shows the variation in the makespan of the same DAG structure across three different DAG

configurations c1, c2 and c3 (which are also randomly generated). The LPP approach

incorporates these differences in DAG parameter configurations while predicting a DAG’s

makespan. As seen in Figure 4.6b, LPP is able to make good predictions for different

parameter configurations with a mean prediction error of 11 ms across these 9 DAGs.

4.4.3.2 LPP Placement Results

We compared LPP with two solution variations: (1) SUM: Similar to LPP, this approach

uses the concept of DAG linearization to approximate arbitrary DAG structures and the

k-chain co-location classification model to assess if the placement of k linear chains is

feasible. However, unlike the LPP approach, which uses k-chain co-location regression

model to predict the path latencies, the SUM approach makes the simplifying assumption

91

that a vertex’s execution time becomes the sum of all co-located vertices’ execution times;

and (2) CONST: This approach makes the simplifying assumption that a vertex’s execution

time remains unchanged despite co-location.

Figure 4.7a compares the makespan of the placements produced by the LPP, SUM and

CONST approaches. Figure 4.7b compares the number of edge nodes used in the place-

ments produced by the LPP, SUM and CONST approaches. Figure 4.7c shows the error in

predicting the makespan of a DAG by the LPP, SUM and CONST approaches. We see that,

in many cases, the CONST approach underestimates the path latencies and inaccurately

favors co-locating the vertices, which results in a higher makespan in comparison to LPP

as seen in Figure 4.7a. The placement produced by CONST uses fewer edge nodes than

LPP as seen in Figure 4.7b since CONST inaccurately favors co-location due to underesti-

mation of path latencies. The makespan predicted by CONST is also much lower than the

observed makespan upon DAG execution, which results in high prediction errors as seen in

Figure 4.7c.

The SUM approach, on the other hand, overestimates path latencies and inaccurately

favors distributed placement of operators in many cases, which results in more edge nodes

being used in comparison to LPP, as seen in Figure 4.7b. Due to such overestimation, the

error in makespan prediction by the SUM approach is higher than that of the LPP approach,

which uses a latency prediction model, as seen in Figure 4.7c. The observed makespans

produced by LPP and SUM are similar as seen in Figure 4.7a, but LPP achieves this with

less amount of edge resources. Overall, these results show that LPP makes a more accu-

rate prediction of the path latencies and thereby a more effective placement of operators

than the other approaches that make simplifying (either overestimating or underestimating)

assumptions to estimate the cost of interference.

92

4.5 Related Work

In this section, we compare our work to the related work along several key dimen-

sions, including operator placement for makespan reduction, graph transformations, oper-

ator placement at the edge, and degenerate forms of DAG placement at the edge, all of

which are key considerations in our work.

4.5.1 Operator Placement for DAG Makespan Minimization

Operator placement problem has been studied extensively in the literature [127]. A

generic formulation of the operator placement problem has been presented in [37]. The

authors show how their formulation can be used for optimizing different QoS parameters,

such as response time, availability, network use, etc. They formulate the problem as an in-

teger linear optimization problem and use the CPLEX solver to find an optimal placement.

Existing solutions have varied objectives, such as minimizing network use [128, 129], min-

imizing inter-node traffic [130], minimizing the makespan or response time of an operator

graph [44, 42, 43, 41]. However, to the best of our knowledge, existing works on makespan

minimization do not consider the impact of operator co-location and hence the interfer-

ence effects on response time, while our solution expressly considers such an impact. For

example, in [44], authors have used a queueing theory-based model for estimating the re-

sponse time of paths in a DAG. However, their model also does not consider the impact

of co-location. Our solution uses a data-driven latency prediction model to estimate path

latencies in a DAG which also incorporates the impact of operator co-location on observed

path latencies.

4.5.2 Operator Graph Transformation

In [131], authors leverage the technique of operator replication to provide better perfor-

mance for processing incoming data streams. Apart from the replication, the authors also

propose an algorithm for placement of these operators on the runtime platform. Similar

93

graph transformation using operator replication strategy has been applied in [132]. In con-

trast to these works, we use DAG transformations as a means to simplify model learning. In

[133], the authors decompose a series-parallel-decomposable (SPD) graph into a SPD tree

structure to aid allocation of tasks to physical resources. While their solution is applicable

only for SPD graphs, our solution is applicable to any arbitrary DAG structure.

4.5.3 Edge-Based Operator Placement

In [134], authors present a constraint satisfaction problem for placement of operators

across heterogeneous edge-fog-cloud resources for maximizing resource usage. In compar-

ison to this work, we do not consider heterogeneous resources and it will be important to

extend our work to cover the range of edge-fog-cloud resources. However, unlike this work,

our aim is to minimize the makespan. In [135], authors present an optimization framework

that formulates the placement of operators across cloud and edge resources as a constraint

satisfaction problem for makespan minimization. The evaluation of their proposed scheme

is, however, conducted through a simulation study implemented using OMNET++ simu-

lator. In contrast, we have validated our research on an actual IoT testbed. DROPLET

[136] formulates operator placement problem using the shortest path problem, in which the

operators are placed in such a fashion that it minimizes the total completion time of the

graph. Although their goal is similar to ours, we believe that this work and several of the

other works outlined above have not considered the performance interference issue which

can result due to resource contention happening among the participating operators.

4.5.4 Latency Minimization for Publish/Subscribe Systems

A publish-subscribe system which involves some processing at an intermediate broker

is a degenerate form of a DAG that we consider in our work. There are some recent works

that consider minimizing end-to-end latencies for such degenerate DAG topologies. For

instance, in [137], the authors present an approach to minimize end-to-end latencies for

94

competing publish-process-subscribe chains and balancing the topic loads on intermediate

brokers hosted in edge computing environments. Unlike this work which focuses on only

a 3-node chain and focuses more on balancing the load on the brokers, our work focuses

on the placement arbitrary DAGs comprising a workflow of stream processing operators on

edge resources. MultiPub [65] is an effort to find the optimal placement of topics across

geographically distributed datacenters for ensuring per-topic 90th percentile latency of data

delivery. Although we are also interested in 90th percentile latencies, this work only con-

siders inter-datacenter network latencies for making placement decisions.

4.6 Conclusions

4.6.1 Summary of Research Contributions

With the growing importance of the Internet of Things (IoT) paradigm, there is increas-

ing focus on realizing a range of smart applications that must ingest the continuous streams

of generated data from different sources, process this data within the stream processing

application which is often structured as a directed acyclic graph (DAG) of operators, and

make informed decisions in near real-time. The low latency response time requirements of

these applications require that the computations of the DAG operators be performed closer

to the data sources, i.e., on the IoT edge devices. However, resource constraints on these

devices require careful considerations for multi-tenancy, i.e., co-location of operators on

the edge devices, which must be done in a way that minimizes the DAG makespan, i.e., the

end-to-end latency for the longest path in the DAG.

To that end, we present an optimization problem formulation for DAG makespan mini-

mization. The NP-hardness of the general problem and the need to realize an efficient, run-

time deployment decision engine inform the design of our greedy heuristic. Our heuristic-

based solution makes its operator placement decisions using a look-ahead scheme wherein

the algorithm predicts the potential impact on a DAG’s makespan latency if a specific op-

erator co-location decision is made. To aid in this look-ahead phase of our placement

95

algorithm, we present a data-driven latency prediction model, which is a machine learning

model that is trained using empirical data generated from conducting a variety of opera-

tor co-location experiments on an edge computing testbed. A novel trait of the prediction

model is the use of linearized chains of operators created using a transformation algo-

rithm that we developed to closely approximate the performance of the original DAG struc-

ture. In summary, we presented a novel Linearize-Predict-Place (LPP) approach for DAG

makespan minimization. Our empirical results comparing LPP with two separate base-

lines called SUM and CONST reveal that LPP makes a more accurate prediction of path

latencies and thereby a more effective placement of operators than the SUM and CONST

approaches, which otherwise make simplifying assumptions to estimate the cost of inter-

ference caused due to co-location.

4.6.2 Discussions and Directions for Future Work

Although operator placement is a well-known problem and many prior efforts exist, the

DAG placement on edge resources to minimize the makespan while promoting co-location

is a problem that remains to be solved. Moreover, applying data-driven machine learning

models to use as predictive models in solving the placement problem is another dimension

of novelty. Finally, the critical insights into how the model should be developed, the key

input features to use, and the use of linear chains as an approximation of the original DAGs

that makes it easier to build the prediction models are fundamental and novel contributions

of this work.

There are many dimensions along which additional work will need to be performed,

and these needs stem from the current assumptions we made and the limitations of the edge

computing resources we used for this study.

• The DAG linearization algorithm was informed by empirical observations that we

made on our Beagle Black Bone (BBB) testbed. To prove the correctness of this

approach, there is a need to build a theoretical model possibly using queuing the-

96

ory. Secondly, the linearization transformation for the fork/join operators currently

assumes interleaving semantics, i.e., OR semantics. The rules need to be extended

when the join operators require AND semantics.

• In current work, we have focused primarily on CPU computations alone at the op-

erator when making the co-location decisions. Other resources, such as memory,

also need to be accounted for. Moreover, we have assumed stable environments with

significant resource fluctuations, these aspects must be considered.

• Our edge computing testbed is made up of homogeneous resource types (i.e., BBB

boards with a single core), but IoT can illustrate significant heterogeneity in resource

type, and it will become important to explore this dimension.

• The scale of our experiments and the size of the DAGs considered in this work is

limited, and moreover, the applications used were mostly synthetic. More work is

needed to use larger-scale and real-world IoT applications.

• Finally, uncertainty quantification remains to be incorporated into our models. These

uncertainties can result from network fluctuations, bursty workloads, resource fail-

ures among many other issues.

The source code and experimental apparatus used in this research is made available in

open source at https://github.com/doc-vu/dag-placement

97

https://github.com/doc-vu/dag-placement

Chapter 5

BRINGING IT ALL TOGETHER

5.1 Introduction

Internet of Things (IoT) [1] applications such as intelligent transportation [3], smart

grids [138], remote infrastructure monitoring and control [139], etc. involve continuous

collection and near real-time processing of data streams produced by a large number of

sensors in order to gain insights and detect events of interest, which are subsequently dis-

tributed to interested endpoints for intelligent control and actuation of the system. Such

applications can be visualized as a distributed data-flow, where data is collected, processed

and disseminated across a vast range of distributed resources spanning from the edge of

the network, where sensors reside to remote cloud back-ends. Many of these applica-

tions are latency sensitive in nature and impose low response time requirements on both-

data distribution and data processing. Performing computation near the source of data or

Edge computing [19] offers an attractive solution for meeting the low response time re-

quirements these applications. However, the high performance overhead of processing on

typically resource-constrained edge devices can quickly eclipse the network latency ben-

efits of processing near the source. Developing an edge-based and latency-aware unified

solution for meeting the data distribution and stream data processing needs of IoT applica-

tions which takes this trade-off between computation and network overhead into account,

is the objective of this dissertation research.

Previous chapters in this dissertation offer solutions towards this goal in the following

ways. First, Chapter 2 presents a novel data-driven solution for distributing the publish/sub-

scribe (pub/sub) based data distribution and processing workload over edge servers to meet

application specified end-to-end latency requirements while making use of minimal number

of scarce edge resources. Second, Chapter 3 presents a unified programming model which

98

combines pub/sub based data distribution with reactive stream data processing to support

end-to-end development of an IoT application’s distributed data-flow. Third, Chapter 4

presents Linearize, Predict and Place (LPP), a novel data-driven algorithm for placing the

constituent operators/vertices of a data-flow application which is generally structured as

a Directed Acyclic Graph (DAG), over edge devices such that the end-to-end latency of

processing of the application is minimized. However, these solutions have been presented

in a stand-alone fashion, implemented using different technologies and tested on differ-

ent hardware resources. The applicability of these solutions together in the context of a

real world edge-based use-case has not been presented. Moreover, LPP placement algo-

rithm was developed on the basis of empirical observations that were made on a single core

Beagle Black Bone device. Although LPP is not specific to single-core edge devices, its

performance on multi-core edge devices has not been tested. To address these concerns,

this chapter presents the applicability of our research ideas in the context of a real-world

edge-based application for Automatic License Plate Recognition (ALPR) and tests it on a

cluster of quad-core Raspberry Pi boards which serve as edge devices in our experiments.

