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CHAPTER 1 

 

1 Introduction 
 

 

1.1 Overview 

 

The energy and food sectors of the economy heavily rely on water resources. Agriculture 

accounts for 70% of global water withdrawal (FAO, 2017) and 90% of power generation 

technologies are water intensive (WWAP, 2014). Water, energy, and food security rely on 

infrastructure. Recognition of the relationship between water, energy, food sectors has led to new 

demands for infrastructure and technology solutions.  

Population growth, urbanization, economic growth and other factors are projected to 

increase the demand for energy and food. Presently, 1.1 billion people do not have access to 

electricity (U.S. Energy Information Adminstration, 2018). Currently 15% of present fresh water 

withdrawal is used for electricity production (United Nations, 2018). Addition of new energy 

infrastructure will demand 85% more water by 2050. On the other hand, the predicted population 

of 9.1 billion by 2050 will increase food demand by 70% with a concomitant increase of 19% in 

demand for water (UN Water, 2012). The interdependence of water and energy infrastructure 

multiplies as demand for each sector increases (Rodriguez, Berg, & Mcmahon, 2013). 

Facing the challenges of high demand for energy, water, and food is made more difficult 

by uncertainty of water availability. Climate change impacts water availability with shifts in 

precipitation patterns, increases in extreme events, and changes to evapotranspiration. All these 

climate factors can alter energy and food production as well. Water is necessary for hydropower 

generation and for the cooling of thermal power plants (Rodriguez et al., 2013). In addition, the 

El-Nino-Southern Oscillation (ENSO) phenomena and other modes of variability of  the tropical 

ocean impacts global and regional weather patterns (Denise, Rogers, & Beringer, 2017; Seibert, 

Merz, & Apel, 2017). Uncertainty created by climate change and other factors is expected to lead 

to high competition for water and high demand for new and upgraded water and energy 

infrastructure. 

Infrastructures for water resources management and energy systems are complex, requiring 

numerous resources, high capital investments, technical expertise, and a systematic approach to 

develop them. In order to optimize the resource use, understanding of the interactions between 
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water resources and energy systems including both trade-offs and synergies is essential (Rodriguez 

et al., 2013). Both sectors depend on uncertain renewable resources (e.g. water, wind, and solar) 

and fossil fuels. Therefore, multidisciplinary technical experts on the resources, technology, 

economy, and the environment are required for infrastructure planning and management. 

Both sectors must achieve multiple objectives and must be evaluated by multiple aspects, 

while including stakeholder preferences. Supplying reliable and affordable electricity to the people 

requires economic efficiency, technical reliability, and environmental sustainability. Similarly, 

water resources are managed to maximize the economic benefits, food security, assurance of clean 

water supply, generation of clean energy from hydropower, poverty reduction, and management 

of these systems with the minimum disturbance to the environment.  

Construction of water and energy infrastructure systems is often delayed not only due to 

an initial high investment requirement, but also a lack of stakeholder consensus. Multiple 

stakeholders have diverse preferences and unique priorities when striving to achieve the multiple 

objectives of these infrastructure systems. Hence, efficient decisions for multipurpose water 

resources management are best achieved when taking into account the interrelationships among 

economic, social, and environmental systems with a clear recognition that stakeholders will value 

various aspects of any plan differently.  

Optimized water-energy infrastructure development in developing countries is particularly 

difficult to achieve. High population growth rates, urbanization, and economic development fuel 

a high demand for infrastructure. Economies of these countries are strongly linked with the new 

infrastructure development, and high investments in new infrastructure are part of the national 

budgets. Over the last two decades, attention to power generation has been increased in multiple 

ways. One challenge is transition towards low carbon pathways in power generation along with 

emphasis of economic developments (Bazilian, Hobbs, Blyth, MacGill, & Howells, 2011). In 

addition to that, existing weak infrastructure in physical and institutional structures (Iizuka, 2015) 

add more challenge to infrastructure investments through multinational financing institutions 

(World Bank group, 2013).  Lack of stakeholder consultation throughout the planning process is a 

big obstacle for the collaborative decisions of multi sector stakeholders. 

Sri Lanka is a water rich developing country. Nevertheless, as the energy and food sectors 

compete for water, the pressure to develop new water and energy infrastructure stresses available 

resources. In 2016, the agricultural sector contributed 5.8% to the GDP, employing 27.1% of 
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population (Central Bank of Sri Lanka, 2018). In 2008, 32% of agriculture relied upon irrigation 

water and the government is working on increasing the irrigation infrastructure (Ministry of 

Irrigation and Water Resources Management, 2013b). In the energy sector, hydropower is the main 

indigenous resource contributing 25% to electricity generation in 2016. Hydropower caters the 

ancillary-service of the power sector, where its importance has been increasing with the new 

additions of variable renewable energy sources. As a zero internal fossil fuel nation, the Sri Lankan 

government gives the highest priority to integrate renewable energy sources into the electricity 

sector which currently accounts for 48% in the present power generation capacity (Ceylon 

Electricity Board, 2016).  

The water intensive economy of Sri Lanka faces multiple challenges in water resources 

management and energy systems infrastructure planning. As a small tropical island, the country is 

highly vulnerable to climate changes (Nurse, L.A., G. Sem, J.E. Hay, A.G. Suarez, P.P. Wong & 

Ragoonaden, 2001). Both uncertainty of water resource availability and high dependence have 

created serious national concerns for water resources management. Sri Lanka also faces several 

challenges in infrastructure expansion due to lack of resources and lack of decision makers’ 

agreement. 

 

1.2 Study Objectives 
 

The complexity of the water-energy-food systems requires a more systematic approach to 

planning and management of the infrastructure than has occurred in the past. This research 

combines water, climate, energy and social data, and physics-based relationships of water and 

energy systems and diverse mathematical modelling capabilities to create decision support tools 

for water resources and power generation infrastructure planning and management. The decision 

tools are created by combining physics-based simulation models, optimization and data driven 

techniques, and decision analytics techniques that can incorporate stakeholder views in the 

planning process. The research objectives are as follows: 

Objective 1: Explore teleconnections between rainfall and large climate patterns to determine 

whether seasonal forecasts to inform water use can be developed. 

Objective 2: Achieve efficient water resource use by assessing the water allocation options of 

multipurpose reservoir systems in multiple measures. 
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Objective 3:  Determine the operation policies for reservoir cascades that optimize multiple 

objectives under uncertain river flows. 

Objective 4: Evaluate the expansion of water resources infrastructure using multiple criteria. 

Objective 5: Support the choice of a future power generation pathway considering multiple 

objectives. 

Uncertainty of spatial and temporal water availability is the major challenge of water-

energy infrastructure planning. Hence, a season-ahead forecast of how monsoon rainfall could 

deviate from the average is highly important for planning adaptation measures to the power system 

as well as agriculture systems. In Chapter 2, we explore climate teleconnection to El Nino Southern 

Oscillation and the Indian Ocean Dipole to identify the dry and wet conditions of seasonal rainfall 

using data driven methods. Results suggest that season-ahead forecasts should be useful in 

identifying the likelihood of droughts. Identifying droughts ahead of the season would be really 

useful for water and energy planners to make the adaptation measures. 

In Chapter 3, we concentrate on evaluating the water resource management decisions of a 

multipurpose reservoir cascade. Cascades are built and operated to overcome the spatial and 

temporal variability of natural water flows. To evaluate policies that seek to reduce risks and 

increase resilience of the cascade system, a system dynamics simulation of the complex cascade 

infrastructure, hydrology, water demands and operational rules is applied. The relatively simple 

model created in MATLAB/Simulink platform is used to evaluate the Mahaweli reservoir cascade 

hydropower and agriculture water users’ performances. Study results expose the trade-offs among 

competitive water users, and how spatial variability of land properties and water availability 

interact with infrastructure to produce spatial and temporal distributions of reliability, resilience 

and vulnerability measures across the overall system being modeled. 

In order to design robust management policies of large reservoir cascades for hydropower 

and agriculture, it is important to consider the effects of river flow variability (Julianne D Quinn 

et al., 2018). Multiobjective optimization evolutionary algorithms (MOEA) combined with 

simulation models facilitate the identification of desirable cascade operation policies for variable 

stream flows. However, these techniques also impose challenges of dimensionality. In Chapter 4, 

I identify the most important segments of the reservoir cascade, and divide the problem into two 

stages to avoid problems of dimensionality. The MOEA optimization method is applied to derive 
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the Pareto optimal solution set which can be used to select operation rules by analyzing trade-offs 

between hydropower energy and agricultural yield. 

Water and energy managers face challenges in infrastructure expansion of the hydropower 

and reservoir network; technical, economic, social, and environmental aspects related to 

infrastructure expansion must be considered in planning and implementation. The preferences of 

multiple stakeholders typically must be incorporated. In Chapter 5, using multicriteria decision 

analysis method (MCDA), we assess the infrastructure expansion alternatives to increase the water 

resources management capabilities of Mahaweli cascade, and the extension of benefits to many 

water users. Results suggest that an alternative that performs reasonably well across all criteria can 

balance the preferences of stakeholders representing water, energy, agriculture, hydrology, social, 

environment and economic sectors. 

While competing for limited uncertain water for hydropower, energy managers have 

trouble selecting the future power generation pathways to satisfy increasing electricity demand. In 

Chapter 6, we deployed a planning method combining optimization and decision methods to help 

decision makers by identifying the strengths and weaknesses of power generation pathways 

considering multiple technologies, multiple objectives, and the variety of views held by different 

stakeholder groups. Results derived from testing the method using hypothetical decision makers 

suggested that a mix of renewable resources and fossil fuel constitutes an alternative that achieves 

energy security while satisfying multiple criteria associated with future power generation to a 

reasonable extent. 

Chapter 7 synthesizes the findings from this dissertation, and discusses the broader impacts 

to the water-energy-food infrastructure planning of Sri Lanka and beyond. 
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CHAPTER 2 

 

2 Identifying ENSO Influences on Rainfall with Classification Models: Implications for Water 

Resource Management of Sri Lanka 
 
 

2.1 Introduction 
 

The spatial and temporal uncertainty of water availability is one of the major challenges in 

water resource management of Sri Lanka. Out of several river basins, the majority of water 

infrastructure is associated with the Mahaweli and Kelani river basins which spread across several 

climate zones based on monsoon rainfall. Hence, understanding patterns and identifying trends in 

seasonal to annual precipitation are very important for water infrastructure management. In 

particular, forecasts that incorporate such information can be used to inform decisions about the 

operation of Mahaweli and Kelani multipurpose reservoir systems in the face of changing climate 

conditions.  

Success in making useful forecasts often is achieved by considering climate 

teleconnections such as the El-Nino-Southern Oscillation (ENSO) as related to sea surface 

temperature variations and air pressure over the globe using empirical data (Amarasekera et.al., 

1997; Denise et.al., 2017; Korecha and Sorteberg, 2013; Seibert et.al., 2017). Also, modes of 

variability of other tropical oceans can be related to regional precipitation (Dettinger and Diaz, 

2000; Eden et al., 2015; Maity and Kumar, 2006; Malmgren et al., 2005; Ranatunge et al., 2003; 

Suppiah, 1996; Roplewski and Halpert, 1996). For example, the effect of the Indian Ocean Dipole 

(IOD) is identified as independent of the ENSO effect (Eden et al., 2015). Pacific decadal 

oscillation (PDO), Atlantic multi-decadal mode oscillation (AMO), ENSO, and IOD 

teleconnections to precipitation have been found by many studies over the globe. Variations of 

precipitation in the  United States are explained by ENSO, PDO and AMO  (Eden et al., 2015; 

National Oceanic and Atmospheric Administration, 2017; Ward et.al., 2014), in African countries 

by ENSO, AMO and IOD (Reason et.al., 2006), and in South east Asian countries by ENSO: 

Indonesia (Lee, 2015; Nur’utami and Hidayat, 2016), Thailand (Singhrattna et.al., 2005), China 

(Cao et al., 2017; Ouyang et al., 2014; Qiu et.al., 2014). Australia (Bureau of Meteorology, 2012; 

Verdon and Franks, 2005), and central and south Asia (Gerlitz et al., 2016). 

The impact of ENSO and IOD on the position of the intertropical convergence zone (ITCZ) 

has been identified as a primary factor driving south Asian tropical climate variations. South Asian 
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countries get precipitation from two monsoons from the movements of ITCZ in boreal summer (20 

N) and boreal winter (80 S). The South western monsoon (summer monsoon) is during June-August 

months and the North eastern monsoon (winter monsoon) is during December – February months 

(Schneider et.al, 2014).  Climate teleconnections have been studied for summer monsoons 

(Singhrattna et. al., 2005; Surendran et.al., 2015) and winter monsoons (Zubair and Ropelewski, 

2006), A negative correlation of ENSO with Indian summer monsoon has been identified (Jha et 

al., 2016; Surendran et al., 2015).  

The objective of this chapter is to explore the climate teleconnection to dual monsoons and 

inter monsoons. Water resource management decisions typically are based on precipitation 

throughout the year and it is extremely important to explore the possibility that rainfall might be 

related to teleconnection indices for which seasonal forecasts are available. Sri Lanka gets rainfall 

from two monsoons and two inter-monsoons. We explore ENSO and IOD climate teleconnection 

to Sri Lanka precipitation throughout the year. Past studies have identified climate teleconnection 

linking precipitation to climate indices for several months and monsoon seasons, and shown the 

importance of these for forecasting rainfall in river basins (Chandimala and Zubair, 2007; 

Chandrasekara et al., 2003). We extend these analyses across monsoon and inter-monsoon seasons. 

Although rainfall anomalies may be correlated strongly with teleconnection indices, the scatter in 

the data can be large, making predictions from regression models have high uncertainty. However, 

water managers may act on information about whether rainfall is expected to be abnormally low 

or high. Seasonal precipitation is generally forecasted in broad categories. For example, the US 

National Weather Service forecasts seasonal precipitation as above normal, below normal, and 

normal (National Oceanic and Atmospheric Administration, 2018). The International Research 

Institute for Climate and Society also forecasts seasonal precipitation as above, below and near 

normal (International Research Institute for Climate Society, 2018). We chose to follow a similar 

approach and investigate river basin rainfall teleconnections to climate indices with classification 

models. If reasonably accurate relationships can be developed, they will be useful for water 

resources management. For example, in Sri Lanka decisions about allocations of water for 

irrigation and hydropower could be improved with estimates of when low rainfall seasons are 

likely(De Silva M. & Hornberger, 2019a). 
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2.2 Hydrometeorology and Climatology of the Study Area  
 

Sri Lanka is an island in the Indian Ocean (latitude 5o 55′ N - 9o 50′ N, longitudes 79o 40′ E 

– 81o 53′ E).  Mean annual rainfall varies from 880 mm to 5500 mm across the island. The rainfall 

distribution is determined by the monsoon system of the Indian Ocean interacting with the elevated 

land mass in the interior of the country. The country is divided into three climatic zones according 

to the rainfall distribution: humid zone (wet zone) (annual rainfall > 2500 mm), intermediate zone 

(2500 mm < rainfall < 1750 mm) and arid zone (dry zone) (rainfall < 1750 mm) (Department of 

Agriculture Sri Lanka, 2017). 

Sri Lanka, a water-rich country, has 103 river basins varying from 9 km2 to 10448 km2. A 

large fraction of the water resources management infrastructure of the country is associated with 

the Mahaweli and Kelani river basins. The catchment areas of the Mahaweli and Kelani are 10448 

km2 and 2292 km2 respectively. The two rivers start from the central highlands. Mahaweli, the 

longest river, travels to the ocean 331 km in the eastern direction and the Kelani 145 km in the 

western direction. Average annual discharge volume for the Mahaweli and Kelani basins are 26368 

106 m3 and 8660 106 m3 respectively (Manchanayake and Madduma Bandara, 1999). The Kelani 

river basin is totally inside the humid zone whereas the Mahaweli river basin migrates through all 

three climate zones (Figure 2.1). 

The temporal pattern of rainfall in Sri Lanka can be divided into four seasons as follows. 

(1) Generally low precipitation across the country from the Northeast monsoon (NEM), which gets 

most precipitation during January to February. The arid zone of the country gets significant 

precipitation from the NEM, while humid zone gets very little rainfall during this period.  

(2) The whole country gets precipitation from the first inter-monsoon (FIM) during March to April 

months. However, rainfall during this period is not very high across the country. 

(3) The highest precipitation for the country is from the South western monsoon (SWM) during 

May to September. However, only the humid zone gets high precipitation during this season. 

(4) The whole country gets precipitation from the second inter-monsoon (SIM) during October to 

December. Generally, precipitation from SIM is higher than FIM.  

The time period of NEM and SIM are generally considered as December to February and October 

to November respectively (Department of Meteorology Sri Lanka, 2017; Malmgren et.al, 2003; 

Ranatunge et al., 2003). However, considering the bulk amount of water received from the 
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monsoon, we consider January and February as the period of NEM and October to December as 

the period of SIM.  

Reflecting the rainfall seasons, the country has two agriculture seasons “Yala” (April - 

September) and “Maha” (October - March). Because the arid zone gets minimal precipitation 

during the SWM, the agricultural systems (165,000 ha) developed under the Mahaweli 

multipurpose project depend on irrigation water during the Yala season. The country depends on 

stored water to drive hydropower year-round. The Mahaweli and Kelani hydropower plants of 810 

MW and 335 MW capacity serve as peaking and contingency reserve power to the power system 

(Ceylon Electricity Board, 2015). Management of reservoir systems is done to cater both to 

irrigation and hydropower requirements.  

 

Figure 2.1 Mahaweli and Kelani river basins of Sri Lanka 
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2.3 Sub-basin Rainfall (Areal Rainfall) 
 

Monthly rainfall data for years 1950 - 2013 are used for the study (Ceylon Electricity Board, 

2017). River basin rainfall was calculated using the Thiessen polygon method (Viessman, 2002). 

The Mahaweli river basin is divided into 16 Thiessen polygons and the Kelani river basin is divided 

into 11 Thiessen polygons (Figure 2.1). Since this study does not aim to explore rainfall across 

sub-basins, we do not use digital elevation maps to define the sub-basins. Considering the 

importance of sub-basins for the reservoir catchment and for water use, eight sub-basins are 

selected for analysis. Morape, Randenigala, Peradeniya, Manampitiya and Bowatenna represent 

the Mahaweli major reservoir catchments and irrigation tanks, and Norton Bridge, Norwood and 

Laxapana represent the Kelani basin reservoir catchments. The catchment of the major Mahaweli 

river reservoir cascade (Kotmale, Victoria, Randenigala, Rantambe, Bowatenna) is represented by 

Morape and Peradeniya located in the humid zone and by Randenigala and Bowatenna located in 

the intermediate zone. The arid zone major irrigation catchments of the Mahaweli are represented 

by Manampitiya. The catchment of the Kelaniya reservoir cascade (Norton Bridge and 

Moussakele) in the humid zone is represented by Laxapana, Norton Bridge and Norwood.  

We calculate the rainfall for the four seasons, NEM, FIM, SWM and SIM for 64 years of 

historical data. Rainfall anomalies are calculated by reducing the seasonal mean rainfall (2.1) and 

standardized anomalies are calculated by dividing the rainfall anomalies by the standard deviation 

(SD) (2.2).  

 𝑋𝐴𝑁𝑀 = (𝑋 − 𝑋̅𝑡) (2.1) 

 𝑋𝑆_𝐴𝑁𝑀 = (𝑋 − 𝑋̅𝑡)/𝑆𝐷𝑡 (2.2) 

Where,  𝑋̅𝑡 is the average of seasonal rainfall, 𝑋𝐴𝑁𝑀 is the rainfall anomaly and  𝑋𝑆_𝐴𝑁𝑀 is the 

standardized rainfall anomaly.  

Standardized rainfall anomalies are divided into three classes as dry, average and wet 

(Table 2.1). A normality test for the rainfall data classes is done using the Shapiro-Wilk test. If the 

rainfall data are not normally distributed, log (e), square root or square functions are used to 

transform the data into normally distributed data sets (Figure A.1 in Appendix A). Extreme 

seasonal precipitation has been defined statistically in different ways using statistical thresholds 

(Easterling et al., 2000; Jentsch et.al., 2015; Smith, 2011). We use 0.5 as a threshold to define three 

classes, which results in fairly evenly distributed data across the three classes (Figure A. 2). 
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Table 2.1 Rainfall anomaly classification 

Class Range 

dry  𝑋𝑆_𝐴𝑁𝑀< – 0.5 

average -0.5 <= 𝑋𝑆_𝐴𝑁𝑀<0.5 

wet 0.5 <= 𝑋𝑆_𝐴𝑁𝑀 

 
 

2.4 ENSO & IOD Indices 
 

The ENSO phenomenon is represented by MEI, NINO34, NINO3, NINO4 indices, and the 

Indian Ocean dipole phenomenon is represented by the DMI index. NINO34, NINO3, NINO4 

indices are based on tropical sea surface temperature anomalies (National Center for Atmospheric 

Research, 2018) and the Multivariate ENSO Index (MEI) is based on sea-level pressure, zonal and 

meridional components of the surface wind, sea surface temperature, surface air temperature, and 

total cloudiness fraction of the sky (National Oceanic and Atmospheric Administration, 2017). 

The Indian Ocean Dipole (IOD) is an oscillation of sea surface temperature in the equatorial Indian 

ocean between Arabian sea and south of Indonesia (Bureau of Meteorology Australia, 2017). IOD 

is identified as relevant to the climate of Australia (Power et.al., 1999) and countries surrounded 

by the Indian ocean in southern Asia (Chaudhari et al., 2013; Maity and Nagesh Kumar, 2006; Qiu 

et al., 2014; Surendran et al., 2015). The Dipole Mode Index (DMI) is used to represent the IOD 

capturing the west and eastern equatorial sea surface temperature gradient.  

Data used for the analyses are NINO34, NINO3, NINO4, MEI monthly data from years 1950 

– 2013, (National Oceanic and Atmospheric Administration, 2017; National Center for 

Atmospheric Research, 2018), and the DMI monthly data from years 1950-2013 ( HadISST 

dataset, Japan Agency for Marine-Earth Science and Technology 2017). Because we analyzed the 

data in rainfall seasons, values of the climate indices over the season are averaged. For example, 

for the NEM season, the MEI value is the average of January and February monthly values and for 

the SWM season, DMI is the average of May, June, July and September values. 

 

2.5 Methods  
 

Seasonal values of MEI and DMI were used as the predictors to classify seasons into the 

three rainfall classes. The total data set is divided into 75 % for training the model and 25 % for 
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testing model performance. Quadratic discriminant analysis (QDA) and classification trees were 

selected for the analyses. A random forest model also was applied to investigate the reliability of 

a cross-validated statistical forecast tool based on an advance estimate of MEI and DMI. We used 

the R programming language to carry out the statistical analyses. R packages: caret, tree, 

randomForest, fitdistriplus, devtools and quantreg are used for the studies.  

 

2.6 Quadratic Discriminant Analysis (QDA) 
 

The mathematical formulation of QDA can be derived from Bayes theorem assuming that 

observations from each class are drawn from a Gaussian distribution (James et.al., 2013; Löwe 

et.al., 2016).  

The prior probability 𝜋𝑘 represents the randomly chosen observation coming from kth class 

with density function𝑓𝑘(𝑥). Bayes theorem states that  

 
𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) = −

𝜋𝑘𝑓𝑘(𝑥)

∑ 𝜋𝑙𝑓𝑙(𝑥)
𝐾
𝑙=1

 (2.3) 

In (2.3), the posterior probability 𝑃𝑟(𝑌 = 𝑘|𝑋 = 𝑥) indicates that observation 𝑋 = 𝑥 

belongs to the kth class. For p predictors, the multivariate Gaussian distribution density function 

is defined for every class k (2.4). 

 

𝑓𝑘(𝑥) = −
1

(2𝜋)𝑝/2|∑𝑘|1/2
 𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇𝑘)

𝑇∑𝑘
−1(𝑥 − 𝜇𝑘 )) (2.4) 

In (2.4), ∑𝑘 is the covariance matrix and   𝜇𝑥 is the mean vector. The covariance matrix 

(∑𝑘) and mean (𝜇𝑥) for each class are estimated from the training data set (2.5), (2.6).  