Video processing has been identified as the most suitable application for edge comput-

ing [140]. Video processing applications such as surveillance, traffic control, Augmented

Reality (AR), etc. have very low response time requirements and can benefit from com-

putation near the source of data. Moreover, sending video data streams collected from a

large scale deployment of video cameras to the cloud for processing would incur a huge

bandwidth cost. Automatic License Plate Recognition (ALPR) is another example of a

video processing application in which video streams are continuously processed to identify

license plate numbers of vehicles being monitored. ALPR can be used in a wide range of

applications [141] such as automated parking fee management, road toll collection, iden-

tifying traffic violators, etc. and thus, makes a good real-world, edge-based application

use-case for validating our proposed research solutions.

We implemented our ALPR application using our unified programming model pre-

99

sented in Chapter 3 and we demonstrate its benefits such as declarative and composable

style of programming, declarative management of concurrency and flexibility in defining

component boundaries for developing distributed data-flows in the context of ALPR. To

keep the response time of ALPR low, we used our Linearize, Predict and Place (LPP) al-

gorithm presented in Chapter 4 for placing the operators of ALPR’s application DAG over

a cluster of Raspberry Pi devices. Experiment results show that LPP model performs well

even on a multi-core edge device like Raspberry Pi and is able to come up with a placement

with minimal end-to-end latency in comparison to some simpler placement heuristics.

This chapter is organized as follows: Section 5.2 describes our ALPR application use-

case, Section 5.3 describes the implementation of ALPR using our unified programming

model presented in Chapter 3, Section 5.4 describes the application of LPP for latency-

aware placement of ALPR and finally, Section 5.5 concludes the chapter.

5.2 Use-Case: Automatic License Plate Recognition Application

Automatic License Plate Recognition (ALPR) continuously processes video streams

to identify vehicle license plate numbers. ALPR can be used in a wide range of applica-

tions [141] such as parking automation, ticket-less parking fee management, road toll col-

lection, traffic surveillance, identifying traffic violators and finding stolen vehicles. Sending

large volumes of video data to the cloud for processing can become prohibitively expen-

sive, therefore ALPR can benefit from an edge based deployment, wherein video streams

are processed near the source of data on low-cost edge devices.

ALPR involves several processing stages [142, 143, 144]. First, potential regions within

an image which may contain a license plate are identified for which several detection tech-

niques exist, for example, in edge-based detection, hough transformation is used to detect

pairs of parallel lines which are considered as potential plate candidates [145], and in case

of texture-based detection, a license plate is considered to have a distinct visual descrip-

tion/texture on the basis of which potential plate candidates are identified [146]. After

100

candidate license plate regions are identified, character segmentation is performed within

the region to extract individual characters. Finally, Optical Character Recognition (OCR)

is performed either by using pattern matching [147] or neural network based classifica-

tion [148] to identify each character.

OpenALPR [149] is a widely used, open-source library for ALPR which uses a texture-

based method for license plate detection and pattern matching for OCR. While OpenALPR

performs well on images taken under ideal lighting conditions with high contrast [150], it is

not able to recognize license plates in images taken under cloudy, dim and rainy conditions.

To increase the likelihood of license plate detection in such cases, several preprocessing

techniques [151] can be applied, such as, noise reduction with Bilateral Filtering and con-

trast enhancement with Histogram Equalization or Contrast Limited Adaptive Histogram

Equalization (CLAHE).

(a) License Plate-1 (b) License Plate-2 (c) License Plate-3 (d) License Plate-4

Figure 5.1: Example Images for License Plate Detection Application

Figure 5.1 shows four gray-scale sample images taken from a public dataset comprising

of over 500 images of vehicle license plates taken under different lighting conditions [151].

Table 5.1 shows the detected license plate number with openALPR after preprocessing an

image with the following techniques: 1) none: no image preprocessing is performed and

openALPR is run directly on the original image, 2) bf: Bilateral Filter is applied to reduce

noise, 3) eqh: Histogram Equalization is performed, 4) clahe: Contrast Limited Adap-

tive Histogram Equalization (CLAHE) is performed, 5) bf-eqh: Histogram Equalization is

performed after Bilateral Filtering, and 6) bf-clahe: CLAHE is performed after Bilateral

Filtering.

We see that different preprocessing techniques give different results under varied light-

101

Table 5.1: Image Preprocessing for ALPR

license
plate# none bf eqh clahe bf-eqh bf-clahe

1 551AG 550AG K551A VK55 551AG 551AG
2 S771 SQ77 771AE - 771E S0771
3 - - - BA056 - -
4 - - 162LC 12LC - -

ing conditions. Image of License plate-3 in Figure 5.1c was taken under dim light and

only clahe is able to detect the plate number, whereas for License plate-2 in Figure 5.1b

and plate-4 in Figure 5.1d, eqh gives the best result. For License plate-1 in Figure 5.1a

with number VK551AG, clahe detects the first part (VK55) while bf-clahe and none de-

tect the second part (551AG). Therefore, to maximize the chance of correct license plate

number detection, different types of preprocessing techniques can be applied in parallel

and results can be tallied for higher confidence. Such an application data-flow is depicted

in Figure 5.2, where the source vertex-src sends license plate images to be processed

in parallel by employing three different preprocessing techniques, namely, bilateral filter-

ing performed by vertex-bf, histogram equalization performed by vertex-eqh and

CLAHE performed by vertex-clahe, before license plate recognition is performed by

vertex-lpr with openALPR. Additionally, here after license plate detection, Vertex-

seg marks the detected plate region with a rectangular bounding box and vertex-post

performs some kind of post-processing such as saving the results to a database or looking

up a database of stolen car license plates.

bf lpr

segeqh lpr

clahe lpr

post snksrc

Figure 5.2: ALPR Application DAG-1

102

5.3 Implementation of ALPR as a Distributed Data-Flow

In this section we discuss the implementation of ALPR as a distributed data-flow us-

ing our unified programming model presented in Chapter 3. We developed RxZmq library

which unifies data distribution using ZMQ pub/sub library [75] and stream data processing

with Microsoft’s Reactive Extensions [152]. Section 5.3.1 describes the implementation of

ALPR using RxZmq and the benefits of using RxZmq for distributed data-flow program-

ming. We also describe our experiment setup and test-bed used for running our experiments

in Section 5.3.2.

5.3.1 RxZmq

As discussed in Section 3.3.4, Rx4DDS.NET integrates DDS [9], a publish/subscribe

middleware technology, with Microsoft’s Reactive Extensions (Rx) library [152] to unify

data distribution and local stream data processing for seamless end-to-end development

of data-flow applications. Rx provides a first-class abstraction for data streams called

observables; a reusable set of composable operators for joining, multiplexing, de-

multiplexing and transforming data-streams; and schedulers for declarative manage-

ment of concurrency. Rx4DDS library maps data received over a DDS pub/sub topic to an

observable data stream in Rx so that local data processing aspects can be programmed

in a declarative and composable manner using Rx operators. Similar to Rx4DDS, to

implement our ALPR application as a distributed data-flow, we developed RxZmq library

which integrates ZMQ pub/sub library [75] with RxPy [153], a python binding for Reac-

tive Extensions. We developed RxZmq instead of using Rx4DDS.Net since python enables

rapid prototyping and is readily supported on Raspberry Pi boards, which were used as

edge devices in our experiments. Image processing functions used in our ALPR data-

flow such as bilateral filtering, histogram equalization, CLAHE and segmentation were im-

plemented using OpenCV, license plate recognition was performed using OpenALPR and

post-processing such as looking up a database/saving to a remote database was simulated

103

by performing recursive fibonacci computations for 25 ms.

Using RxZmq for developing our ALPR data-flow offers several advantages such as

declarative and composable style of programming, declarative management of concur-

rency and flexibility in defining points of data distribution/component boundaries. List-

ing 5.1 shows how 〈eqh, l pr,seg, post〉 processing pipeline is implemented using RxZmq.

RxZmq library function from topic maps a ZMQ topic (input zmq topic) to an

observable in Rx, which can be processed by composing various built-in or user-

defined operators. For example, map is a built-in Rx operator which transforms an

input data-stream to an output data-stream by applying a mapping function. In Listing 5.1,

the input stream of images received over input zmq topic is transformed by perform-

ing histogram equalization by the first map function. This transformed data-stream is fur-

ther processed by downstream map operators which carry out lpr, seg and post func-

tionality. Finally, the result stream is published over a ZMQ topic (output zmq topic)

using RxZmq’s to topic function which maps an observable data-stream in Rx to

a ZMQ topic. RxZmq’s composable and declarative style of programming preserves the

conceptual flow of the application and makes it readily visible as can be seen in Listing 5.1

Listing 5.1: Sample Implementation of ALPR’s Data-flow with RxZmq

f r o m t o p i c (i n p u t z m q t o p i c) . p i p e (

map (lambda img : cv2 . e q u a l i z e H i s t (img)) ,

map (lambda img : a l p r . r e c o g n i z e n d a r r a y (img)) ,

map (lambda r e s : cv2 . r e c t a n g l e (r e s . img , r e s . p l a t e x 1 ,

r e s . p l a t e y 1 , r e s . p l a t e . x2 , r e s . p l a t e . y2 ,

b o r d e r c o l o r , b o r d e r t h i c k n e s s)) ,

map (lambda img : p o s t p r o c e s s i n g (img)) ,

t o t o p i c (o u t p u t z m q t o p i c)

) . s u b s c r i b e ()

104

RxZmq also provides a lot of flexibility in defining the points of data distribution or

component boundaries in our application. For example, in Listing 5.2, the transformed

stream of input images after histogram equalization is published over a ZMQ topic inter-

mediate zmq topic so that further processing can be offloaded on another device.

These points of data distribution can be easily configured and chosen at the time of de-

ployment.

Listing 5.2: Flexible Component Boundaries with RxZmq

f r o m t o p i c (s r c) . p i p e (

map (lambda img : cv2 . e q u a l i z e H i s t (img)) ,

t o t o p i c (i n t e r m e d i a t e z m q t o p i c)

) . s u b s c r i b e ()

In addition scaling out the application for distributed processing, RxZmq also provides

declarative management of concurrency for scaling up the application to use multiple cores

available on a single node. Rx supports several built-in schedulers, such as thread-

pool, task-pool, new thread, etc. for concurrent execution. For example, in Listing 5.3, the

computationally expensive task of lpr has been offloaded on a ThreadPool scheduler

using Rx’s built-in function observe on which offloads all downstream processing on

the specified scheduler.

Listing 5.3: Scaling-up ALPR’s computation

f r o m t o p i c (s r c) . p i p e (

map (lambda img : cv2 . e q u a l i z e H i s t (img)) ,

o b s e r v e o n (ThreadPoo l) ,

map (lambda img : a l p r . r e c o g n i z e n d a r r a y (img)) ,

. . .