 

µ𝑘 = −
1

𝑁𝑘
  ∑ 𝑥𝑖
𝑖:𝑦𝑖=𝑘

         (2.5) 

 
∑𝑘 = −

1

(𝑁𝑘 − 1)
 ∑ (𝑥𝑖 − µ𝑘)

𝑇(𝑥𝑖 − µ𝑘)

𝑖:𝑦𝑖=𝑘

 (2.6) 

Substituting a Gaussian density function for the kth class (2.4) into Bayes theorem and 

taking the log values, the quadratic discriminant function is derived (2.7). Prior probabilities for 

class k (𝜋𝑘) is calculated by the frequency of data points of class k in the training data (2.8). For a 

total number of 𝑁 points in the training observations, 𝑁𝑘 is the number of observations belong to 

kth class.  
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𝛿𝑘(𝑥) = −
1

2
 (𝑥 − 𝜇𝑥)

𝑇∑𝑘
−1(𝑥 − 𝜇𝑥 )  + 𝑙𝑜𝑔 𝜋𝑘           (2.7) 

 
𝜋𝑘 = −

𝑁𝑘
𝑁
       (2.8) 

Covariance, mean and prior probability values are inserted into the discriminant function 

(𝛿𝑘(𝑥)) together with the state variables (2.5). The corresponding class is selected according to the 

largest value of the function. The number of parameters to be estimated for the QDA model for k 

classes and p predictors is 𝑘. 𝑝. (𝑝 + 1) ⁄ 2. For this study, the QDA model output is the 

probability that an observation of a climate category will fall into each of the rainfall classes. 

 

2.7 Classification Tree model 
 

For the classification tree model the predictor space is divided into non-overlapping regions 

(𝑅1. . 𝑅𝑗). A classification tree predicts each observation as belonging to the most commonly 

occurring class of the training data regions (James et.al., 2013). Recursive binary splitting is used 

to grow the classification tree.  

Classification error rate, Gini index and cross-entropy are typically used to evaluate the 

quality of particular split (James et.al., 2013), and in our study we used the first two indices. 

Classification error rate (𝐸) gives fraction of observation that do not belong to the most commonly 

occurring class of the training data regions (2.9). However, for the tree-growing, the Gini index 

(𝐺) is considered as the criterion for splitting into regions (2.10) 

 𝐸 = 1 −𝑚𝑎𝑥𝑘(𝑝̂𝑚𝑘) (2.9) 

 

𝐺 =∑ 𝑝̂𝑚𝑘

𝐾

𝑘=1

(1 − 𝑝̂𝑚𝑘) (2.10) 

In (2.9) and (2.10), 𝑝̂𝑚𝑘 represents the fraction of observations in the mth class that belong 

to the kth class. The Gini index is considered as a measure of node purity of the tree model, since 

small values of the index indicate that node has a higher number of observations from a single 

class.  

The complexity of the trees is adjusted using a pruning process to produce more interpretable 

results. Complex trees reduce training error by overfitting the training data. Simple trees can be 

interpreted well, however, selecting a model which can find the pattern of data is important. In 
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order to achieve the low classification error (training error + testing error), a pruning technique is 

used. First, a very large tree is grown and then a sub tree is obtained by removing the weak links 

of the tree. Using a tuning parameter to examine the trade-off between complexity of tree and the 

training error, and defining minimum samples for a node, maximum depth of the tree, and 

maximum number of terminal nodes are pruning methods (Analytical Vidhya Team, 2016). For 

this study, we defined the maximum number of nodes to obtain the simple tree (pruned tree).   

Tree models give the probability that an observation falls into each of the three rainfall 

classes. The predicted class is assigned based on the highest probability. Tree models handle ties 

of probability values by randomly assigning the class.   

 

2.8 Random Forest 
 

A random forest is an ensemble learning method used for classification and regression 

problems. The method is based on a multitude of decision trees based on training data with the 

final model as the mean of the ensemble (Breiman, 2001). Individual trees are built on a random 

sample of the training data with several predictors from the total number of predictors. Individual 

trees are built from the bootstrapped training data set.  

There are some features that can be tuned to improve the performance of the random forest 

model. The maximum number of predictors from the total predictors for individual trees, 

maximum number of trees, maximum node size of the trees and minimum sample leaf size are 

some of these features (Analytical Vidhya Team, 2015). In our study, we use the maximum number 

of trees as the main tuning parameters.  

In a random forest model the importance of the variable is measured as the decrease in node 

impurity from the splits over the variable. This value is calculated by averaging the Gini index 

over the multitude of trees with a larger value indicating high importance of the predictor (James 

et.al., 2013). 
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Figure 2.2 Sub basin Rainfall for (a) Morape (b) Peradeniya (c) Randenigala (d) Bowatenna (e) Laxapana 

(f) Norwood (g) Norton Bridge and (h) Manampitiya. Rainfall seasons are North East Monsoon (NEM), 

First Inter-Monsoon (FIM), South West Monsoon (SWM), and Second Inter-Monsoon (SIM) 

(a) (b) 

(c) 

(e) 

(d) 

(f) 

(g) (h) 

M
o

ra
p

e 
R

a
in

fa
ll

 (
m

m
) 

P
er

a
d

en
iy

a
 R

a
in

fa
ll

 (
m

m
) 

R
a

n
d

en
ig

a
la

 R
a

in
fa

ll
 (

m
m

) 

B
o

w
a

te
n

n
a

 R
a

in
fa

ll
 (

m
m

) 

L
a

x
a
p

a
n

a
 R

a
in

fa
ll

 (
m

m
) 

N
o

rw
o

o
d

 R
a

in
fa

ll
 (

m
m

) 

N
o

rt
o

n
 B

ri
d

g
eR

a
in

fa
ll

 (
m

m
) 

M
a

n
a
m

p
it

iy
a

 R
a

in
fa

ll
 (

m
m

) 

Months Months 

NEM NEM FIM SWM SIM SIM SWM FIM 

NEM NEM FIM SWM SIM SIM SWM FIM 

NEM NEM FIM SWM SIM SIM SWM FIM 

NEM NEM FIM SWM SIM SIM SWM FIM 



16 
 

2.9 Results 
 

Monthly rainfall boxplots of eight sub basins over the year for 1950 - 2013 illustrate the 

seasonal and the spatial variation of rainfall patterns (Figure 2.2). The largest fraction of total 

rainfall in the arid zone occurs at the end of the SIM (December) and during the NEM (January - 

February) with correspondingly high variability whereas there is little rainfall in the arid zone 

during the SWM (May - September) with correspondingly little variability (Figure 2.2(h)). The 

intermediate zone receives approximately 60% of total rainfall from the SIM and NEM. Although 

the variability of the rainfall is low in the intermediate zone, high rainfall can occur in all seasons 

(Figure 2.2 (c) and (d)). In the humid zone, a large portion of rainfall occurs in SWM and early 

months of SIM (October-November). High variability of humid zone rainfall is observed at the 

end of FIM (April), in the SWM (May-September), and at the start of SIM (October) (Figure 2.2 

(a), (b), (e), (f) and (g)).  

Similar to other investigators, we observe several strong correlations between rainfall 

anomalies and the climate indices (Table A. 1, Table A. 2, and Appendix A). Higher correlation 

values between MEI and rainfall anomalies can be seen compared to the correlation with other 

ENSO indices (Table A. 1).  In addition, rainfall in the SWM is very important for stations in the 

humid zone of the country which is the source of a large amount of water stored in reservoirs 

(Table A. 2). Correlation coefficients between SWM rainfall at Norton Bridge are negative and 

strong, -0.31 for MEI (p = 0.01) and -0.37 for DMI (p < 0.01). The strength of the correlation 

notwithstanding, the residuals from a regression model indicate that high uncertainty would attach 

to any forecast (Figure 2.3Figure 2.3). Thus, we are led to explore the efficacy of classification 

methods (Appendix A). 
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Figure 2.3 Linear regression of rainfall anomaly on MEI and DMI. High values of MEI and DMI are 

associated with low values of rainfall. 

 

We present classification results for two sub-basins, one that has the highest rainfall during 

the NEM, Manampitiya, and one that has the highest rainfall for the SWM, Norton Bridge (Figure 

2.4). Norton Bridge represents the areal rainfall of reservoir catchments in the wet zone and 

Manampitiya represents the rainfall that contributes to irrigation tanks in the dry zone. Results of 

other sub-basins are presented in the supplementary materials (Figure A. 4, Figure A. 5, Figure A. 

6, Figure A. 7, Appendix A). Because MEI has higher correlation with rainfall anomalies than 

other ENSO indices, classification was done with only MEI and DMI. 

The SWM is a season when the humid zone receives the bulk of rainfall. At Norton Bridge, 

the occurrences of the dry rainfall anomaly class in the SWM is seen to “clump” in the region of 

relatively high MEI and DMI. Both the classification tree and the QDA successfully identify the 

pattern (Figure 2.4 (a) and (c)) with an overall accuracy of 73 %, 19 and 16 correct out of 22 

occurrences (Table 2.2). In the arid zone the NEM season is one of the most important for rainfall. 

At Manampitiya, the MEI provides the primary variable in the classification, with the dry anomaly 

class being correctly selected in 52 % by the tree model and 95 % by the QDA model. The results 

suggest that it may be possible to identify seasons when it is expected to be anomalously dry. The 

correct classification of “average” conditions likely has less importance for water managers. We 

explored classification using two classes, “Dry” and “Not Dry.” In this case, the classification 

model correctly classifies 86 % of the anonymously dry cases and gets more than 69 % of the “Not 

Dry” cases correct (Figure 2.5).   
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Figure 2.4 Norton Bridge and Manampitiya rainfall classes (dry, average, wet) identified by ENSO and 

IOD phenomena. (a) Norton Bridge SWM rainfall classification tree model (b) Manampitiya NEM rainfall 

classification tree model (c) Norton Bridge SWM rainfall QDA (d) Manampitiya NEM rainfall 

classification by QDA 

 

 

Figure 2.5 Classification tree for Norton Bridge SWM rainfall using two categories (dry and not dry) 

 

Classification trees are known to be unstable. That is, small changes in the observations 

can lead to large changes in the decision tree. The random forest approach overcomes the issue by 

building a “bag” of trees from bootstrap samples. The robustness of the model can then be checked 

by considering the “out-of-bag” error. The results of the random forest indicate that predictions of 
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three rainfall anomaly classes using MEI and DMI is not feasible (Table 2.3). The out-of-bag error 

rate is close to two thirds, which for three categories is equivalent to a random selection. 

 

Table 2.2 Classification model results. Highlighted cells indicate where there may be information content 

with respect to forecasting either dry or wet anomaly classes as judged by a classification success rate of 

at least 2/3.  

Season 
Manampitiya Norton Bridge 

QDA Model QDA Model 

Dry Normal Wet Dry Normal Wet 

NEM 22/23 11/25 1/16 5/20 25/29 2/15 

FIM 9/21 20/24 5/19 3/20 14/23 14/20 

SWM 2/21 30/27 2/16 16/22 9/22 9/20 

SIM 17/25 13/20 7/19 7/22 15/22 11/20 

Season 
Tree Model Tree Model 

Dry Normal Wet Dry Normal Wet 

NEM 12/23 9/25 11/16 11/20 18/29 8/15 

FIM 9/21 19/24 8/19 13/21 6/23 15/20 

SWM 6/21 25/27 7/16 19/22 8/22 9/20 

SIM 20/25 0/20 17/19 19/22 5/22 14/20 

 

Table 2.3 Results of random forest ensemble classification results 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet 

OOB 

Er Dry Normal Wet 

OOB 

Er 

NEM 11/20 12/29 6/15 55% 14/23 10/25 5/16 55% 

FIM 7/21 8/23 8/20 64% 10/21 11/24 6/19 58% 

SWM 9/22 6/22 8/20 64% 6/21 17/27 5/16 56% 

SIM 13/22 9/22 9/20 52% 15/25 8/20 7/19 53% 

 

Table 2.4 Results of random forest ensemble classification results for two rainfall anomaly classes 

Season 

Norton Bridge Manampitiya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 9/20 36/44 30 % 13/23 33/41 28 % 

FIM 5/21 35/43 38 % 8/21 35/43 33 % 

SWM 9/22 32/42 36 % 5/16 34/43 39 % 

SIM 10/22 36/42 28 % 16/25 34/39 22 % 
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However, the results of the random forest for a classification as either “Dry” or “Not Dry” 

suggests that there may be skill in such a prediction. The out-of-bag error rates for this case range 

from 22 % to 38 % for Norton Bridge and Manampitiya (Table 2.4) and from 20 % to 39 % across 

all stations (Table A. 7).    