) . s u b s c r i b e ()

105

5.3.2 Experiment Setup and Testbed

Our experiment testbed comprises of 8 Raspberry Pi 3 Model B boards with 1.2 GHz

quad-core Broadcom BCM2837 64-bit processor, 1 Gb RAM and 100 Base Ethernet capac-

ity [154]. Of these, one Raspberry Pi board was used for hosting the source and sink ver-

tices, while the remaining 7 boards were used for hosting the intermediate vertices which

process license plate images.

bf
[35]

lpr
[270]

seg
[15]

eqh
[15]

lpr
[270]

clahe
[20]

lpr
[270]

post
[25] snk

378.5 ms
[1.5 ms]

src
1 msg/s

(a) Latency of ALPR DAG-1 placed on one Raspberry Pi

clahe
[20]

lpr
[270]

seg
[15]

post
[25] snk3

357.9 ms
[1.2 ms]

eqh
[15]

lpr
[270]

seg
[15]

post
[25] snk2

361.0 ms
[1.7 ms]

bf
[35]

lpr
[270]

seg
[15]

post
[25] snk1

354.5 ms
[1.5 ms]

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(b) Latency of constituent paths in ALPR DAG-1 in isolation

bf
[35]

lpr
[270]

seg
[15]

eqh
[15]

lpr
[270]

clahe
[20]

lpr
[270]

post
[25] snk1

534.7 ms
[4.7 ms]

bf
[35]

lpr
[270]

seg
[15]

eqh
[15]

lpr
[270]

clahe
[20]

lpr
[270]

post
[25] snk2

535.6 ms
[1.9 ms]

src1
1 msg/s

src2
1 msg/s

(c) Latency of two ALPR DAG-1s placed on one Raspberry Pi

Figure 5.3: Impact of DAG Structure and Co-location on Latency

Figure 5.3a shows constituent intermediate vertices of ALPR DAG-1 (Figure 5.2) placed

on a single Raspberry Pi board. Isolated execution interval of each vertex, measured in

milliseconds, has been shown in brackets below each vertex’s type. Vertex-lpr is com-

putationally intensive and was measured to take ∼270 ms on average to process a 240

x 320 gray-scale image. Therefore, not more than 3 frames/second can be processed by

vertex-lpr. For our experiments, we set the publication rate of source vertices to 1

frame/second and a vertex-src sends 200 time-stamped 240 x 320 gray-scale images

during each experiment’s run, which lasts for ∼4 minutes. Join vertices or intermediate

vertices with more than one incoming edge, are assumed to follow interleaving seman-

tics [42] wherein the vertex performs its computation whenever it receives a message on

106

any of its incoming edge. Sink vertices log the time-stamp of reception of each image

after it has been processed by the intermediate vertices. Average 90th percentile latency

and its standard deviation (shown in brackets) recorded by a sink vertex across 3 runs has

been shown on its incoming edge. This implies that 90% of all messages received along

all paths that end at a given sink vertex were observed to have an end-to-end path latency

below the 90th percentile value. For example, in Figure 5.3a, 90% of all images processed

along paths 〈b f , l pr,seg, post〉, 〈eqh, l pr,seg, post〉 and 〈clahe, l pr,seg, post〉 that end at

vertex-snk1 have an end-to-end latency below 378.5 ms.

5.4 Application of LPP for Latency-Aware Placement of ALPR

This section describes the application of Linearize Predict and Place (LPP) algorithm

presented in Chapter 4 for the placement of ALPR such that the response time of process-

ing is minimized. Response time, end-to-end latency or makespan of an application DAG

is defined as the maximum latency of all paths in the application DAG. Response time of

a DAG is impacted by several factors, such as, DAG based execution semantics and per-

formance interference due to co-location of multiple vertices on the same physical node.

Figure 5.3b shows the latency of constituent paths of DAG-1, namely, 〈b f , l pr,seg, post〉,

〈eqh, l pr,seg, post〉 and 〈clahe, l pr,seg, post〉, when these paths are run in isolation on a

single Pi board. We see that the end-to-end 90th percentile latencies of constituent paths

are lower than the 90th percentile latency of these paths when the original DAG structure is

executed. Hence, we see that DAG structure imposed execution semantics impact the ob-

served path latencies. Figure 5.3c shows two ALPR DAG-1 applications placed on a single

Pi board. It can be assumed that each application processes images from two different

surveillance video cameras. We see that the latency of each application DAG increases by

∼40% due to performance interference on account co-location of large number of vertices

on the same Pi board.

LPP uses a latency prediction model which can estimate the path latencies of all paths

107

in a DAG and uses this information to guide the placement of constituent vertices such

that the response time of the DAG is minimized. However, developing a latency prediction

model which can predict the end-to-end path latencies of arbitrary DAG structures while

incorporating the impact of performance interference due to co-location of vertices is a hard

problem. To substantially simplify this overhead of model learning, LPP first linearizes a

DAG into an approximate set of linear chains using a set of linearization rules. When

this set of approximate linear chains are executed, the observed latencies are very similar

to that observed when the original DAG structure is executed. Now, a latency prediction

model for co-located linear chains can be used instead to estimate the path latencies in the

original DAG structure. Linearization based approximation helps to reduce the overhead

of learning a model for arbitrary DAG structures since a latency prediction model for co-

located linear chains can be used instead to approximate the path latencies in the original

DAG structure. It is important to note that the original DAG structure is what gets placed

using LPP. Linearization and the prediction model for co-located linear chains are only

used for estimating the path latencies in the original DAG structure which helps to guide

the placement of vertices for makespan minimization.

Section 5.4.1 describes the application of LPP Linearization rules for approximating the

path latencies of ALPR application, Section 5.4.2 describes the latency prediction models

learned for co-located linear chains to guide the placement of ALPR and Section 5.4.3

shows the performance of LPP in predicting the latency of ALPR application DAG and

compares LPP’s placement results with some other simple heuristics for placement.

5.4.1 Linearization Rules

As described in Section 4.3.2, in order to reduce the overhead of training a latency

prediction model for arbitrary DAG structures, LPP linearizes a DAG into a set of linear

chains to approximate the latency of each path in the original DAG structure. This set of

linear chains contains the target path for which the latency is being approximated along

108

with some auxiliary chains to simulate the performance interference for the target path in

the original DAG structure. Linearization is performed by applying distinct linearization

rules for fork and join operators in the original DAG structure. Figure 5.4 and Figure 5.5

show the application of these linearization rules for fork and join operators respectively as

applied to ALPR use-case.

src bf
[35]

1 msg/s

snk1

snk2

snk3lpr
[270]

eqh
[15]

clahe
[20]

334.8 ms
[1.4 ms]

lpr
[270]

337.1 ms
[1.6 ms]

lpr
[270]

354.6 ms
[2.5 ms]

(a) Original DAG with fork operator

bf
[35]

eqh
[15]

lpr
[270] snk1

338.2 ms
[1.0 ms]

clahe
[20]

lpr
[270] snk2

lpr
[270] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(b) Linearization for path-1

bf
[35]

clahe
[20]

lpr
[270] snk1

355.6 ms
[0.8 ms]

eqh
[15]

lpr
[270] snk2

lpr
[270] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(c) Linearization for path-2

bf
[35]

lpr
[270] snk1

334.4 ms
[0.8 ms]

eqh
[15]

lpr
[270] snk2

clahe
[20]

lpr
[270] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(d) Linearization for path-3

Figure 5.4: Linearization for fork operator

bf
[35]

lpr
[270]

seg
[15]

eqh
[15]

lpr
[270]

clahe
[20]

lpr
[270]

post
[25] snk1

373.2 ms
[0.7 ms]

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(a) Original DAG with join operator

bf
[35]

lpr
[270]

seg
[15]

post
[25] snk1

354.9 ms
[1.7 ms]

eqh
[15]

lpr
[270]

seg
[15]

clahe
[20]

lpr
[270]

seg
[15]

post
[25] snk2

post
[25] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(b) Linearization for path-1

eqh
[15]

lpr
[270]

seg
[15]

post
[25] snk1

377.7 ms
[2.6 ms]

bf
[35]

lpr
[270]

seg
[15]

clahe
[20]

lpr
[270]

seg
[15]

post
[25] snk2

post
[25] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(c) Linearization for path-2

clahe
[20]

lpr
[270]

seg
[15]

post
[25] snk1

373.6 ms
[1.7 ms]

bf
[35]

lpr
[270]

seg
[15]

eqh
[15]

lpr
[270]

seg
[15]

post
[25] snk2

post
[25] snk3

src1 1 msg/s

src2 1 msg/s

src3 1 msg/s

(d) Linearization for path-3

Figure 5.5: Linearization for join operator

• Fork operator: Figure 5.4a shows the original DAG structure where vertex-bf

is the fork operator. Vertex-bf executes once and distributes the image after bi-

lateral filtering to three downstream paths which execute concurrently for further

processing. Since the fork operator executes once, it is only made part of the target

path while remaining concurrent paths (without the fork operator) constitute the aux-

iliary chains for performance interference. Figure 5.4b, shows the set of linear chains

109

produced to approximate the latency of path 〈b f ,eqh, l pr〉 by applying this lineariza-

tion rule for fork vertex-bf. The observed latency for target path 〈b f ,eqh, l pr〉

highlighted in gray in Figure 5.4b, i.e., 338.2 ms is very similar to 337.1 ms, i.e., its

observed latency when the original DAG structure is executed as seen in Figure 5.4a.

Similarly, Figure 5.4c and Figure 5.4d show the approximate set of linear chains

produced for target paths 〈b f ,clahe, l pr〉 and 〈b f , l pr〉 respectively.

• Join operator: Figure 5.5a shows the original DAG structure where vertex-seg

is the join operator. Vertex-seg processes each image that it receives from its

three upstream paths (interleaving semantics) by marking the region where license

plates are detected with a rectangular bounding box. Join operator and all its down-

stream operators execute once for each incoming path at the join operator. Therefore,

the join operator and all its downstream operators are made part of each incom-

ing path in the set of approximate linear chains. This is illustrated in Figure 5.5b,

where to approximate the latency of target path 〈b f , l pr,seg, post〉 highlighted in

gray, vertex-seg and vertex-post are also made part of the remaining in-

coming paths, 〈eqh, l pr〉 and 〈clahe, l pr〉.

The latencies of all paths that end at the same sink operator are averaged to approxi-

mate the latency observed at that sink. The average of approximate latencies of paths

〈b f , l pr,seg, post〉, 〈eqh, l pr,seg, post〉 and 〈clahe, l pr,seg, post〉 is 368.7 ms which

is very similar to 373.2 ms, i.e., the observed latency at sink vertex-snk1 in the

original DAG structure seen in Figure 5.5a.

5.4.2 k-Chain Co-location Latency Prediction Model

As discussed in Section 5.4.1, to approximate the latency of a path in the original DAG

structure, a set of linear chains is produced which upon execution gives a latency value

for the target path which is similar to that path’s latency when the original DAG structure

is executed. Hence, arbitrary DAG structures can be linearized and a latency prediction

110

model for co-located linear chains can be used to estimate the latency of a path in the

original DAG structure. For example, a latency prediction model for 3 co-located linear

chains can be used to predict the latency for target path 〈b f ,eqh, l pr〉 in Figure 5.4b. DAG

linearization greatly reduces the overhead of model learning for arbitrary DAG structures

since it allows for a much simpler model for co-located linear chains to be learned and used

instead.

Constituent operators of ALPR, namely, vertex-eqh, vertex-seg, vertex-cl-

ahe, vertex-post, vertex-bf and vertex-lpr take 15 ms, 15 ms, 20 ms, 25 ms,

35 ms and 270 ms on average respectively when executed in isolation on a Raspberry Pi

board. Therefore, to learn latency prediction models for co-located linear chains which can

be applied for placing ALPR, we created a randomly generated dataset where each linear

chain’s constituent operator has an execution interval ρ uniformly randomly chosen from

the set {15 ms, 20 ms, 25 ms, 35 ms, 270 ms}. Since vertex-lpr is computationally

expensive and takes 270 ms on average for processing a 240 x 320 gray-scale input image,

the source vertex is restricted to send image files at 1 frame/second.

Similar to the model learning process described in Section 4.3, some features were used

to characterize the foreground chain/target chain denoted by c f , while others were used

to characterize the background load imposed by the set of auxiliary/background chains

denoted by CB. The following set of features were used for the learning the k-chain co-

location latency prediction model:

• n(c f): number of operators in c f ;

• ∑o∈c f
ρ(o): sum of execution intervals of operators in c f ;

• ∑cb∈CB n(cb): sum of number of operators in all background chains;

• ∑cb∈CB ∑o∈cb
ρ(o): sum of execution intervals of all operators in all background

chains;

111

• n(c f)/∑c∈CB+c f
n(c): fraction of total number of operators in the foreground chain

• ∑o∈c f
ρ(o)/[∑c∈CB+c f ∑o∈c ρ(o)]: fraction of the total sum of execution intervals of

all operators in the foreground chain

For higher accuracy, a separate latency prediction model for each k co-location value

was learned using Neural Network regression, for k up to 8. We ran 200 experiments for

k ≤ 6 and 400 experiments for k = 7 and k = 8 to generate the training dataset. Up to

100 additional tests were performed to generate a separate validation dataset for each k.

During an experiment run, a source vertex sends 200 gray-scale 240 x 320 images at 1

frame/second and an experiment took ∼ 4 minutes to execute. When an experiment for

k co-located chains is run, we get k latency data-points, one corresponding to each linear

chain. Therefore, the training dataset size becomes k times the number of experiments, i.e.,

200, 400, 600, 800, 1000, 1200, 2800 and 3200 for k = 1 to k = 8 as shown in Table 5.2.

90% of this dataset was used for training the neural network and the remaining 10% was

used for testing.

Table 5.2: Accuracy of k-chain co-location regression models for placing ALPR

k
#datapoints
(training)

accuracy
(training)

accuracy
(test)

#datapoints
(validation)

accuracy
(validation)

1 200 .98 .99 100 .99
2 400 .99 .97 100 .97
3 600 .99 .98 100 .99
4 800 .98 .98 100 .98
5 1000 .98 .98 100 .98
6 1200 .98 .98 100 .98
7 2800 .98 .98 100 .98
8 3200 .98 .98 100 .98

We tested different neural network architectures for learning each k-chain co-location

model and found that a neural network with one layer comprising 80 neurons performed

best for k ≤ 6 and a neural network architecture with two layers comprising 40 neurons

each performed best for k = 7 and k = 8. Rectified Linear Units (ReLu) was used as

the activation function, limited memory Broyden-Fletcher-Goldfarb-Shanno (lbfgs) was

112

used as the solver and L2 regularization factor was set to 0.1 for learning all the models.

Figure 5.6a and Figure 5.6b show the learning curves for k = 3 and k = 7 co-location

latency prediction models respectively. The learning curves show that the training and

validation errors converge to a low value of at most 3%. Therefore, the models neither

under-fit nor over-fit the data and are expected to generalize well. Performance of k = 7

chain co-location model on the validation dataset is shown in Figure 5.6c. Here, we see

that the predicted values track the experimentally observed latency values quite well with

an average error of 9.9 ms over all 100 data-points. Table 5.2 summarizes the performance

of all k-chain co-location regression models on training, test and validation datasets. All

learned models were observed to have an accuracy of at least 97%.

(a) Learning curve for k = 3 (b) Learning curve for k = 7 (c) Validation results for k = 7

Figure 5.6: Performance of k-chain co-location latency prediction models

5.4.3 Performance Evaluation of LPP for Placement of ALPR

To assess the performance of LPP for placement of ALPR application over a cluster of

Raspberry Pis such that its latency of processing is minimized, we apply LPP to generate

the placement for three ALPR application DAG structures as depicted in Figure 5.2, Fig-

ure 5.7a and Figure 5.7b. All three DAG structures are composed of the same component

operator types, such as vertex-bf, vertex-clahe, vertex-lpr, etc., but they are

structurally different from each other. Figure 5.8 shows the predicted vs observed latency

of these three DAG structures after they are placed by LPP. We observe that LPP is able to

predict the latency fairly well with a mean prediction error of 19 ms.

We also compared the placement produced by LPP with two other heuristics- SUM and

113

bf

lpr

eqh

clahe

postlpr

lpr

snksrc

(a) ALPR Application DAG-2

bf

lpr

eqh

clahe

seg

lpr

lpr

eqh lpr seg

clahe lpr

snk

post

src

(b) ALPR Application DAG-3

Figure 5.7: Application DAG Structures

Figure 5.8: LPP Predicted vs Observed for different DAG Structures

CONST. SUM and CONST use the same DAG linearization approach used by LPP to esti-

mate the number of co-located linear chains on a physical node/Raspberry Pi upon operator

placement, but unlike LPP which uses the k-chain co-location latency prediction model to

predict each path’s latency, SUM and CONST make some simplifying assumptions to es-

timate a path’s latency. CONST approach assumes that there is no impact of co-location

of background chains on a DAG’s path latency and it estimates each path’s latency to be

the sum of execution intervals of its constituent operators. SUM approach assumes that a

path’s latency is the sum of its constituent operators so long as the number of co-located

paths on the same Raspberry Pi is≤ 4 since the Raspberry Pi has 4 cores and can execute 4

paths concurrently. However, if the number of co-located paths is more than 4, then SUM

estimates that each operator’s execution interval becomes equal to the sum of execution

intervals of all co-located operators divided by 4, on account of performance interference.

114

(a) Observed makespan (b) Prediction Error (c) Number of nodes

Figure 5.9: Comparison of LPP with SUM and CONST approaches (Application DAG-1)

Since latency prediction models have only be learned for k ≤ 8, all three approaches con-

sider an operator’s placement on a physical node as infeasible if that operator’s placement

on the node results in more than 8 co-located linear chains on the same physical node.

Assuming that one ALPR DAG-1 structure processes images from one video camera,

an increasing number of ALPR DAG-1 structures for processing up to 7 video camera

streams are placed on our test-bed of 8 Raspberry Pis using LPP, SUM and CONST ap-

proaches for comparison. Figure 5.9a compares the makespan of placements produced by

LPP, SUM and CONST for placing up to 7 ALPR DAG-1 structures. Figure 5.9b shows

the error in predicting the makespan when up to 7 ALPR DAG-1 structures are placed

using LPP, SUM and CONST. Figure 5.9c shows the number of physical nodes used by

LPP, SUM and CONST for placing up to 7 ALPR DAG-1 structures. We observe that LPP

is able to find a placement with minimal makespan in comparison to SUM and CONST

approaches. Latency prediction error for LPP is also substantially less than that of SUM

and CONST approaches. This shows that LPP’s linearization and k-chain co-location mod-

els perform fairly well in estimating path latencies. CONST underestimates path latencies

since it ignores the impact of operator co-location and favors placing more operators on the

same physical node. This results in much higher DAG latencies due to higher resource con-

tention, although it uses the least number of physical nodes for operator placement. SUM

overestimates path latencies to a great extent and therefore, its prediction error is very high.

Due to this overestimation SUM distributes the operators out over more physical nodes in

comparison to CONST approach. LPP uses same or more number of nodes than SUM, but

115

is still able to find a placement of operators which results in a lower makespan than SUM

approach. LPP is able to make a better trade-off between network cost and cost of operator

co-location than CONST and SUM since it uses a more accurate latency prediction model.

5.5 Conclusion

In this chapter we demonstrated the application of our research ideas in the context of

a real world, edge-centric application for Automatic License Plate Recognition (ALPR).

ALPR can benefit from an edge based deployment since processing images near the source

can help in fast identification of traffic violations and real-time, automatic toll and parking

fee management. Moreover, sending video streams from a large/city scale deployment of

surveillance cameras to the cloud for processing would be very expensive. We implemented

our ALPR application using RxZmq library which unifies pub/sub data distribution and

local data stream processing for seamless end-to-end development of distributed data-flows.

RxZmq offers several benefits such as composability, flexibility in defining component

boundaries and declarative management of concurrency, which eased the development of

ALPR to a great extent. To ensure that ALPR benefits from an edge-based deployment in

terms of response time, our Linearize Predict and Place (LPP) algorithm was used to place

the constituent operators of ALPR over a cluster of Raspberry Pi boards which served as

edge devices. Experiment results show that LPP was able to predict the latency of several

different ALPR application graph structures fairly well and was able to come up with a

placement with minimal response time in comparison to simpler heuristics which either

overestimate or underestimate path latencies. Linearization rules for approximating path

latencies of arbitrary graph structures were developed on the basis of empirical observations

that were made on a single-core Beagle Black Bone device. However, LPP’s low prediction

error in placing ALPR over quad-core Raspberry Pi boards demonstrates that linearization

can be used as a good approximation, even for estimating path latencies for application

graphs placed on multi-core devices.

116

Chapter 6

SUMMARY

6.1 Summary of Research Contributions

To meet the data distribution and on-line processing needs of latency-sensitive IoT ap-

plications deployed at the edge, this doctoral research makes the following contributions:

1. Latency-Aware Data Distribution at the Edge: Topic-based pub/sub communi-

cation pattern is widely used to meet the large scale data distribution needs of IoT

applications. However, none of the existing open-source topic-based pub/sub sys-

tems provide any QoS assurance on the end-to-end latency of data delivery. Increas-

ingly, pub/sub brokers deployed at the edge also support light-weight processing on

the incoming data streams in addition to data distribution, making it the publish-

process-subscribe pattern. It is in this context that end-to-end latency QoS for data

dissemination and processing must be provided to support latency-sensitive applica-

tions.

To provide latency QoS assurance for publish-process-subscribe systems, we propose

our solution which learns a latency prediction model for a set of co-located topics on

an edge broker and uses this model to balance the processing and data-dissemination

load to provide the desired QoS, specified as per-topic 90th percentile latency. In

this context, we make the following key contributions: (a) a sensitivity analysis to

understand the impact of features such as publishing rate, number of subscribers,

per-sample processing interval and background load on a topic’s performance; (b)

a latency prediction model for a set of co-located topics, which is then used for

the latency-aware placement of topics on brokers; and (c) an optimization problem

formulation for k-topic co-location to minimize the number of brokers while meeting

each topic’s QoS requirement. Here, k denotes the maximum number of topics that

117

can be placed on a broker.

2. Support for DAG Stream Processing at the Edge: With the advent of edge com-

puting, stream based processing of data can span across the entire resource spectrum

from edge to the cloud. Such a hierarchical and geo-distributed stream processing

application can be viewed as a distributed dataflow. Pub/sub pattern can adequately

meet the distribution needs of this dataflow. However, due to lack of generality and

composability in the API of pub/sub systems, data processing is seldom implemented

as a dataflow. Therefore, there is a need for a unified programming model for data

distribution and processing which can help preserve the end-to-end dataflow struc-

ture. To address this need, we have proposed our solution which blends reactive

programming with pub/sub based data distribution. Reactive programming provides

a dedicated abstraction for data streams and supports a variety of composable and re-

usable operators for stream-based processing. Therefore, this integration allows even

the local processing stages of a pub/sub application to be structured as a dataflow.

To demonstrate our research ideas, we integrated a specific instance of reactive pro-

gramming, namely, Microsoft .NET Reactive Extensions (Rx) with a specific in-

stance of pub/sub, namely, Real Time Innovation’s (RTI) Data Distribution Service

(DDS), into an open-source library called Rx4DDS.NET. We compared a stream

processing application developed using Rx4DDS.NET with an imperative solution

developed using DDS and C#. Our qualitative evaluation results show that our inte-

grated Rx4DDS.NET solution unifies local processing and data distribution aspects

to preserve the end-to-end dataflow structure.