The QDA method produces results that are promising with respect to identification of 

extreme dry events as indicated by seasonal rainfall (Table 2.5). 

 

 
Table 2.5 Classification results for extreme dry (very low rainfall) and wet (very high rainfall) seasons. 

Class Range Norton Bridge SWM Manampitiya NEM 

tree QDA tree QDA 

Very dry  𝑋𝑆_𝐴𝑁𝑀< – 1.0 10/11 10/11 6/11 11/11 

dry -1.0 <= 𝑋𝑆_𝐴𝑁𝑀< – 0.5 9/11 6/11 5/11 9/10 

average -0.5 <= 𝑋𝑆_𝐴𝑁𝑀<0.5 8/22 9/22 9/25 11/25 

wet 0.5 <= 𝑋𝑆_𝐴𝑁𝑀<= 1.0 5/11 5/11 1/5 0/5 

Very wet 1.0 <= 𝑋𝑆_𝐴𝑁𝑀 6/11 6/11 7/11 1/11 

 
 

2.10 Discussion 

 

Understanding seasonal rainfall variability across the spatially diverse Mahaweli and Kelani 

river basins is important for irrigation and hydropower water planning. SWM and SIM are the key 

rainfall seasons for sub basins in the humid zone (Norton Bridge, Morape, Peradeniya and 

Laxapana), delivering 80 % of annual rainfall (Figure 2.2 (a), (b), (e), (f)). For the arid zone 

(Manampitiya) and intermediate zone (Randenigala, Bowatenna) sub basins, the major season is 

SIM, which delivers more than 40 % of annual rainfall (Figure 2.2 (c),(d),(h)). The arid zone also 

gets rainfall during the NEM (24 % of annual rainfall at Manampitiya) and the intermediate zone 

gets rainfall during the SWM (25 % - 30 % of annual rainfall at Randenigala and Bowatenna).  

Climate teleconnection indices are related to rainfall anomalies observed during the two 

main growing seasons, Yala and Maha. The Maha agriculture season (October-March) depends on 

rain from SIM and NEM. During El Nino events rainfall increases for the first three months of the 

Maha season (SIM: October-December) (Figure A. 4, Figure A. 5, Figure A. 6, Figure A. 8) 

(Ropelewski and Halpert, 1995) and decreases during the last three months (NEM: January-

March)(Figure 2.4 (b)). In Yala season (April-September), La-Nina events enhance the rainfall 
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during SWM (Figure 2.4 (a), (c), Figure A. 4, Figure A. 5, Figure A. 6, Figure A. 8)(Whitaker 

et.al, 2001). During El Nino events the SWM rainfall is reduced (Figure 2.4 (a), (c), Figure A. 4, 

Figure A. 5, Figure A. 6, Figure A. 8) (Chandrasekara et.al, 2017; Chandimala and Zubair, 2007; 

Zubair, 2003). The El Nino impact during the SWM is not as significant as it is during the NEM 

season (International Research Institute, 2017a). We find, however, that there is an interaction 

between two teleconnection indices, MEI and IOD for SWM rainfall. During the Yala season there 

is a high probability of having a drought when both the IOD and MEI are positive (Figure 2.5). 

Also not having drought is probable when both the IOD and MEI are negative (Figure 2.5, Figure 

A. 8, Figure A. 9).  

Classification of wet, average, and dry rainfall anomalies using the MEI and DMI indices is 

successful. For example, a dry SWM season for Norton Bridge (Table 2.2) and other humid-zone 

stations (Table A. 4) is classified correctly with greater than 70 % accuracy with QDA and tree 

models. However, a random forest approach demonstrates that there is little skill in identifying a 

full wet-average-dry classification. However, a random forest model using only two rainfall 

categories shows more than 60 % accuracy in identifying “dry” and “not dry” classes of key rainfall 

seasons of the humid zone (Table 2.4, Table A. 7). Similarly, for arid zone locations such as 

Manampitiya, the dry rainfall class identification for NEM and SIM seasons is about 60 % (Table 

2.4, Table A. 7).     

Our statistical classification models can be combined with MEI and DMI forecasts to 

indicate the season-ahead expectation for rainfall. ENSO forecasts are available from the 

International Research Institute for Climate and Society (International Research Institute, 2017b) 

and IOD forecasts are available in the Bureau of Meteorology (BOM), Australian Government 

(Bureau of Meteorology, 2017). ENSO and IOD predictions are also associated with the 

uncertainty. Therefore, final forecast accuracy is a combination of the MEI, DMI forecast 

uncertainties and model’s accuracy rate in each class. Although overall prediction accuracy is not 

extremely high, a forecast of an anomalously low rainfall season can have value for risk-averse 

farmers (Cabrera et.al., 2007) and can guide plans for hydropower management (Block and 

Goddard, 2012).  

The electricity and agriculture sectors of Sri Lanka heavily rely on Mahaweli and Kelani 

river water resources so season ahead forecasts of abnormally low rainfall should be useful for 

decisions on adaptation measures. For example, water availability of the first three months of a 
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growing season is important for crop selection and the extent of land to be cultivated. Hydropower 

planning and scheduling of maintenance of the power plants also can benefit from season-ahead 

forecasts. The damage that can occur due to incorrect rainfall forecasts in the agriculture and 

energy sectors can be minimized with emergency planning during the season, which is the usual 

practice.  

Although the accuracy of predicting low or not low seasonal rainfall is not very high, 

decisions based on forecasts that are improvements over climate averages should be an 

improvement over current practices. The accuracy of statistical models can be improved with 

longer records, which are important to train the classification models.  Also, models can be fine-

tuned for important shorter periods such as crop planting months and harvesting months for 

irrigation water planning.  

ENSO and IOD phenomena teleconnections with river basin rainfall provide potentially 

useful information for water resource management of multipurpose reservoir systems which is a 

challenging task. Relationships identified between teleconnection indices and river basin rainfall 

agree with other research findings. Prediction of seasonal rainfall classes from ENSO and IOD 

indices can inform water resources managers in reservoir operation planning for both hydropower 

and irrigation releases. However, allocation of variable water resources of multipurpose reservoir 

systems, between competitive users is still a challenging task. Reservoirs are built to manage the 

spatial and temporal variability of rainfall seasons; however, uncertainty of rainfall seasons due to 

many reasons such as climate teleconnections makes water resources management for many 

purposes complex. In such a case, systematic evaluation of water allocation alternatives of 

multipurpose reservoir cascades is required by planners. 
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CHAPTER 3 

 

3 Assessing Water Management Alternatives in the Mahaweli Multipurpose Reservoir Cascade 

System 
 
 

3.1  Introduction 
 

Multipurpose reservoir cascades are managed to fulfill diverse and often conflicting water 

demands to as great an extent as possible. These projects are operated for hydropower generation, 

drinking water supply, tourism, irrigation, flood regulation, and navigation. The spatial and 

temporal diversity of water users and the limited availability of water in some seasons require that 

trade-offs be made in response to demands of the multiple water users. For example, if water 

managers keep reservoir water levels low during a wet period to meet flood protection goals, there 

may not be enough water to meet agricultural water demands in a subsequent dry period. One 

particularly important trade-off for developing countries is between hydropower and irrigation 

(Digna et al. 2018; Räsänen et al. 2015; Tilmant, Goor, and Pinte 2009). If water is transferred 

from upstream reservoirs for irrigation, downstream hydropower generation is penalized. On the 

other hand, if the water is taken from storage to run turbines to produce electricity during low 

irrigation water demand, water may not be available later to be used for irrigation.  

The Mahaweli multipurpose water resources system of Sri Lanka furnishes water for 

irrigated agriculture and hydropower generation, supplying about 20% of the annual irrigation 

water demand and 20% of the electrical energy demand of the country. Water managers need to 

balance diversion of Mahaweli water to irrigation districts at the upstream end of the basin with 

downstream releases for hydropower generation and smaller irrigated agricultural systems. 

Specifically, Mahaweli water managers must consider spatial and temporal variability of 

hydrology across the cascade system, limitations of installed infrastructure, and trade-offs among 

competing demands of hydropower and agriculture.  

Choices about how to operate the Mahaweli reservoir system will depend on how different 

aspects of performance are valued. The economic value of products such as hydropower generation 

and agricultural goods is a measure of system performance (Sakthivadivel & Molden, 1999). 

Evaluating trade-offs between hydropower and agriculture can involve non-economic preferences 
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as well. For example, if agriculture is set as a priority, elevating the fraction of water delivered to 

agricultural fields may be a goal. 

Maximizing system performance measures is the main operational goal for cascades, but 

minimizing risks of failure is also a management goal. Evaluation of water allocation options in a 

cascade system requires an assessment of the reliability, resilience, and vulnerability to variable 

and uncertain basin inflows (Huizar, Lansey, & Arnold, 2018; Jain & Bhunya, 2008; Mateus & 

Tullos, 2016; Saha, Roy, & Mazumdar, 2017; Srdjevic & Srdjevic, 2017; C. Zhang, Xu, Li, & Fu, 

2017). Since Hashimoto et.al.(1982) proposed the use of reliability, resilience and vulnerability 

indices as performance measures of water resources systems, these indices have been used 

extensively for informing decisions in reservoir system planning and management (Ajami, 

Hornberger, & Sunding, 2008; Jain & Bhunya, 2008).   

Water resources must be simulated to estimate the evaluation metrics for water management 

alternatives. Complex models (e.g. RIBASIM, WEAP, MIKE BASIN, MODSIM, WBalMo and 

HEC-ResSim) have been used in detailed studies of reservoir cascade systems (Loucks, 2005; 

Loucks & van Beek, 2017; US Army Corps of Engineers, 2013; Vieira & Sandoval-Solis, 2018) 

but these approaches may not be necessary for initial assessments. One powerful approach 

particularly useful at a screening level is a system dynamics approach (Jahandideh-Tehrani, 

Bozorg Haddad, & Mariño, 2014). A system dynamics simulation of reservoir cascade operation 

reflects a simplified flow diagram with water balance equations used to calculate the reservoir 

storages and releases under a set of operating rules (Sharifi, Kalin, & Tajrishy, 2013). Conceptual 

simulation models based on water balance relationships have been used for reservoir operation 

evaluation of multiple river basins (Kling, Stanzel, & Preishuber, 2014; Tinoco, Willems, 

Wyseure, & Cisneros, 2016). 

The objective of this chapter is to develop a relatively simple model to evaluate the 

performance of various water resources allocations in meeting the hydropower and irrigation water 

demands for the Mahaweli multipurpose water resources system. We develop a modular 

simulation model based on water balance principles for the Mahaweli reservoir cascade, which 

can be used to screen water allocation alternatives through overall system performance judged by 

hydropower generated, paddy yield, the fraction of water delivered to agriculture, and a set of 

indices that describe  the reliability, resilience and vulnerability of the system (De Silva M. & 

Hornberger, 2019b).   
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3.2 Description of Reservoir Cascade  
 

The Mahaweli multipurpose project of Sri Lanka (Figure 3.1) is spread across 25500km2 

and is operated mainly for hydropower generation and irrigated agriculture. Seven major reservoirs 

of the Mahaweli project are associated with hydropower plants with 815MW capacity (Figure 3.2). 

Downstream of these major hydropower reservoirs water is delivered to four irrigation systems 

(A, B, C, and E). There are seven water distribution points where water allocations are managed. 