3. Latency-Aware DAG Stream Processing at the Edge: In order to support latency-

sensitive stream-based applications deployed at the edge, it is important that the con-

stituent operators of the application DAG are placed over resource constrained edge

devices intelligently. An optimal placement is one that minimizes the the end-to-end

118

response time of the DAG by intelligently trading off inter-operator communica-

tion cost incurred to do distributed placement of operators across edge devices with

the cost of interference that is incurred due to co-location of operators on the same

resource-constrained edge device.

Although operator placement problem has been studied extensively in the literature,

existing solutions do not consider the impact of DAG structure imposed execution

semantics, incoming data rates and performance interference due to co-location on

path latencies. To address these limitations, we have presented our solution which

uses a latency prediction model to estimate path latencies accurately by taking all the

aforementioned factors, i.e., DAG structure, data rate and operator co-location into

account. This latency prediction model is subsequently used by a greedy placement

algorithm to inform the placement of operators such that the end-to-end response

time of the DAG is minimized.

Since learning a model which predicts the latency of all paths in any arbitrary DAG

structure is complex, we present a novel solution which first linearizes the DAG into

an equivalent set of linear chains. Thereafter, a simple latency prediction model for

multiple co-located linear chains is used to approximate the path latencies in the

original DAG.

4. Application of Presented Research to a Real-World Edge Use-case : We demon-

strated the applicability of our research solutions in the context of a real-world, edge-

based application on Automatic License Plate Recognition (ALPR). ALPR continu-

ously monitors video data streams to identify vehicle license plate numbers and can

be used in a variety of applications such as video surveillance, automated parking

fee management and automated toll collection. Sending video data streams from a

large/city scale deployment of video cameras can become prohibitively expensive

and incur a huge latency cost, which makes ALPR is a good edge-based application

119

use-case. We implemented ALPR using our unified programming language for pub-

/sub based data distribution and reactive stream data processing. We demonstrate

the benefits of using this unified programming model, such as composable, declar-

ative style of programming, declarative management of concurrency and flexibility

in defining the component boundaries in the context of ALPR application use-case.

To ensure that ALPR’s latency of processing is kept low when deployed on edge de-

vices, we applied our Linearize, Predict and Place (LPP) algorithm for latency-aware

placement of ALPR on a cluster of Raspberry Pi devices. Although LPP model was

developed using empirical latency observations made on a single-core Beagle Black

Bone device, successful application of LPP to place ALPR on quad-core Raspberry

Pi devices demonstrates the generality of LPP model. Experiment results show that

LPP is able to find a good placement of ALPR which minimizes the end-to-end la-

tency of data processing.

6.2 List of Publications

JOURNAL PUBLICATIONS

1. Subhav Pradhan, Abhishek Dubey, Shweta Khare, Saideep Nannapaneni, Anirud-

dha Gokhale, Sankaran Mahadevan, Douglas C. Schmidt, and Martin Lehofer. ”Char-

iot: Goal-driven orchestration middleware for resilient iot systems.” In ACM Trans-

actions on Cyber-Physical Systems, 2018.

2. Swetasudha Panda, Andrew J. Asman, Shweta Khare, Lindsey Thompson, Louise

A. Mawn, Seth A. Smith, and Bennett A. Landman. ”Evaluation of multiatlas label

fusion for in vivo magnetic resonance imaging orbital segmentation.” In Journal of

Medical Imaging, 2014.

120

CONFERENCE PUBLICATIONS

1. Shweta Khare, Hongyang Sun, Julien Gascon-Samson, Kaiwen Zhang, Yogesh

Barve, Anirban Bhattacharjee, Aniruddha Gokhale and Xenofon Koutsoukos. ” Lin-

earize, Predict and Place: Minimizing the Makespan for Edge-based Stream Process-

ing of Directed Acyclic Graphs.” In proceedings of the 4th ACM/IEEE Symposium

on Edge Computing (SEC), 2019.

2. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhat-

tacharjee, Zhuangwei Kang, Hongyang Sun and Aniruddha Gokhale. ”FECBench:

A Holistic Interference-aware Approach for Application Performance Modeling.” in

the IEEE International Conference on Cloud Engineering (IC2E), 2019.

3. Yogesh Barve, Shashank Shekhar, Shweta Khare, Anirban Bhattacharjee, and Anirud-

dha Gokhale. ”UPSARA: A Model-Driven Approach for Performance Analysis of

Cloud-Hosted Applications.” In proceedings of the 11th IEEE/ACM International

Conference on Utility and Cloud Computing (UCC), 2018.

4. Shweta Khare, Hongyang Sun, Kaiwen Zhang, Julien Gascon-Samson, Aniruddha

S. Gokhale, Xenofon D. Koutsoukos and Hamzah Abdelaziz. ”Scalable Edge Com-

puting for Low Latency Data Dissemination in Topic-Based Publish/Subscribe.” In

proceedings of the 3rd ACM/IEEE Symposium on Edge Computing (SEC), 2018.

5. Kyoungho An, Shweta Khare, Aniruddha S. Gokhale and Akram Hakiri. ”An Au-

tonomous and Dynamic Coordination and Discovery Service for Wide-Area Peer-to-

peer Publish/Subscribe: Experience Paper.” In proceedings of the 11th ACM Inter-

national Conference on Distributed and Event-Based Systems (DEBS), 2017.

6. Shweta Khare, Kyoungho An, Aniruddha S. Gokhale, Sumant Tambe and Ashish

Meena. ”Reactive stream processing for data-centric publish/subscribe.” In proceed-

ings of the 9th ACM International Conference on Distributed Event-Based Systems

121

(DEBS), 2015.

7. Yurui Gao, Kurt G Schilling, Shweta Khare, Swetasudha Panda, Ann S Choe, Iwona

Stepniewska, Xia Li, Zhoahua Ding, Adam Anderson and Bennett A Landman. ”A

brain MRI atlas of the common squirrel monkey, Saimiri Sciureus.” In Medical Imag-

ing 2014: Biomedical Applications in Molecular, Structural, and Functional Imag-

ing, 2014.

SHORT PAPERS, WORKSHOPS AND POSTERS

1. Anirban Bhattacharjee, Barve, Yogesh, Shweta Khare, Shunxing Bao, Aniruddha

Gokhale, and Thomas Damiano. ”Stratum: A Serverless Framework for the Lifecy-

cle Management of Machine Learning-based Data Analytics Tasks.” To Appear in the

2019 USENIX Conference on Operational Machine Learning (OpML 19), USENIX,

2019

2. Shweta Khare, Hongyang Sun, Kaiwen Zhang, Julien Gascon-Samson, Aniruddha

S. Gokhale and Xenofon D. Koutsoukos. ”Poster Abstract: Ensuring Low-Latency

and Scalable Data Dissemination for Smart-City Applications.” In proceedings of

the 3rd International Conference on Internet-of-Things Design and Implementation

(IoTDI), 2018.

3. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhat-

tacharjee, and Aniruddha Gokhale. ”Poster: FECBench: An extensible framework

for pinpointing sources of performance interference in the cloud-edge resource spec-

trum.” In Proceedings of the Third ACM/IEEE Symposium on Edge Computing,

2018.

4. Yogesh Barve, Shashank Shekhar, Ajay Dev Chhokra, Shweta Khare, Anirban Bhat-

tacharjee, and Aniruddha Gokhale. ”Demo Paper: FECBench A Framework for

Measuring and Analyzing Performance Interference Effects for Latency-Sensitive

122

Applications.” RTSS Works Demo Session of the 39th IEEE Realtime Systems Sym-

posium (RTSS), 2018.

5. Shweta Khare, Janos Sallai, Abhishek Dubey and Aniruddha S. Gokhale. ”Short

Paper: Towards Low-Cost Indoor Localization Using Edge Computing Resources.”

In proceedings of the 20th IEEE International Symposium on Real-Time Distributed

Computing (ISORC), 2017.

6. Subhav Pradhan, Abhishek Dubey, Shweta Khare, Fangzhou Sun, Janos Sallai,

Aniruddha S. Gokhale, Douglas C. Schmidt, Martin Lehofer and Monika Sturm.

”Poster Abstract: A Distributed and Resilient Platform for City-Scale Smart Sys-

tems.” In proceedings of the 1st IEEE/ACM Symposium on Edge Computing, 2016.

TUTORIALS AND TALKS

1. Aniruddha Gokhale, Yogesh Barve, Anirban Bhattacharjee and Shweta Khare. ”Soft-

ware defined and Programmable CPS/IoT-OS: Architecting the Next Generation of

CPS/IoT Operating Systems.” To Appear in the 1st International Workshop on Next-

Generation Operating Systems for Cyber-Physical Systems (NGOSCPS), 2019.

2. Anirban Bhattacharjee, Yogesh Barve, Shweta Khare and Aniruddha Gokhale. ”In-

vestigating Dynamic Resource Management Solutions for Cloud Infrastructures us-

ing Chameleon Cloud.” In 2nd Chameleon Users Meeting, 2019.

3. Shashank Shekhar, Yogesh Barve, Shweta Khare, Anirban Bhattacharjee and Anirud-

dha Gokhale. ”FECBench: An Extensible Framework for Pinpointing Sources of

Performance Interference in Cloud-to-Edge hosted Applications.” Tutorial at IEEE

International Conference on Cloud Engineering (IC2E), 2018.

123

DOCTORAL SYMPOSIUM

1. Shweta Khare. ”Towards Scalable Edge Computing with Latency Assurance.” In

Proceedings of the Third ACM/IEEE Symposium on Edge Computing, 2018.

2. Shweta Khare. ”Distributed Reactive Processing: Research Roadmap.” In proceed-

ings of the 9th ACM International Conference on Distributed Event-Based Systems

(DEBS), 2015.

124

BIBLIOGRAPHY

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer

networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] “Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31 Per-

cent From 2016,” https://www.gartner.com/technology/pressRoom.do?id=3598917,

2017.

[3] J. Y. Fernndez-Rodrguez, J. A. lvarez Garca, J. Arias Fisteus, M. R. Luaces, and

V. Corcoba Magaa, “Benchmarking real-time vehicle data streaming models for a

smart city,” Inf. Syst., vol. 72, no. C, pp. 62–76, Dec. 2017. [Online]. Available:

https://doi.org/10.1016/j.is.2017.09.002

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces

of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003.

[Online]. Available: http://doi.acm.org/10.1145/857076.857078

[5] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting iot

platform requirements with open pub/sub solutions,” Annals of Telecommunications,

vol. 72, no. 1, pp. 41–52, Feb 2017. [Online]. Available: https://doi.org/10.1007/

s12243-016-0537-4

[6] “MQTT,” http://mqtt.org/.

[7] “Kafka,” https://kafka.apache.org/.

[8] “ActiveMQ,” http://activemq.apache.org/.

[9] P. Bellavista, A. Corradi, L. Foschini, and A. Pernafini, “Data distribution ser-

vice (dds): A performance comparison of opensplice and rti implementations,” in

125

https://www.gartner.com/technology/pressRoom.do?id=3598917
https://doi.org/10.1016/j.is.2017.09.002
http://doi.acm.org/10.1145/857076.857078
https://doi.org/10.1007/s12243-016-0537-4
https://doi.org/10.1007/s12243-016-0537-4
http://mqtt.org/
https://kafka.apache.org/
http://activemq.apache.org/

2013 IEEE Symposium on Computers and Communications (ISCC), July 2013, pp.

000 377–000 383.

[10] A. Shukla and Y. Simmhan, “Benchmarking distributed stream processing platforms

for iot applications,” in Performance Evaluation and Benchmarking. Traditional -

Big Data - Internet of Things, R. Nambiar and M. Poess, Eds. Cham: Springer

International Publishing, 2017, pp. 90–106.

[11] “Apache Storm,” http://storm.apache.org/.

[12] “Apache Spark,” https://spark.apache.org/.

[13] “Apache Flink,” https://flink.apache.org.

[14] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: Fault-tolerant stream processing

at internet scale,” in Very Large Data Bases, 2013, pp. 734–746.

[15] E. G. Renart, J. Diaz-Montes, and M. Parashar, “Data-driven stream processing at

the edge,” in 2017 IEEE 1st International Conference on Fog and Edge Computing

(ICFEC), May 2017, pp. 31–40.

[16] L. Liu, X. Zhang, M. Qiao, and W. Shi, “Safeshareride: Edge-based attack detection

in ridesharing services,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC).

IEEE, 2018, pp. 17–29.

[17] “Data Never Sleeps 5.0,” https://www.domo.com/learn/data-never-sleeps-5, 2017.

[18] B. Zhang, N. Mor, J. Kolb, D. S. Chan, N. Goyal, K. Lutz, E. Allman, J. Wawrzynek,

E. Lee, and J. Kubiatowicz, “The cloud is not enough: Saving iot from the cloud,”

in Proceedings of the 7th USENIX Conference on Hot Topics in Cloud Computing,

ser. HotCloud’15. Berkeley, CA, USA: USENIX Association, 2015, pp. 21–21.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2827719.2827740

126

http://storm.apache.org/
https://spark.apache.org/
https://flink.apache.org
https://www.domo.com/learn/data-never-sleeps-5
http://dl.acm.org/citation.cfm?id=2827719.2827740

[19] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, Jan 2017.

[20] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–

23, Oct 2009.

[21] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of cloudlets on interactive

mobile cloud applications,” in 2012 IEEE 16th International Enterprise Distributed

Object Computing Conference, Sept 2012, pp. 123–132.

[22] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,

P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayanan, “An empirical study

of latency in an emerging class of edge computing applications for wearable

cognitive assistance,” in Proceedings of the Second ACM/IEEE Symposium on Edge

Computing, ser. SEC ’17. New York, NY, USA: ACM, 2017, pp. 14:1–14:14.

[Online]. Available: http://doi.acm.org/10.1145/3132211.3134458

[23] “RabbitMQ,” https://www.rabbitmq.com/.

[24] B. Krishnamachari and K. Wright, “The publish-process-subscribe paradigm for the

internet of things,” 2017.

[25] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis, “A co-

operative fog approach for effective workload balancing,” IEEE Cloud Computing,

vol. 4, no. 2, pp. 36–45, March 2017.

[26] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling on-demand edge

analytics over scoped data sources,” in 2016 IEEE International Congress on Big

Data (BigData Congress), June 2016, pp. 101–108.

[27] “PubNub,” https://www.pubnub.com/docs/tutorials/pubnub-functions.

127

http://doi.acm.org/10.1145/3132211.3134458
https://www.rabbitmq.com/
https://www.pubnub.com/docs/tutorials/pubnub-functions

[28] D. Happ and A. Wolisz, “Towards gateway to cloud offloading in iot publish/sub-

scribe systems,” in 2017 Second International Conference on Fog and Mobile Edge

Computing (FMEC), May 2017, pp. 101–106.

[29] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic, and I. P. arko, “A mobile

crowdsensing ecosystem enabled by a cloud-based publish/subscribe middleware,”

in 2014 International Conference on Future Internet of Things and Cloud, Aug 2014,

pp. 107–114.

[30] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov, “Spanedge: Towards

unifying stream processing over central and near-the-edge data centers,” in 2016

IEEE/ACM Symposium on Edge Computing (SEC), Oct 2016, pp. 168–178.

[31] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe,

“Mobile fog: A programming model for large-scale applications on the internet

of things,” in Proceedings of the Second ACM SIGCOMM Workshop on Mobile

Cloud Computing, ser. MCC ’13. New York, NY, USA: ACM, 2013, pp. 15–20.

[Online]. Available: http://doi.acm.org/10.1145/2491266.2491270

[32] P. Ravindra, A. Khochare, S. Reddy, S. Sharma, P. Varshney, and Y. Simmhan,

“ECHO: an adaptive orchestration platform for hybrid dataflows across cloud

and edge,” CoRR, vol. abs/1707.00889, 2017. [Online]. Available: http:

//arxiv.org/abs/1707.00889

[33] N. K. Giang, M. Blackstock, R. Lea, and V. C. M. Leung, “Distributed data flow:

A programming model for the crowdsourced internet of things,” in Proceedings

of the Doctoral Symposium of the 16th International Middleware Conference, ser.

Middleware Doct Symposium ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:4.

[Online]. Available: http://doi.acm.org/10.1145/2843966.2843970

[34] D. Hilley and U. Ramachandran, “Persistent temporal streams,” in Proceedings

128

http://doi.acm.org/10.1145/2491266.2491270
http://arxiv.org/abs/1707.00889
http://arxiv.org/abs/1707.00889
http://doi.acm.org/10.1145/2843966.2843970

of the 10th ACM/IFIP/USENIX International Conference on Middleware, ser.

Middleware ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 17:1–17:20.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1656980.1657003

[35] “streamCoCo,” http://sumanttambe.com/documents/pubs/rti-edge-streaming.pdf.

[36] I. Maier and M. Odersky, “Deprecating the Observer Pattern with Scala.react,” Tech.

Rep., 2012.

[37] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator

placement for distributed stream processing applications,” in Proceedings of the

10th ACM International Conference on Distributed and Event-based Systems, ser.

DEBS ’16. New York, NY, USA: ACM, 2016, pp. 69–80. [Online]. Available:

http://doi.acm.org/10.1145/2933267.2933312

[38] T. Li, J. Tang, and J. Xu, “Performance modeling and predictive scheduling for

distributed stream data processing,” IEEE Transactions on Big Data, vol. 2, no. 4,

pp. 353–364, Dec 2016.

[39] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm: Resource-

aware scheduling in storm,” in Proceedings of the 16th Annual Middleware

Conference, ser. Middleware ’15. New York, NY, USA: ACM, 2015, pp. 149–161.

[Online]. Available: http://doi.acm.org/10.1145/2814576.2814808

[40] T. Li, Z. Xu, J. Tang, and Y. Wang, “Model-free control for distributed

stream data processing using deep reinforcement learning,” Proc. VLDB

Endow., vol. 11, no. 6, pp. 705–718, Feb. 2018. [Online]. Available:

https://doi.org/10.14778/3199517.3199521

[41] X. Wei, X. Wei, H. Li, Y. Zhuang, and H. Yue, “Topology-aware task allocation

for distributed stream processing with latency guarantee,” in Proceedings of the

129

http://dl.acm.org/citation.cfm?id=1656980.1657003
http://sumanttambe.com/documents/pubs/rti-edge-streaming.pdf
http://doi.acm.org/10.1145/2933267.2933312
http://doi.acm.org/10.1145/2814576.2814808
https://doi.org/10.14778/3199517.3199521

2Nd International Conference on Advances in Image Processing, ser. ICAIP

’18. New York, NY, USA: ACM, 2018, pp. 245–251. [Online]. Available:

http://doi.acm.org/10.1145/3239576.3239621

[42] R. Ghosh and Y. Simmhan, “Distributed scheduling of event analytics across edge

and cloud,” ACM Trans. Cyber-Phys. Syst., vol. 2, no. 4, pp. 24:1–24:28, Jul. 2018.

[Online]. Available: http://doi.acm.org/10.1145/3140256

[43] R. Ghosh, S. P. R. Komma, and Y. L. Simmhan, “Adaptive energy-aware scheduling

of dynamic event analytics across edge and cloud resources,” 2018 18th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp.

72–82, 2018.

[44] X. Cai, H. Kuang, H. Hu, W. Song, and J. Lü, “Response time aware operator place-

ment for complex event processing in edge computing,” in International Conference

on Service-Oriented Computing. Springer, 2018, pp. 264–278.

[45] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A

vision, architectural elements, and future directions,” Future generation computer

systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[46] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for

smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, Feb 2014.

[47] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

internet of things,” in Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA: ACM, 2012, pp.

13–16. [Online]. Available: http://doi.acm.org/10.1145/2342509.2342513

[48] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:

A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.

130

http://doi.acm.org/10.1145/3239576.3239621
http://doi.acm.org/10.1145/3140256
http://doi.acm.org/10.1145/2342509.2342513

84 – 106, 2013, including Special section: AIRCC-NetCoM 2009 and

Special section: Clouds and Service-Oriented Architectures. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0167739X12001318

[49] “Averages can be misleading: try a percentile,” https://www.elastic.co/blog/

averages-can-dangerous-use-percentile.

[50] R. Barazzutti, T. Heinze, A. Martin, E. Onica, P. Felber, C. Fetzer, Z. Jerzak,

M. Pasin, and E. Rivire, “Elastic scaling of a high-throughput content-based pub-

lish/subscribe engine,” in 2014 IEEE 34th International Conference on Distributed

Computing Systems, June 2014, pp. 567–576.

[51] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and elastic publish/subscribe

service,” in Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE In-

ternational. IEEE, 2011, pp. 1254–1265.

[52] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth: A scalable

pub/sub middleware for latency-constrained applications in the cloud,” in 2015 IEEE

35th International Conference on Distributed Computing Systems, June 2015, pp.

486–496.

[53] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation of a wide-

area event notification service,” ACM Transactions on Computer Systems (TOCS),

vol. 19, no. 3, pp. 332–383, 2001.

[54] F. Cao and J. P. Singh, “Efficient event routing in content-based publish-subscribe

service networks,” in IEEE INFOCOM 2004, vol. 2, March 2004, pp. 929–940 vol.2.

[55] I. Aekaterinidis and P. Triantafillou, “Pastrystrings: A comprehensive content-based

publish/subscribe dht network,” in 26th IEEE International Conference on Dis-

tributed Computing Systems (ICDCS’06), 2006, pp. 23–23.

131

http://www.sciencedirect.com/science/article/pii/S0167739X12001318
https://www.elastic.co/blog/averages-can-dangerous-use-percentile
https://www.elastic.co/blog/averages-can-dangerous-use-percentile

[56] S. Voulgaris, E. Riviere, A.-M. Kermarrec, M. Van Steen et al., “Sub-2-sub: Self-

organizing content-based publish subscribe for dynamic large scale collaborative

networks.” in IPTPS, 2006.

[57] “Amazon IoT,” https://aws.amazon.com/iot/.

[58] “Redis,” https://redis.io/.

[59] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,

R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and D. Pfisterer,

“Smartsantander: Iot experimentation over a smart city testbed,” Comput. Netw.,

vol. 61, pp. 217–238, Mar. 2014. [Online]. Available: http://dx.doi.org/10.1016/j.

bjp.2013.12.020

[60] A. Khanna and R. Anand, “Iot based smart parking system,” in 2016 International

Conference on Internet of Things and Applications (IOTA), Jan 2016, pp. 266–270.

[61] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in wide scale publish-

subscribe systems,” IEEE Communications Surveys & Tutorials, 2014.

[62] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event routing in

publish-subscribe systems,” in Network Computing and Applications, Fourth IEEE

International Symposium on. IEEE, 2005, pp. 101–108.

[63] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-oriented middleware

with qos awareness,” in ICSOC/ServiceWave, 2009.