The main diversion at Polgolla currently is limited by rule to 875Mm3 annually, although the 

diversion tunnel has the capacity to transfer 1400 Mm3 per year. The diversion at Polgolla supports 

hydropower plants with 78MW and paddy farming with a capacity of 95,000 ha. Distribution 

points send water to ten agricultural systems. The agricultural systems are named using capital 

letters (Figure 3.1). Our overall system model includes the full complement of reservoirs, 

diversions, and distribution points (Figure 3.2). To provide clarity, we selected five representative 

irrigation systems to illustrate the results from our model for the Mahaweli complex. Two of the 

systems (B and C) are fed from the undiverted water used by upstream power plants of the 

Mahaweli (Figure 3.3). The other three systems (D1, D2 and H) represent areas fed by water 

diverted first at Polgolla and then at a set of distribution points. System D1 and H are served by a 

number of small local irrigation reservoirs (tanks) whereas System D2 is fed by one irrigation tank 

(Figure 3.2).  

Mahaweli system irrigation water for agriculture systems in paddy production is planned 

considering the monsoon rainfall pattern (Figure 3.4). The crop water requirement for each system 

is varied throughout the two agricultural seasons: “Yala” (April-September) and “Maha” (October-

March), which are based on the northeast monsoon (NEM) and the southwest monsoon (SWM) 

that bring rain to the country. Crop water requirements of Mahaweli agricultural systems vary 

spatially according to the soil type and soil moisture content (Mahaweli Authority of Sri Lanka, 

2015). All the agricultural systems of the dry zone of the country benefit from the second 

intermonsoon (October-November) and the northeast monsoon (December-February) during the 

Maha season and irrigation water requirements are less for the Maha season than for the Yala 

season.  
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Figure 3.1 Mahaweli multipurpose project reservoirs, stream network and irrigated agricultural systems 

(A,B,C,D1,D2,E,G,H,I/H and MH).
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Figure 3.2 Schematic diagram of Mahaweli multipurpose water resources project 
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Figure 3.3 Schematic diagram of Mahaweli hydropower plants and agriculture systems B, C, D2 and H 

 

We use data on power production for each dam, information about water requirements for 

agriculture systems (Figure 3.4), and 63 years of data on the system hydrology (i.e., inflows to the 

reservoirs) to calculate the hydropower and paddy production. There are two growing seasons in 

each year so there are 126 seasons in the historical record to explore how the hydropower and 

irrigation systems perform for various water allocation options.  
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Figure 3.4 Crop water duty cycle for system B&C, D1, H for two agriculture seasons ‘Yala’ and ‘Maha’ 

 

3.3 Methods 
 

We develop a simulation model for the Mahaweli multipurpose project of Sri Lanka to 

evaluate water resource management alternatives to supply irrigation and hydropower demands. 

The simulation model represents the major components of the system -- reservoirs, agricultural 

systems, and hydropower plants. Operational rules for reservoir water releases and water 

diversions are incorporated.  

 

3.4 Simulation Model 
 

The reservoir simulation model is developed in the MATLAB/ SIMULINK platform.  

3.4.1 Reservoir 

Consider N reservoirs in the cascade system. Reservoir operation for the ith reservoir is represented 

through the water mass balance equation (3.11).  

 
Si (𝑡) = Si (𝑡 − 1) + LIi (𝑡) + Qi-1 (𝑡) − Ei (𝑡) − Qi (𝑡) − 𝑆𝑝i (𝑡) (3.11) 

Reservoir storage (Si(t)) is calculated by adding local inflows (LIi(t)) and upstream reservoir 

discharges (Qi-1(t)) and by subtracting evaporation (Ei(t)), spill (Spi(t)), and reservoir discharge 

(Qi(t)) ((3.11)). Reservoir spill (Spi(t)) is a positive value when the total water (Ti(t)) in a reservoir 
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is greater than the reservoir capacity (Smax) and otherwise is zero (Figure 3.5).   Reservoir area 

(Ai(t)) and elevation (Hi(t)) are calculated from the reservoir characteristics curves. Reservoir 

discharge (Qi(t)) at each time step is determined according to the reservoir operation rules. 

Reservoir discharge (Qi(t)) is determined from: (1) a reservoir guide curve (RCi(t)), (2) 

the water requirements (RMi(t)) for hydropower and/or agricultural purposes (reservoirs are 

operated for both purposes or one purpose), (3) the current reservoir storage, and (4) the minimum 

reservoir operating level (Smin) using (3.12), (3.13), (3.14), and (3.15). Division by six in equation 

(3.13) is to reflect the need to supply water for the entire agricultural season, which lasts for six 

months.        

 

Figure 3.5 Reservoir operation simulation 

 
 

Si (𝑡) < Smin  , Qi (𝑡) = 0 (3.12) 
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 𝑅𝑀𝑖(𝑡) < ( Si (𝑡) − RCi(𝑡)), Qi (𝑡) =  𝑅𝑀𝑖(𝑡) (3.15) 
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optimal policy. However, due to calculation complexities and spatial differences in 

hydrometeorology and irrigation demands, Mahaweli system reservoir cascade rule curves have 

been developed individually. The reservoir rule curves are based on the rainfall pattern of the 

catchment, temporal variation of irrigation water demands, and individual reservoir parameters. 

3.4.2 Hydropower Plant 
 

Hydropower production is a function of efficiency (𝜂i (𝑡)), density of water (𝜌), 

acceleration due to gravity (𝑔), effective head (Hi (𝑡)) and discharge (Qi (𝑡)) (3.16). Reservoir head 

varies according to the reservoir water level. Efficiency( 𝜂i (𝑡)) is a function of both effective head 

and discharge (Figure 3.6).  

 Pi (𝑡) = 𝜂i (𝑡)𝜌 𝑔 Hi (𝑡)Qi (𝑡) (3.16) 

Hydropower energy production is the product of power and time. The maximum value of 

energy is constrained by the total power plant capacity. At each time step, the plant factor is 

calculated. If the plant factor is less than one, energy is calculated using (3.16). Otherwise energy 

is calculated from the total plant capacity.  

 

Hi (𝑡) 

𝜂i (𝑡) 

Qi (𝑡) 

Pi (𝑡) Eni (𝑡) 

PFi (𝑡) 

Water 

Discharge 
Reservoir 

Head 

Fixed Head 

Friction loss 

𝜂i (𝑡) = f(Hi (𝑡),Qi (𝑡)) 

Power capacity 

Period 

Plant capacity Energy_theoritical 

Energy_actual 

Density x Gravity 

Fig. 1. Hydropower plant simulation Figure 3.6 Hydropower plant simulation 
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3.4.3 Agricultural Systems 
 

Water is distributed to a number (n) of agricultural systems. The success of meeting 

agricultural water demands in the ith agricultural system is measured by comparing irrigation water 

availability (Iri(t)) and the water requirement for agricultural crops (Dti(t)) (Figure 3.7). Crop 

water requirement or water duty (Di(t)) varies during the cycle from land preparation to harvesting. 

In addition, the crop water requirement varies spatially according to the soil type and soil moisture 

content (Rivera, Gunda, & Hornberger, 2018). The total water requirement (Dti(t)) is a product of 

water duty (Di(t)), water requirement per unit area (Mm3/Ha) (Figure 3.4), and harvested land 

(Ai(t)) from the total land available in the system. We calculate the fraction (Ui(t)) where total 

water demand (Dti(t)) is met from available irrigation water (Iri(t)). A water demand threshold 

MTi(t) = x% of total arable land is specified and used to decide the success or failure of the 

agricultural season. If Ui(t)>= MTi(t), the season is taken to be successful. Water managers can 

specify the water demand threshold taking into account water thresholds of irrigation systems, in 

essence defining success by cutting back on the area irrigated when water is scarce. For this study 

we specify the threshold as 90% for each time period.  

 

 

Figure 3.7 Agriculture system simulation 

 

3.4.4 Water Distribution Decision 
 

Irrigation water from upstream reservoirs is distributed in two steps to the smaller irrigation tanks 

(Figure 3.8). First, maximum possible quantities (𝐼𝑟1𝑖(𝑡)) are distributed among the systems, 

considering the total irrigation water (𝐼(𝑡)) availability and the water requirement (𝐷𝑡𝑖(𝑡)) of each 
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agricultural system (3.17). Then, if the remaining water in upstream reservoirs is higher than the 

upstream reservoir capacity (𝑆𝑚𝑎𝑥), additional water (𝐼𝑟2𝑖(𝑡)) is distributed among the downstream 

irrigation tanks according to the availability of space in each tank (𝐶𝑖(𝑡))(3.18). If there is no space 

in the downstream irrigation tanks, additional water is spilled (3.11). Some agricultural systems 

have a dedicated irrigation tank to serve the local system while some others do not.  For these 

systems irrigation water requirement (𝐷𝑡𝑖(𝑡)) from upstream reservoirs is the deficit not served by 

local tanks. For other systems, it is the total water requirement for cultivation. In (3.17) and (3.18), 

n is the number of agricultural systems served by the upstream reservoirs.   

 

𝐼𝑟1𝑖(𝑡) =

{
 

 𝐼(𝑡)
𝐷𝑡𝑖(𝑡)

∑ 𝐷𝑡𝑖(𝑡)
𝑛
𝑖=1

, 𝐼(𝑡) ≤∑ 𝐷𝑡𝑖(𝑡)
𝑛

𝑖=1

𝐷𝑡𝑖(𝑡),   𝐼(𝑡) >∑ 𝐷𝑡𝑖(𝑡)
𝑛

𝑖=1

 

 

(3.17) 

 𝐼𝑟2𝑖(𝑡)

=

{
  
 

  
 [𝐼(𝑡) −∑ 𝐼𝑅1𝑖(𝑡)

𝑛

𝑖=1
]

𝐶𝑖(𝑡)

∑ 𝐶𝑖(𝑡)
𝑛
𝑖=1

, 𝐼(𝑡) >∑ 𝐼𝑅1𝑖(𝑡)
𝑛

𝑖=1
 𝑎𝑛𝑑 𝐼(𝑡) −∑ 𝐼𝑅1𝑖(𝑡)

𝑛

𝑖=1
≤∑ 𝐶𝑖(𝑡)

𝑛

𝑖=1

𝐶𝑖(𝑡),   𝐼(𝑡) > ∑ 𝐼𝑅1𝑖(𝑡)
𝑛

𝑖=1
 𝑎𝑛𝑑 𝐼(𝑡) −∑ 𝐼𝑅1𝑖(𝑡)

𝑛

𝑖=1
>∑ 𝐶𝑖(𝑡)

𝑛

𝑖=1

0,   𝐼(𝑡) ≤ ∑ 𝐼𝑅1𝑖(𝑡)
𝑛

𝑖=1

 

 

 

(3.18) 

 

Figure 3.8 Irrigation water distribution decision 
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3.5 Project Performance Measurements 
 

The performance of water management decisions is assessed using three measures: (1) products 

(agricultural products and electricity generated); (2) reliability, resilience, and vulnerability 

indices; and (3) the fraction of water delivered to irrigated fields. 

3.5.1 Products of Water Users 
 

Crop yield for agriculture and electricity produced from hydropower are taken as measures 

of production. Although the monetary value of electricity typically is higher than the monetary 

value of crops, agricultural systems are associated with high employment opportunities and the 

social value is very high. 

3.5.2 Reliability, Resilience, and Vulnerability 
 

Reliability, resilience, and vulnerability indices are used to evaluate the performances of 

hydropower plants and agricultural systems (Ajami et al., 2008; Hashimoto et al., 1982; Loucks & 

van Beek, 2017). Reliability is a measure of success of meeting water demands and resilience is a 

measure of recovering from a failure. Vulnerability measures the severity of failure (Jain & 

Bhunya, 2008; Sandoval-solis, Mckinney, & Loucks, 2011; C. Zhang et al., 2017). The indices are 

calculated for each agricultural season in recognition of the way decisions for water allocation are 

made. For this study, the system is simulated using a monthly time step. Success or failure is 

identified by setting a threshold for the partial fulfillment of the demands for hydropower and 

agricultural systems for the seasons (Table 3.1). In section 3.1.3 (Figure 3.7), we estimate the 

success or failure of agricultural systems for each month and convert this data into the success of 

the six month season using the threshold. We use satisfaction of a minimum of four months water 

requirement as a season success (𝑆𝑡). Since we haven’t taken into account all the local inflows to 

the agricultural systems, and studying past seasonal data for 2002-2017 (Mahaweli Authority of 

Sri Lanka & Secreatariat, 2015) we assume partial fulfillment as a success of season rather than 

requiring fulfillment of all six months water demands from irrigation water. We use the 2002-2017 

average as our threshold measure for hydropower (Table 3.1) since data for hydropower production 

are not available for all 63 years of the record. To be consistent, we use only energy data for 

hydropower plants operated throughout the 15 years for calculating the average value. Although 

there is no absolute reason for selecting the average as a threshold, we consider it useful for 
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comparison of hydropower reliability, resilience and vulnerability values for different water 

allocation options.  