[64] S. Guo, K. Karenos, M. Kim, H. Lei, and J. Reason, “Delay-cognizant reliable deliv-

ery for publish/subscribe overlay networks,” in 2011 31st International Conference

on Distributed Computing Systems, June 2011, pp. 403–412.

[65] J. Gascon-Samson, J. Kienzle, and B. Kemme, “Multipub: Latency and cost-aware

132

https://aws.amazon.com/iot/
https://redis.io/
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.1016/j.bjp.2013.12.020

global-scale cloud publish/subscribe,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), June 2017, pp. 2075–2082.

[66] S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker system for en-

abling distributed, internet-scale iot applications over heterogeneous cloud plat-

forms,” arXiv preprint arXiv:1610.00620, 2016.

[67] I. Awan, M. Younas, and W. Naveed, “Modelling qos in iot applications,” in 2014

17th International Conference on Network-Based Information Systems, Sept 2014,

pp. 99–105.

[68] G. Bouloukakis, N. Georgantas, A. Kattepur, and V. Issarny, “Timeliness evaluation

of intermittent mobile connectivity over pub/sub systems,” in Proceedings of the

8th ACM/SPEC on International Conference on Performance Engineering, ser.

ICPE ’17. New York, NY, USA: ACM, 2017, pp. 275–286. [Online]. Available:

http://doi.acm.org/10.1145/3030207.3030220

[69] P. Nguyen and K. Nahrstedt, “Resource management for elastic publish subscribe

systems: A performance modeling-based approach,” in 2016 IEEE 9th International

Conference on Cloud Computing (CLOUD), June 2016, pp. 561–568.

[70] Z. Jerzak and H. Ziekow, “The debs 2015 grand challenge,” in Proceedings of

the 9th ACM International Conference on Distributed Event-Based Systems, ser.

DEBS ’15. New York, NY, USA: ACM, 2015, pp. 266–268. [Online]. Available:

http://doi.acm.org/10.1145/2675743.2772598

[71] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot benchmark for dis-

tributed stream processing systems,” vol. 29, 11 2017.

[72] J. Y. Fernndez-Rodrguez, J. A. lvarez Garca, J. Arias Fisteus, M. R. Luaces, and

V. Corcoba Magaa, “Benchmarking real-time vehicle data streaming models for a

133

http://doi.acm.org/10.1145/3030207.3030220
http://doi.acm.org/10.1145/2675743.2772598

smart city,” Inf. Syst., vol. 72, no. C, pp. 62–76, Dec. 2017. [Online]. Available:

https://doi.org/10.1016/j.is.2017.09.002

[73] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,

“Heracles: Improving resource efficiency at scale,” in Proceedings of the

42Nd Annual International Symposium on Computer Architecture, ser. ISCA

’15. New York, NY, USA: ACM, 2015, pp. 450–462. [Online]. Available:

http://doi.acm.org/10.1145/2749469.2749475

[74] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for datacenter

applications,” in 2013 IEEE international symposium on workload characterization

(IISWC). IEEE, 2013, pp. 23–33.

[75] “ZeroMQ,” http://zeromq.org/.

[76] “ZooKeeper,” https://zookeeper.apache.org/.

[77] “Stress-Ng,” http://kernel.ubuntu.com/∼cking/stress-ng/.

[78] “NTP,” http://www.ntp.org/.

[79] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals of queue-

ing theory. John Wiley & Sons, 2018, vol. 399.

[80] S. P. Curram and J. Mingers, “Neural networks, decision tree induction and

discriminant analysis: An empirical comparison,” The Journal of the Operational

Research Society, vol. 45, no. 4, pp. 440–450, 1994. [Online]. Available:

http://www.jstor.org/stable/2584215

[81] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[82] A. Ng, “Learning curves,” https://www.coursera.org/lecture/machine-learning/

learning-curves-Kont7.

134

https://doi.org/10.1016/j.is.2017.09.002
http://doi.acm.org/10.1145/2749469.2749475
http://zeromq.org/
https://zookeeper.apache.org/
http://kernel.ubuntu.com/~cking/stress-ng/
http://www.ntp.org/
http://www.jstor.org/stable/2584215
https://www.coursera.org/lecture/machine-learning/learning-curves-Kont7
https://www.coursera.org/lecture/machine-learning/learning-curves-Kont7

[83] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[84] C. H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.

[85] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory

of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[86] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A sur-

vey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[87] L. Coetzee and J. Eksteen, “The internet of things - promise for the future? an

introduction,” in IST-Africa Conference Proceedings, 2011.

[88] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Comput. Surv. [Online]. Available:

http://doi.acm.org/10.1145/857076.857078

[89] “The Reactive Manifesto,” http://www.reactivemanifesto.org, 2013.

[90] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter,

“A survey on reactive programming,” ACM Comput. Surv., vol. 45, no. 4, pp.

52:1–52:34, Aug. 2013. [Online]. Available: http://doi.acm.org/10.1145/2501654.

2501666

[91] G. Salvaneschi, P. Eugster, and M. Mezini, “Programming with implicit

flows,” IEEE Software, vol. 31, no. 5, pp. 52–59, 2014. [Online]. Available:

http://doi.ieeecomputersociety.org/10.1109/MS.2014.101

[92] G. H. Cooper and S. Krishnamurthi, “Embedding Dynamic Dataflow in a Call-by-

value Language,” in Programming Languages and Systems. Springer, 2006, pp.

294–308.

135

http://doi.acm.org/10.1145/857076.857078
http://www.reactivemanifesto.org
http://doi.acm.org/10.1145/2501654.2501666
http://doi.acm.org/10.1145/2501654.2501666
http://doi.ieeecomputersociety.org/10.1109/MS.2014.101

[93] C. Elliott and P. Hudak, “Functional Reactive Animation,” in ACM SIGPLAN No-

tices, vol. 32, no. 8. ACM, 1997, pp. 263–273.

[94] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Bromfield,

and S. Krishnamurthi, “Flapjax: A Programming Language for Ajax Applications,”

in ACM SIGPLAN Notices, vol. 44, no. 10. ACM, 2009, pp. 1–20.

[95] A. Courtney, “Frappe: Functional reactive programming in java,” in Proceedings of

the Third International Symposium on Practical Aspects of Declarative Languages,

ser. PADL ’01. London, UK, UK: Springer-Verlag, 2001, pp. 29–44. [Online].

Available: http://dl.acm.org/citation.cfm?id=645771.667929

[96] D. Synodinos, “Reactive Programming as an Emerging Trend,” http://www.infoq.

com/news/2013/08/reactive-programming-emerging, 2013.

[97] “Reactive Programming at Netflix,” http://techblog.netflix.com/2013/01/

reactive-programming-at-netflix.html, 2013.

[98] “The Reactive Extensions (Rx),” http://msdn.microsoft.com/en-us/data/gg577609.

aspx.

[99] “Reactive-Streams,” http://www.reactive-streams.org/.

[100] “RxJava,” https://github.com/ReactiveX/RxJava.

[101] Z. Jerzak and H. Ziekow, “The ACM DEBS 2013 Grand Challenge,” http://www.

orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails, 2013.

[102] G. Salvaneschi, J. Drechsler, and M. Mezini, “Towards Distributed Reactive

Programming,” in Coordination Models and Languages, ser. Lecture Notes in

Computer Science, R. Nicola and C. Julien, Eds. Springer Berlin Heidelberg,

2013, vol. 7890, pp. 226–235. [Online]. Available: http://dx.doi.org/10.1007/

978-3-642-38493-6 16

136

http://dl.acm.org/citation.cfm?id=645771.667929
http://www.infoq.com/news/2013/08/reactive-programming-emerging
http://www.infoq.com/news/2013/08/reactive-programming-emerging
http://techblog.netflix.com/2013/01/reactive-programming-at-netflix.html
http://techblog.netflix.com/2013/01/reactive-programming-at-netflix.html
http://msdn.microsoft.com/en-us/data/gg577609.aspx
http://msdn.microsoft.com/en-us/data/gg577609.aspx
http://www.reactive-streams.org/
https://github.com/ReactiveX/RxJava
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://dx.doi.org/10.1007/978-3-642-38493-6_16
http://dx.doi.org/10.1007/978-3-642-38493-6_16

[103] A. Voellmy and P. Hudak, “Nettle: Taking the Sting Out of Programming

Network Routers,” in Practical Aspects of Declarative Languages, ser. Lecture

Notes in Computer Science, R. Rocha and J. Launchbury, Eds. Springer

Berlin Heidelberg, 2011, vol. 6539, pp. 235–249. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-642-18378-2 19

[104] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada, “ASEBA: A

Modular Architecture for Event-Based Control of Complex Robots,” Mechatronics,

IEEE/ASME Transactions on, vol. 16, no. 2, pp. 321–329, April 2011.

[105] S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann, “Eventlets: Components

for the Integration of Event Streams with SOA,” in Service-Oriented Computing and

Applications (SOCA), 2012 5th IEEE International Conference on, Dec 2012, pp.

1–9.

[106] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized Streams: An

Efficient and Fault-tolerant Model for Stream Processing on Large Clusters,” in

Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Ccomputing,

ser. HotCloud’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 10–10.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2342763.2342773

[107] N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Real-

time Data Systems. O’Reilly Media, 2013.

[108] A. Corsaro, “Escalier: The Scala API for DDS,” https://github.com/kydos/escalier.

[109] “Reactive Open DDS,” http://www.ociweb.com/resources/news/2014/11/05/

reactive-opendds-part-i.

[110] “Building Reactive Data-centric Applications with Vortex, Apache Spark

and ReactiveX,” http://www.prismtech.com/products/vortex/resources/

youtube-videos-slideshare/building-reactive-data-centric-applications-vort.

137

http://dx.doi.org/10.1007/978-3-642-18378-2_19
http://dx.doi.org/10.1007/978-3-642-18378-2_19
http://dl.acm.org/citation.cfm?id=2342763.2342773
https://github.com/kydos/escalier
http://www.ociweb.com/resources/news/2014/11/05/reactive-opendds-part-i
http://www.ociweb.com/resources/news/2014/11/05/reactive-opendds-part-i
http://www.prismtech.com/products/vortex/resources/youtube-videos-slideshare/building-reactive-data-centric-applications-vort
http://www.prismtech.com/products/vortex/resources/youtube-videos-slideshare/building-reactive-data-centric-applications-vort

[111] “Dependency Injection Pattern,” https://msdn.microsoft.com/en-us/magazine/

cc163739.aspx.

[112] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, and V. Prasanna,

“Cloud-based software platform for big data analytics in smart grids,” Computing in

Science Engineering, vol. 15, no. 4, pp. 38–47, July 2013.

[113] C.-C. Hung, G. Ananthanarayanan, P. Bodk, L. Golubchik, M. Yu, V. Bahl, and

M. Philipose, “Videoedge: Processing camera streams using hierarchical clusters,”

October 2018.

[114] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, ser. SOSP

’13. New York, NY, USA: ACM, 2013, pp. 423–438. [Online]. Available:

http://doi.acm.org/10.1145/2517349.2522737

[115] D. O’Keeffe, T. Salonidis, and P. Pietzuch, “Frontier: resilient edge processing for

the internet of things,” Proceedings of the VLDB Endowment, vol. 11, no. 10, pp.

1178–1191, 2018.

[116] “AWS IoT Greengrass,” https://aws.amazon.com/greengrass/.

[117] “Azure IoT Edge,” https://azure.microsoft.com/en-us/services/iot-edge/.

[118] “Apache Edgent,” http://edgent.apache.org/.

[119] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bianchini, “Deepdive:

Transparently identifying and managing performance interference in virtualized

environments,” in USENIX Conference on Annual Technical Conference, ser.