Table 3.1. Measure of success for hydropower and irrigation performance 

Water user Success measure 

Hydropower 

Power production for the season equals or exceeds the 15-

year (2002-2017) average for the season 

Irrigation  

90% of the crop water requirement for 4 months of the 

season is provided for 90% of land available for irrigation 

 

 

The success or failure of a season (𝑉(𝑡)) is measured as X(t) , where the state is set as one for 

success and zero for failure (3.19)(Hashimoto et al., 1982; Mondal & Wasimi, 2007; C. Zhang et 

al., 2017). 

 
𝑋(𝑡) = {

1,   𝑖𝑓 𝑉(𝑡)  𝑠𝑢𝑐𝑐𝑒𝑠𝑠
0,    𝑖𝑓    𝑉(𝑡)  𝑓𝑎𝑖𝑙

 
(3.19) 

Reliability is a measure of the number of successful seasons over the total number of seasons (𝑇) 

considered for the simulation (3.20) (Hashimoto et al., 1982; Mondal & Wasimi, 2007; C. Zhang 

et al., 2017).  

 
𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  

∑ 𝑋(𝑡)𝑇
𝑡=1

𝑇
 (3.20) 

Transition from failure to the next state is measured by W(t), where success is set as one and 

failure is set as zero (3.21).  

 
𝑊(𝑡) = {

1,   𝑖𝑓 𝑋(𝑡) = 0 𝑎𝑛𝑑 𝑋(𝑡 − 1) = 1 

0,  𝑖𝑓  𝑋(𝑡) = 0 𝑎𝑛𝑑 𝑋(𝑡 − 1) = 0
 (3.21) 

Resilience is a measure of how quickly a system is likely to recover after a failure (Chanda, 2014; 

Hashimoto et al., 1982; Mondal & Wasimi, 2007; Simonovic & Arunkumar, 2016). We estimate 

the ratio of total recoveries from failure to success from the total number of failures during the 

simulation (3.22).  

 
𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =  

∑ 𝑊(𝑡)𝑇
𝑡=1

𝑇 − ∑ 𝑋(𝑡)𝑇
𝑡=1

 (3.22) 

 

Vulnerability is a measure of the severity of the failure (Ajami et al., 2008; Asefa, Wanakule, 

Adams, Shelby, & Clayton, 2014; Fowler, Kilsby, & O’Connell, 2003; Moy, Cohon, & ReVelle, 
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1986), which is measured as the maximum number of successive seasonal failures in this study 

(3.23), (3.24).  

 

𝑌(𝑡) = {

1 − 𝑋(𝑡), 𝑡 = 1
𝑌(𝑡 − 1) + (1 − 𝑋(𝑡)), 𝑡 > 1 𝑎𝑛𝑑 𝑋(𝑡) = 0

0, 𝑡 > 1 𝑎𝑛𝑑 𝑋(𝑡) = 1
 (3.23) 

 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  max
𝑡∈(1,..𝑇)

𝑌(𝑡) (3.24) 

3.5.3 Fraction of Water Utilization for Irrigation  
 

The beneficial utilization of water for agriculture in the total system is estimated from total 

water inflows to the reservoirs, water releases for irrigation, and losses. Total water inflow (𝐼) to 

the system is consumed by agricultural systems (𝐼𝑟), is evaporated from the reservoir or tank (𝐸), 

or is spilled (𝑆𝑝) (3.25). Hydropower plants do not consume water so all water used for hydropower 

is available for irrigation in downstream areas. Water losses in waterways by evaporation and 

seepage, and water losses in the reservoirs by seepage are not considered for the water balance 

model. The share of water to the agricultural systems from the total is considered as the cascade’s 

fractional agricultural utilization (𝐸𝑓) in our study. We use cascade’s fractional agricultural 

utilization as an indicator to measure the different water allocation options at the main water 

diversions of the water resources management. In our study, Polgolla is the main water diversion 

location and fractional utilization is considered only as a metric to compare options for this 

diversion. 

 
∑∑𝐼(𝑡, 𝑖)

𝑁

𝑖=1

𝑇

𝑡=1

=∑∑𝐼𝑟(𝑡, 𝑖)

𝑀

𝑖=1

𝑇

𝑡=1

+∑∑[𝐸(𝑡, 𝑖)

𝑁

𝑖=1

𝑇

𝑡=1

+ 𝑆𝑝(𝑡, 𝑖)] 

𝐸𝑓 =  
∑ ∑ 𝐼𝑟(𝑡, 𝑖)𝑀

𝑖=1
𝑇
𝑡=1

∑ ∑ 𝐼(𝑡, 𝑖)𝑁
𝑖=1

𝑇
𝑡=1

 

(3.25) 

3.6 Evaluation of Water Allocation Alternatives of Mahaweli Project 
 

Several water allocation scenarios of Mahaweli reservoir cascade are analyzed using the 

simulation model.  We examine two objectives associated with the agricultural systems: (1) risk 

indices for each system according to water management decisions and (2) fraction of land from 

the total arable lands that have 100% reliability according to the given water management 

decisions. Because one agricultural adaptation mechanism for seasons with very limited irrigation 

water available is to cultivate only a fraction of the arable land available, we also explore how 

performance varies considering planting decisions between 50% and 100% of the available land.  
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We explore performance relative to management options of maintaining the current maximum 

diversion at Polgolla and of increasing the maximum diversion in steps up to 140% of the current 

value. Performance is measured in terms of: (1) reliability, resilience, and vulnerability (2) fraction 

of water used by irrigation systems, and (3) total agricultural crop yield and hydropower 

generation.   

 

3.7 Results 
 

For the present Polgolla water diversion policy, the irrigation systems show variable 

performance measures. System D2 shows the best reliability, resilience and vulnerability values. 

Systems B&C have higher reliability values than does system H, while system H shows higher 

resilience and lower vulnerability (Table 3.2). The 15-year average hydropower production is met 

in 89 of the 126 seasons in the historical record.  

Table 3.2. Performance measures of irrigation and hydropower systems 

 

Systems Reliability Resilience Vulnerability 

Land fraction meeting 

100% reliability 

System B&C 0.61 0.66 18 0.56 

System D1 0.53 0.60 32 0.49 

System D2 1.0 1.0 0 1.0 

System H 0.57 0.71 13 0.45 

Hydropower 0.71 0.57 8 
 

 

 

The relative performance of the agricultural systems changes as the fraction of land 

cultivated decreases from 100% to 50% (Figure 3.9). In particular, system H achieves the best 

performance indicators as the fraction of land irrigated decreases. Because water used for 

hydropower is available for irrigation downstream, hydropower does not affect results for 

irrigation in systems below the diversion at Polgolla; there is no influence for hydropower 

generation with variation of land fraction.  

Reducing yields by decreasing the fraction of arable land cultivated from 100% to 50% 

results in improvements in risk performance measures (Figure 3.10). In systems B&C reducing 

yield from 400 kT to 300 kT increases reliability from 0.6 to 0.74 and increases resilience  from 

0.66 to 0.76. Patterns are similar for other systems, although in system H resilience improvements 
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are minimal after yield is reduced by one third. (Note that the large yield values of system H and 

B&C compared to system D1 simply reflect a difference in total land area in each.) 

 

 
Figure 3.9 Performances of agricultural systems and hydropower plants for the present water diversion 

policy for variable fraction of land cultivated in reliability, resilience and vulnerability measures. Note that 

hydropower is not affected because the diversion 
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Figure 3.10 Trade-offs between expected agricultural yield and reliability, resilience indices. 

 

Changing the water diversion policy at Polgolla has both positive and negative impacts 

(Figure 3.11, Figure 3.12). Performance of the system of hydropower plants and of irrigation 

systems B and C, which are on the main stem of the Mahaweli River below the diversion at 

Polgolla, become weaker with diversion of additional water to the northern area of the country and 

the performance of the irrigation systems supplied from the Polgolla diversion, D1 and H, become 

stronger (Figure 3.12). As diversions at Polgolla increase, spills from the reservoirs off the main 

stem of the Mahaweli river increase, evaporation losses decrease, and the fraction of water supplied 

to irrigate lands first increases and then decreases (Figure 3.12 (a)). Diverting water from upstream 

to the north reduces the natural Mahaweli river flow; diversion has an essentially non-measurable 

impact on evaporation losses of downstream main reservoirs (Figure 3.12 (b)).  
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Figure 3.11 Performances of agricultural systems and hydropower plants for increasing water diversion to 

the north from the Polgolla diversion weir 

Postulated diversion as a percent of the current diversion from Polgolla % 

R
el

ia
b

il
it

y
 

R
es

il
ie

n
ce

 
V

u
ln

er
a
b

il
it

y
 

(a) 

(b) 

(c) 



41 
 

 

Figure 3.12 (a) Water balance among agricultural systems, evaporation loss and spilling from reservoirs (b) 

Mahaweli river flow and evaporation from downstream reservoirs 

 
 

Water diversion at Polgolla involves a trade-off between irrigated agriculture and 

hydropower generation. Beyond a 16%, increase of the present water diversion at Polgolla there is 

no enhancement of either the paddy yield or energy production (Figure 3.13). In fact, beyond a 

16% increase, paddy yield actually decreases because systems on the main stem of the Mahaweli 

(e.g., B and C) receive less water and thus are less productive while at the same time systems to 

the north that receive water diverted at Polgolla (e.g., D1 and H) do not have the capacity to store 

the additional water and so agricultural production remains flat and spill losses increase. A trade-
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off frontier curve between hydropower and paddy yield for different increases in diversion shows 

that the feasible region for decisions about the tradeoff is between an average annual range of 

1012- 1034 Mtonnes of paddy and 2186-2229 GWh of hydropower generation ( (Figure 3.13(b)). 

 
Figure 3.13 Agriculture and energy performance according to increasing Polgolla water diversion to the 

dry northern area (a) Variation of paddy yield (blue) and hydropower generation (orange) (b) Trade-off 

between paddy yield and hydropower generation. 

 
 

3.8 Discussion 
 

Under the present policy for water diversion at Polgolla, the reliability, resilience and 

vulnerability values show how different issues can affect different systems (Table 3.2). 

Hydropower exceeds the recent 15-year average more than 70% of time using hydropower 

generation of the recent past years (2002-2017) for comparison. However, the low resilience (0.57) 

and comparatively high vulnerability (8/126) values demonstrate the uncertainty of hydropower 

generation. Limitations of infrastructure and spatial variability of available water constrain 

agricultural system performance. For example, system H has a poor reliability value because about 

42,000 ha of arable land is supported by only 224 Mm3 of local water storage capacity. However, 

a large local storage capacity does not improve risk measures if water is not available to supply 

the reservoirs and tanks. For example, systems B&C (about 48,000 ha) show relatively weak 

performance despite being supported by a large water storage capacity of 742 Mm3 (Figure 3.9, 
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Figure 3.11) System D2, which has the best performance measures, is a good example for high 

local storage capacity and an abundant supply of water. Although D1 is adjacent to D2, its risk 

measures are much worse due to a lack of infrastructure to distribute water.  

One drought adaptation measure is to reduce the amount of cultivated land. Improvement of 

performances of agriculture systems under this adaptation measure varies across systems. For 

example, system H shows large improvements in resilience at 80% of land cultivated whereas 

systems D1, B and C show much more modest improvement (Figure 3.9 (b)). Due to advantageous 

climate and soil properties system H has a lower crop water requirement compared to other systems 

(Figure 3.4) and improves at a high rate in terms of resilience as the extent of arable land cultivated 

decreases. This also is the reason for the marked improvement shown in System H as increased 

diversion at Polgolla provides additional irrigation water (Figure 3.11).  

Reducing the extent of irrigated lands involves trade-offs between improving risk 

performance measures and reducing the yield and hence economic return of agricultural systems 

(Figure 3.10). The trade-offs are not the same for different agricultural systems due to water 

availability and infrastructure for water storage. Notably, the resilience improvement in system H 

is approximately double that in system B&C (Figure 3.11). Hence, individual system performance 

can inform water management decisions. 

Performance measures downstream of the diversion at Polgolla are sensitive to the water 

allocation policy (Figure 3.11).  As expected, performance of irrigation systems to the north is 

improved for higher diversions at Polgolla. Beyond about a 16% increase in the diversion, 

however, water spilling from northern local reservoirs is increased (Figure 3.12 (a)) and overall 

paddy production decreases because water is taken away from systems on the main stem of the 

Mahaweli leading to decreased production there, while the additional water diverted north cannot 

be stored and used efficiently so paddy production there remains flat (Figure 3.13).That is, the 

fractional agricultural utilization (𝐸𝑓) decreases because spilling increases. In addition, although 

we have not accounted for environmental impacts in our analysis, significant decreases in flow in 

the main Mahaweli River will negatively impact social and natural capital downstream.   

Our results indicate that a simulation model based on a system dynamics approach can 

provide information to assist in analyzing consequences of water allocation decisions. A relatively 

simple model such as we propose can be useful for a screening analysis of the impacts of proposed 

water allocation policies using a modest amount of data about the water resources project. Our 
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case study of the Mahaweli system shows that it is possible to develop a simulation model for a 

complex reservoir cascade using basic simulation blocks; reservoir, hydropower plant, agriculture 

system and water distribution decision. The Simulink platform  (MathWorks Simulink, 2018) is 

easy to understand and can be used by those with modest programming skills. Components of the 

reservoir cascade can be visualized and the model can be modified easily according to new 

infrastructure additions and parameter changes. The relatively simple simulation model developed 

in the MATLAB/Simulink platform can be used for studying similar reservoir systems. 

The performance of reservoir cascade systems in terms of economic products as well as in 

risk measures provide information to inform decisions about the operation and planning for future 

alternatives. Analysis of the performance of components of the overall system indicates limitations 

imposed by existing infrastructure and also changes that would result from proposed new 

infrastructure. Overall cascade performance measures in terms of economic products expose the 

energy-yield trade-offs of water sharing between hydropower and irrigated agriculture. Reliability, 

resilience and vulnerability indices of agricultural systems vary according to the spatial variability 

of land properties, water availability, and infrastructure facilities.  Knowledge about these 

variabilities across the systems can be used to fine tune system level decisions about the tradeoffs 

between increasing yields and increasing RRV metrics. Reducing the extent of cultivated land or 

changing of water allocations at one location provide only marginal improvement of RRV 

measures of most of the systems. Because changing the operation policy of one major location can 

marginally increase agricultural production but substantially decrease hydropower generation. 

Hence, we further explore the combination of important components in the reservoir cascade 

operation rules that enhance the cascade performance and enable to make informed decisions of 

water resources management by analyzing trade-offs between hydropower energy and agricultural 

yield. Specifically, optimizing hydropower and agricultural yield without losing a substantial 

amount of either objective values can inform the balance decision of reservoir cascade operation 

rules. 
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CHAPTER 4 

 

4 Deriving Reservoir Cascade Operation Rules for Variable Stream Flows by Optimizing 

Hydropower Generation and Irrigation Water Delivery for the Mahaweli Project in Sri Lanka 

 

 

4.1 Introduction 
 

The importance of hydropower for the Sri Lankan power grid is increasing in many aspects 

similar to the other parts of the world. Hydropower is a renewable energy source, relatively less 

expensive and stable compared to other variable renewable energy sources (Stoll et al., 2017). 

Hydropower supplies grid ancillary services such as frequency control, contingency reserves, and 

spinning reserves. The quick start and stop time and ramping rates of hydropower plants support 

the power system in many ways. Because of these features hydropower is identified as a promising 

way to integrate variable renewable sources such as wind and solar power (Gebretsadik, Fant, 

Strzepek, & Arndt, 2016; Hirth, 2016; Jurasz, Mikulik, Krzywda, Ciapała, & Janowski, 2018; F. 

Li, Shoemaker, Qiu, & Wei, 2015; Ming et al., 2017).  

Managing reservoir cascades to harness maximum hydropower while satisfying other 

water uses such as flood protection, navigation, irrigation and potable water use is challenging.  

Rule curves, which are a function of reservoir characteristics, geography,  hydrology and water 

demands, guide the effective management of reservoirs by prescribing storage vs. water releases 

(Kangrang, Prasanchum, & Hormwichian, 2018; Lin, Wu, & Chen, 2005). Water allocations 

among competing water users is another important element in reservoir cascade management. For 

example, consistent water releases can benefit hydropower production whereas storage of water 

until needed for irrigation is a goal for agriculture. Hence, the development of optimal reservoir 

operation policies requires analysis of values associated with the multiple, competing uses of the 

water in the face of annual and seasonal variability in river inflows to the reservoir system 

(Gaudard, Avanzi, & De Michele, 2018). 

Although optimization methods such as multiobjective evolutionary algorithms (MOEA) 

have been successfully applied for exploring optimal operation policies for reservoir cascades that 

balance conflicting objectives (Giuliani, Castelletti, Pianosi, Mason, & Reed, 2016a; Giuliani, 

Quinn, Herman, Castelletti, & Reed, 2018a; F. F. Li, Shoemaker, Qiu, & Wei, 2015; Zhou, Guo, 

Chang, Liu, & Chen, 2018), the “curse of dimensionality” makes the problem difficult or even 

intractable for more than a small number of reservoirs (Chu, Zhang, Fu, Li, & Zhou, 2015; Zhou, 
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Guo, Chang, Liu, et al., 2018). Although  optimization of reservoir cascades can be accomplished 

using advanced computing technology (J. D. Quinn, Reed, Giuliani, & Castelletti, 2017; J. D. 

Quinn et al., 2018), approximations are necessary when only modest computational resources, e.g., 

personal computers, are available.  Evolutionary algorithms can be used with successive 

approximations (Zhou, Guo, Chang, Liu, et al., 2018) to reduce the dimensions of the optimization 

problems. In such methods the n-dimensional problem is divided into a smaller number of 

individual problems to overcome the calculation burden (Zhou, Guo, Chang, & Xu, 2018). In this 

chapter we illustrate how the MOEA optimization method, judiciously applied to a small number 

of segments of the Mahaweli reservoir cascade to avoid problems of dimensionality, can be used 

to derive operating rules that balance conflicting objectives. The computation is carried out in two 

stages focusing on the Polgolla, major diversion that allocates water preferentially to favor either 

hydropower generation or agricultural production and on the operating rules for three reservoirs 

with the largest generation capacities – Kotmale, Victoria, Randenigala - in the system (Figure 

3.2). The resulting computationally efficient method yields improvements in performance 

compared to existing operating rules and allocation rules and exposes trade-offs of achieving 

objective values for Pareto optimal solution sets.  

 

4.2 Methods 
 

As described in the previous chapters, the Mahaweli reservoir cascade system, which is 

comprised of 21 reservoirs, 21 agricultural regions, and seven hydropower plants (Figure 3.2), is 

operated mainly for hydropower generation and irrigated agriculture. Inflows to the reservoirs 

reflect the dual monsoon seasons, referred to as Maha and Yala, that characterize Sri Lanka’s 

climate. The key water allocation point in the system is at Polgolla, where water diverted away 

from the main stem of the river is used primarily for irrigation while water that is not diverted is 

used primarily for hydropower generation. Kotmale reservoir, just upstream of Polgolla, is a large 

hydropower generator, as are two other large reservoirs, Victoria and Randenigala, immediately 

downstream of the diversion at Polgolla. The allocation rule for the one diversion point and the 

operating rule curves for the three major reservoirs  (outlined with a dashed line in Figure 3.2 and 

isolated in Figure 4.1) are currently based on experience, i.e., they do not result from any formal 

analysis.   
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Figure 4.1 Simplified schematic diagram of Mahaweli cascade for the study, stage 1: Kotmale and Polgolla 

operation policies and stage 2: Victoria and Randenigala operation policies 

 
 

We derive optimal operation rules of three reservoirs and one diversion and the optimization 

is done in two stages. First the rules for Kotmale and for Polgolla are jointly optimized, holding 

all else fixed at the existing rules. Subsequently, the rules for Victoria and Randenigala are jointly 

optimized, holding the optimized rules from the first stage for Polgolla and Kotmale (and all other 

reservoirs and diversions in the system) fixed. Agriculture is planned for two six-month seasons, 

from April-September (Yala season) and from October-March (Maha season) according to the 

monsoon rainfall. The Yala season is dry for the agricultural systems compared to the Maha season 

because of differing rainfall patterns so allocation and releases are necessarily different for the two 

seasons. The optimization study is carried out in the following steps.  

1) Yala season, stage 1: Kotmale, Polgolla  

2) Yala season, stage 2: Victoria, Randenigala  

3) Maha season, stage 1: Kotmale, Polgolla  

4) Maha season, stage 2: Victoria, Randenigala  

A simulation-based multiobjective optimization using the evolutionary algorithm (Deb, Pratab, 

Agarwal, & Meyarivan, 2002; MathWorks, 2019) is used to derive the optimal reservoir operation 

policies by optimizing hydropower and agricultural yield for a 1000-year synthetically generated 

inflow series. The optimization exercise is carried out focusing on both the extreme and average 

inflow conditions (Figure 4.2). 
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Figure 4.2. Steps of deriving the Pareto frontier for maximizing hydropower energy and agriculture yield 

and reservoir cascade operation rules. (a) Identify multiple objectives and decision variable boundaries. (b) 

Invoke evolutionary algorithm, MATLAB optimization (c) Evaluate the fitness function; assemble 

hydropower and yield for the lowest 10%/average for 1000 years of simulated inflow data and system 

simulation model. (d) Complete the calculations using the gamultiobj evolutionary algorithm  
 
 

4.3 Synthetic Stream Flow Generation 
 

Accounting for the variability of monsoon rainfall over the Mahaweli cascade is essential in 

water resources planning for hydropower and agriculture. We use records of monthly reservoir 

inflows for 63 years to characterize the seasonal and annual variability in the system. We generate 

synthetic stream flows considering the statistical properties of the historical data. Synthetic stream 

flows are generated that preserve the temporal and spatial correlations of stream flows assuming 

Optimization problem set up𝑥𝑖
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stationarity of the hydrology. We used mathematical codes developed by Quinn, J.D. (2018) based 

on Cholesky decomposition (Kirsch, Characklis, & Zeff, 2013; Julianne D Quinn, 2017).  

We use 𝑁𝐻 (63 years) of historical data to generate 𝑁𝑆 (1000 years) of synthetic data (𝐼𝑆) in 

several steps. First, historical data (𝐼𝐻) is transformed to a log scale (𝐴𝐻) to obtain an 

approximately normally distributed data set and then standardized using (4.26), where is µ𝑗 the 

mean value and 𝜎𝑗  is the standard deviation of 𝑗th month. 

 
𝐵𝐻(𝑖,𝑗) =

𝐴𝐻(𝑖,𝑗) − µ𝑗  

𝜎𝑗
 (4.26) 

 𝑍𝑆 = 𝛾𝑆𝛼 (4.27) 

 𝐼𝑆 = exp (𝑍𝑆") (4.28) 

A synthetic data series (𝛾𝑆(𝑁𝑠 𝘹 12)) is generated from the randomly sampled historical 

standardized data, by first creating a temporary matrix (𝑀(𝑁𝑠 𝘹 12)). Each column of the M is 

generated from randomly sampled integers (1,…,𝑁𝐻), which is the number of rows of matrix 𝐵𝐻 

(standardized log scale historical data). Elements for the matrix 𝛾𝑆(𝑖 𝘹 𝑗)  are assigned from 

𝐵𝐻 according to the matrix 𝑀. To preserve the spatial correlation among the 21 reservoir sites the 

same temporary matrix 𝑀 is used to generate synthetic streamflow for each site. Autocorrelation 

of the synthetic data set (𝐼𝑆) is preserved by carrying out two further steps. From the correlation of 

the historical data between different months, which is a correlation of matrix 𝐵𝐻 columns (𝛽 =

𝑐𝑜𝑟𝑟(𝐵𝐻)), an upper triangular matrix 𝛼 is generated from the Cholesky decomposition (𝛽 =

𝛼𝛼𝑇). First, the standardized autocorrelated synthetic data series (𝑍𝑆)is calculated (4.27), and then 

converted to flow data using mean (µ𝑗) and standard deviation (𝜎𝑗).  