USENIX ATC’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 219–230.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2535461.2535489

138

https://msdn.microsoft.com/en-us/magazine/cc163739.aspx
https://msdn.microsoft.com/en-us/magazine/cc163739.aspx
http://doi.acm.org/10.1145/2517349.2522737
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/services/iot-edge/
http://edgent.apache.org/
http://dl.acm.org/citation.cfm?id=2535461.2535489

[120] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance inter-

ference effects for qos-aware clouds,” in Proceedings of the 5th European conference

on Computer systems. ACM, 2010, pp. 237–250.

[121] R. Eidenbenz and T. Locher, “Task allocation for distributed stream processing,” in

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Com-

puter Communications, April 2016, pp. 1–9.

[122] C. H. Papadimitriou and M. Yannakakis, “Towards an architecture-independent anal-

ysis of parallel algorithms,” SIAM J. Comput., vol. 19, no. 2, pp. 322–328, 1990.

[123] J. Hoogeveen, J. Lenstra, and B. Veltman, “Three, four, five, six, or the complexity

of scheduling with communication delays,” Operations Research Letters, vol. 16,

no. 3, pp. 129–137, 1994.

[124] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for datacenter

applications,” in Workload Characterization (IISWC), 2013 IEEE International Sym-

posium on. IEEE, 2013, pp. 23–33.

[125] “Beagle Bone Black,” https://beagleboard.org/black.

[126] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and F. Wagner,

“Random graph generation for scheduling simulations,” Proceedings of the 3rd

International ICST Conference on Simulation Tools and Techniques, 2010. [Online].

Available: http://eudl.eu/doi/10.4108/ICST.SIMUTOOLS2010.8667

[127] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement strategies for internet-scale data

stream systems,” IEEE Internet Computing, vol. 12, no. 6, pp. 50–60, Nov 2008.

[128] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer,

“Network-aware operator placement for stream-processing systems,” in 22nd Inter-

national Conference on Data Engineering (ICDE’06), April 2006, pp. 49–49.

139

https://beagleboard.org/black
http://eudl.eu/doi/10.4108/ICST.SIMUTOOLS2010.8667

[129] S. Rizou, F. Durr, and K. Rothermel, “Solving the multi-operator placement prob-

lem in large-scale operator networks,” in 2010 Proceedings of 19th International

Conference on Computer Communications and Networks, Aug 2010, pp. 1–6.

[130] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online scheduling in

storm,” in 2014 IEEE 34th International Conference on Distributed Computing Sys-

tems, June 2014, pp. 535–544.

[131] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator replica-

tion and placement for distributed stream processing systems,” ACM SIGMETRICS

Performance Evaluation Review, vol. 44, no. 4, pp. 11–22, 2017.

[132] G. T. Lakshmanan, Y. Li, and R. Strom, “Placement of replicated tasks for distributed

stream processing systems,” in Proceedings of the Fourth ACM International Con-

ference on Distributed Event-Based Systems. ACM, 2010, pp. 128–139.

[133] R. Eidenbenz and T. Locher, “Task allocation for distributed stream processing,” in

IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Com-

puter Communications. IEEE, 2016, pp. 1–9.

[134] J. Gedeon, M. Stein, L. Wang, and M. Muehlhaeuser, “On scalable in-network op-

erator placement for edge computing,” in 2018 27th International Conference on

Computer Communication and Networks (ICCCN). IEEE, 2018, pp. 1–9.

[135] G. Amarasinghe, M. D. de Assunçao, A. Harwood, and S. Karunasekera, “A data

stream processing optimisation framework for edge computing applications,” in

2018 IEEE 21st International Symposium on Real-Time Distributed Computing

(ISORC). IEEE, 2018, pp. 91–98.

[136] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and G. Agha, “Droplet: Distributed

operator placement for iot applications spanning edge and cloud resources,” in 2018

140

IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE, 2018,

pp. 1–8.

[137] S. Khare, H. Sun, K. Zhang, J. Gascom-Samson, A. Gokhale, and X. Koutsoukos,

“Scalable Edge Computing Architectures for Low Latency Data Dissemination in

Topic-based Publish/Subscribe,” in 3rd ACM/IEEE Symposium on Edge Computing

(SEC), Bellevue, WA, USA, Oct. 2018, pp. 214–227.

[138] A. Al-Ali et al., “Role of internet of things in the smart grid technology,” Journal of

Computer and Communications, vol. 3, no. 05, p. 229, 2015.

[139] W. Z. Khan, M. Y. Aalsalem, M. K. Khan, M. S. Hossain, and M. Atiquzzaman, “A

reliable internet of things based architecture for oil and gas industry,” in 2017 19th

International conference on advanced communication Technology (ICACT). IEEE,

2017, pp. 705–710.

[140] G. Ananthanarayanan, V. Bahl, P. Bodk, K. Chintalapudi, M. Phili-

pose, L. R. Sivalingam, and S. Sinha, “Real-time video analyt-

ics the killer app for edge computing,” IEEE Computer, October

2017. [Online]. Available: https://www.microsoft.com/en-us/research/publication/

real-time-video-analytics-killer-app-edge-computing/

[141] “ALPR Applications,” http://www.anpr.net/anpr 09/anpr applicationareas.html.

[142] C. A. Rahman, W. Badawy, and A. Radmanesh, “A real time vehicle’s license plate

recognition system,” in Proceedings of the IEEE Conference on Advanced Video and

Signal Based Surveillance, 2003., July 2003, pp. 163–166.

[143] “OpenALPR Design,” https://github.com/openalpr/openalpr/wiki/

OpenALPR-Design.

141

https://www.microsoft.com/en-us/research/publication/real-time-video-analytics-killer-app-edge-computing/
https://www.microsoft.com/en-us/research/publication/real-time-video-analytics-killer-app-edge-computing/
http://www.anpr.net/anpr_09/anpr_applicationareas.html
https://github.com/openalpr/openalpr/wiki/OpenALPR-Design
https://github.com/openalpr/openalpr/wiki/OpenALPR-Design

[144] T. D. Duan, T. L. H. Du, T. V. Phc, and N. V. Hoàng, “Building an automatic vehicle

license-plate recognition system.”

[145] Y. Yanamura, M. Goto, D. Nishiyama, M. Soga, H. Nakatani, and H. Saji, “Ex-

traction and tracking of the license plate using hough transform and voted block

matching,” in IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat.

No.03TH8683), June 2003, pp. 243–246.

[146] K. I. Kim, K. Jung, and J. H. Kim, “Color texture-based object detection: An ap-

plication to license plate localization,” in Pattern Recognition with Support Vector

Machines, S.-W. Lee and A. Verri, Eds. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2002, pp. 293–309.

[147] Yo-Ping Huang, Shi-Yong Lai, and Wei-Po Chuang, “A template-based model for

license plate recognition,” in IEEE International Conference on Networking, Sensing

and Control, 2004, vol. 2, March 2004, pp. 737–742 Vol.2.

[148] X. Zhai, F. Bensaali, and R. Sotudeh, “Ocr-based neural network for anpr,” in 2012

IEEE International Conference on Imaging Systems and Techniques Proceedings,

July 2012, pp. 393–397.

[149] “openALPR,” https://github.com/openalpr/openalpr.

[150] “ Car Detection and Recognition Using DNN Networks ,” https://medium.com/swlh/

car-detection-recognition-using-dnn-networks-3ac7603d2e9b.

[151] “Contrast Enhancement Techniques,” http://www.zemris.fer.hr/projects/

LicensePlates/english.

[152] “Reactive Extensions,” http://reactivex.io/.

[153] “RxPy,” https://github.com/ReactiveX/RxPY.

142

https://github.com/openalpr/openalpr
https://medium.com/swlh/car-detection-recognition-using-dnn-networks-3ac7603d2e9b
https://medium.com/swlh/car-detection-recognition-using-dnn-networks-3ac7603d2e9b
http://www.zemris.fer.hr/projects/LicensePlates/english
http://www.zemris.fer.hr/projects/LicensePlates/english
http://reactivex.io/
https://github.com/ReactiveX/RxPY

[154] “Raspberry Pi 3 Model B,” https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/.

143

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Emerging Trends
	Key Research Challenges
	Challenge-1: Latency-Aware Data Distribution and Processing at the Edge
	Challenge-2: Realizing Effective Abstractions for Edge-Based DAG Stream Processing
	Challenge-3: Latency-Aware DAG Stream Processing at the Edge
	Challenge-4: Application of Research Ideas to a Real-World Edge Use-Case

	Dissertation Research
	Contribution-1: Latency QoS Assurance for Topic-Based Pub/Sub
	Contribution-2: Programming Model to Unify Data Distribution and Processing
	Contribution-3: Latency-Aware DAG Placement
	Contribution-4: Bringing It All Together

	Dissertation Organization

	Latency-Aware Data Distribution in Topic-Based Publish/Subscribe
	Introduction
	Related Work
	Problem Statement
	Motivational Use Case
	System Model and Notations
	Assumptions
	K-Topic Co-location Problem (k-TCP)

	Latency Prediction Model and its Sensitivity Analysis
	Experimental Setup
	Sensitivity Analysis
	Key Insights from Sensitivity Analysis
	Latency Prediction Model
	Limitations of the Model

	NP-Completeness of k-TCP and Heuristics-Based Solutions
	Feasibility Function
	Complexity Analysis
	Heuristics
	First Fit Decreasing
	Largest Feasible Set
	Hybrid Solution

	Experiments
	Experimental Testbed and Setup
	K-Topic Co-location Model Learning
	Performance of k-TCP Heuristics
	Performance of LFSk'+FFDk

	Conclusion and Discussions

	Reactive Stream Processing for Data-Centric Publish/Subscribe
	Introduction
	Related Work
	Design of the Rx4DDS.NET Library
	Overview of OMG DDS Data-Centric Pub/Sub Middleware
	Microsoft Reactive Extensions (Rx)
	Challenges in our Imperative Solution
	Rx4DDS.NET: Integrating Rx and DDS

	Evaluating Rx4DDS.NET Based Solution
	Case Study: DEBS 2013 Grand Challenge Problem
	Qualitative Evaluation of the Rx4DDS.NET Solution
	Automatic State Management
	Concurrency Model to Scale-Up Multi-Core Event Processing
	Library for Computations based on Time-Windows
	Flexible Component Boundaries
	Program Structure
	Backpressure

	Quantitative Evaluation of Rx4DDS.NET

	Conclusions

	Latency-Aware Edge Stream Processing
	Introduction
	Problem Formulation and Heuristic Solution
	Models and Assumptions
	Cost Trade-Off and Complexity
	Greedy Placement Heuristic

	Developing a Latency Prediction Model
	Critical Considerations for Model Building
	DAG Linearization Transformation Rules
	Training the k-Chain Co-location Latency Prediction Model

	Experimental Validation
	Experiment Testbed and Setup
	Validating the k-Chain Co-location Latency Prediction Model
	Performance Evaluation of the LPP Approach
	LPP Prediction Results
	LPP Placement Results

	Related Work
	Operator Placement for DAG Makespan Minimization
	Operator Graph Transformation
	Edge-Based Operator Placement
	Latency Minimization for Publish/Subscribe Systems

	Conclusions
	Summary of Research Contributions
	Discussions and Directions for Future Work

	Bringing It All Together
	Introduction
	Use-Case: Automatic License Plate Recognition Application
	Implementation of ALPR as a Distributed Data-Flow
	RxZmq
	Experiment Setup and Testbed

	Application of LPP for Latency-Aware Placement of ALPR
	Linearization Rules
	k-Chain Co-location Latency Prediction Model
	Performance Evaluation of LPP for Placement of ALPR

	Conclusion

	Summary
	Summary of Research Contributions
	List of Publications

	 BIBLIOGRAPHY