A further step is carried out to preserve the autocorrelation of data from the last month of 

the previous year to the first month of the next year (Kirsch et al., 2013). The same procedure 

carried out to generate the standardized autocorrelated synthetic data series (𝑍𝑆) is repeated by 

creating a new matrix (𝐼𝐻′) from historical data (𝐼𝐻). The new matrix (𝐼𝐻′) is for data for the 7th to 

12th months of the previous year and for the 1st to 6th months of the present year as one row and a 

new standardized autocorrelated synthetic data series (𝑍𝑆′) is generated. By linking the first row, 

last 6 columns (months 1-6) of the 𝑍𝑆′ with the last 6 columns of the second row, last 6 columns 

(months 7-12) of the 𝑍𝑆 a continuous autocorrelated data series (𝑍𝑆") is generated. Finally the data 
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are transformed from the logarithmic scale back to the measured discharge scale to generate the 

synthetic data set (4.28)(Figure B. 1). 

  

4.4 Reservoir Cascade Operation Policy Optimization 
 

We use the  Mahaweli reservoir cascade system model of Chapter 3 (De Silva M. & 

Hornberger, 2019b) to simulate performance given various operation rules. Reservoirs of the 

cascade are simulated according to the water balance equation (29.4). Reservoir storages (Sk (𝑡)) 

are dynamically updated using a monthly time step from the addition of stream flows (Ik(𝑡)) to the 

reservoir, discharges (Qk-1 (𝑡)) and spills (Spk-1 (𝑡)) from the upstream reservoirs and subtraction 

of evaporation loss (Ek(𝑡)) and water releases (Qk (𝑡)). Reservoir physical parameters such as 

storage-area and storage-elevation data, and evaporation cycle are used to calculate evaporation 

loss (Ek (𝑡)).  

 Sk (𝑡) = Sk (𝑡 − 1) + Ik (𝑡) + Qk-1 (𝑡) + Spk-1 (𝑡) − Ek(𝑡) − Qk (𝑡) (29.4) 

Water releases (Qk (𝑡)) from a reservoir are set according to the target storage specified by 

the rule curve (RCk (𝑡)), the reservoir storage (Sk (𝑡)), the minimum reservoir capacity (Skmin) and 

the maximum water requirement (Qkmax) of the hydropower plant. If the reservoir storage is less 

than the minimum, water release is zero (4.30), and if the storage is between the minimum and 

targeted value, water releases are pro-rated (4.31).  In (4.31), the value of ‘a’ is the number of 

months of the water release plan; for this study we use the value as six since water releases are 

planned for two six-month seasons during a year. If the reservoir storage is greater than the target 

value, the difference between storage and target is released (4.32). If the difference is greater than 

the maximum hydropower plant capacity, the maximum water requirement is released (4.33). 

Operation of reservoirs except Kotmale, Victoria and Randenigala follow the rule curves of current 

practices (Chapter 3). 

 Sk (𝑡) < Skmin  , Qk (𝑡) = 0 (4.30) 

 Skmin  < Sk (𝑡) < RCk (𝑡) , Qk (𝑡) = (Sk (𝑡) − Skmin )/a) (4.31) 

 Sk (𝑡) > RCk (𝑡) , but Qkmax > ( Sk (𝑡) − RCk (𝑡)), Qk (𝑡) = Sk (𝑡) − RCk (𝑡) (4.32) 

 Qkmax < ( Sk (𝑡) − RCk (𝑡)), Qk (𝑡) =  Qkmax (4.33) 
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The water allocation rules for Polgolla define the fraction of water allocated between 

diversion to the dry zone (for Ag system 1 and Hydropower 1; Figure 4.1) and pass through to the 

downstream (Ag system 2 and downstream hydropower plants; Figure 4.1). The total water 

available at the diversion point at each time step is the addition of releases from upstream 

hydropower power plants (Qk (𝑡)), spill from the upstream reservoir Kotmale (Spk (𝑡)) and local 

inflows (Ip (𝑡)) from the sub-catchment (4.34). Water diversion at Polgolla (D1 (𝑡)) is constrained 

by the physical capacity (𝑉)  of the tunnel that can transfer the maximum amount of water each 

month ((4.35) ,(4.36). Water allocation rules of the other six points for different agriculture 

systems are specified as a function of time according to the irrigation water requirement of the 

agricultural systems.  

 Tp (𝑡)=Qk (𝑡) + Spk (𝑡) +  Ip (𝑡) (4.34) 

 D1 (t) *Tp (𝑡) = (1 − D2 (𝑡))* Tp (𝑡) (4.35) 

 0 < D1 (t) *Tp (𝑡) < 𝑉 (4.36) 

   

4.5 Multiple Objectives in Optimization 
 

The objectives for the optimization of the reservoir cascade are maximizing hydropower 

energy and agricultural yield. We simulate the reservoir cascade operation for NS = 1000 years to 

calculate the multiple objective values for each year.  

4.5.1 Hydropower Energy 
 

Hydropower generation of each power plant is calculated using the hydropower equation 

(4.37). Hydropower head (Hk(𝑡)) consists of a fixed head (height difference between water intake 

point of the reservoir and turbine of the power plant) and a variable head. Variable head refers to 

the reservoir water level which varies with reservoir releases (Qk (𝑡)), evaporation losses (Ek(𝑡)), 

and inflows (Ik (𝑡)) to the reservoir at each time step. The maximum power capacity of the power 

plant is generator and turbine capacity of the power plant (𝐶).  

 

𝑃𝑘(𝑡) = {
  𝜂k𝜌 𝑔 Hk(𝑡)Qk (𝑡), 𝐶 > 𝜂k 𝜌 𝑔 Hk(𝑡)Qk (𝑡)

𝐶, 𝐶 ≤ 𝜂k𝜌 𝑔 Hk(𝑡)Qk (𝑡)
 

(4.37) 
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4.5.2 Agricultural Yield 
 

Agricultural yield from 21 agricultural system for 1000 years is calculated using the 

Mahaweli reservoir cascade simulation model (Chapter 3), with adjustment to calculate the yield 

values for a monthly time step. Each agricultural season is six months. The simulation model 

calculates the yield for a predefined land extent considering the satisfaction of the water demand 

from the irrigation water supply. Historical records are used to derive the duty curves (i.e., water 

requirements) for the agriculture systems (Figure 4.3). 

 

Figure 4.3: Crop duty cycle of the agricultural system that describes water requirement (Mm3) per unit 

area of land (ha) derived from past records (2001-2015) 
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Figure 4.4. Agricultural system simulation 

Agricultural yield is calculated for the two six-month seasons (Figure 4.4) “Yala” and 

“Maha”. Water demand for the agricultural systems is changed according to the crop duty cycle 

(Dl(t)), water demand per unit land area (Figure 4.3).  The ratio (Ul(t)) calculated as the available 

irrigation water (Irl(t)) divided by the total water requirement (Cl(t) x Rl(t)) gives the fraction of 

success (P) for each month. The water requirements of the critical months of the season are 

determined by multiplying the success fraction (P) by a weight (Wl(𝑡)) which derives from the crop 

duty cycle (Figure 4.3). During agricultural seasons crop water requirements are higher during the 

2nd, 3rd, 4th and 5th months than during the 1st and 6th months. Hence, we use weights of 0.09, 0.22, 

0.22, 0.22, 0.2, 0.05 for the first to sixth months sequentially.    

4.5.3 Formulating Objectives in Optimization 
 

The goal of the optimization is to find operation rules (𝑥𝑖) of the reservoir cascade for 

maximizing of hydropower and agricultural yield (4.38). We carry out optimization for two 

formulations of the performance criteria for 1000 years (N), 6 power plants (K), and 21 agricultural 

systems (L). First, we optimize the lowest 10th percentile of the two objectives to determine 

operation rules that focus on performance during dry years using (4.38),(4.39) and (4.40). In other 

words, the result is a 90% probability of attaining hydropower energy and agricultural yield at least 

equal to the values for the lowest 10th percentile of optimal solutions. Second, we formulate the 
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problem to optimize the average values of two objectives for 1000 years stream flows using 

(4.38),(4.41) and (4.42).  

4.5.4 Multi-Objective Evolutionary Algorithm  
 

Multi-objective optimization provides a range of solutions, which are “best” according to the 

priorities among the objectives. For our case study, either hydropower or agricultural yield can be 

maximized while keeping constraints to satisfy the minimum requirements of the other objective 

using single objective optimization algorithms such as dynamic programming (Bogardi & 

Nandalal, 2007; Feng, Niu, Cheng, & Liao, 2017; Heidari, Chow, & Kokotovi, 1971), genetic 

algorithms (Cai, McKinney, & Lasdon, 2001; Tayebiyan & Mohammad, 2016), linear 

programming (Sreenivasan & Vedula, 1996), nonlinear programming (Niu, Feng, & Cheng, 2018) 

and extensions (J. Wang, Chen, & Liu, 2018; J. Wang, Guo, & Liu, 2018). In contrast to that, 

multi-objective optimization finds a set of solutions, referred to as a Pareto-front or trade-off front 

(Figure 4.2). Among the wide range of heuristic optimization algorithms (Ming, Chang, Huang, 

Wang, & Huang, 2015; Nagesh Kumar & Janga Reddy, 2007; Zhou et al., 2019), the 

multiobjective evolutionary algorithms (MOEA) have been successfully  applied for discovering 

reservoir cascade operation policies for balancing of conflicting objectives (Giuliani et al., 2016a, 

2018b; F. Li et al., 2015; Zhou, Guo, Chang, Liu, et al., 2018). 

For this study we use the gamultiobj algorithm of the MATLAB global optimization toolbox, 

which uses a controlled, elitist genetic algorithm to create the trade-off frontier (Deb et al., 2002; 

 𝑥𝑖
∗ = 𝑚𝑎𝑥(𝑂ℎ𝑦𝑑𝑟𝑜(𝑥𝑖), 𝑂𝑦𝑖𝑒𝑙𝑑(𝑥𝑖)) (4.38) 

 

𝑂ℎ𝑦𝑑𝑟𝑜(𝑥𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑁  {(∑∑𝑃(𝑡,𝑗)
𝑘

𝐾

𝑘=1

12

𝑡=1

) , 0.90} (4.39) 

 

𝑂𝑦𝑖𝑒𝑙𝑑(𝑥𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑁  {(∑∑𝑌(𝑡,𝑗)
𝑙

𝐿

𝑙=1

12

𝑡=1

) , 0.90} (4.40) 

 

𝑂ℎ𝑦𝑑𝑟𝑜(𝑥𝑖) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑁  (∑∑𝑃(𝑡,𝑗)
𝑘

𝐾

𝑘=1

12

𝑡=1

) (4.41) 

 

𝑂𝑦𝑖𝑒𝑙𝑑(𝑥𝑖) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑁  (∑∑𝑌(𝑡,𝑗)
𝑙

𝐿

𝑙=1

12

𝑡=1

) (4.42) 
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MathWorks, 2019). Objective values for hydropower and yield corresponding to the individual 

months (12 variables) are calculated using (4.38), (4.39), (4.40) or (4.41), (4.42) using the 

simulation model of the Mahaweli cascade (Chapter 3). Several population values ranging from 

40-300 were tested; 50 populations were deemed adequate for the search. The evolutionary 

algorithm searches solutions in the feasible region of the variable space; in our study the feasible 

region is defined by upper and lower boundaries. Boundaries for the Polgolla water diversion are 

one and zero, and for the reservoir boundaries are maximum and minimum reservoir operating 

capacity. 

 

4.6 Results 

 

Figure 4.5. Trade-off curves and operation rules for minimum 10th percentile optimization of Yala (a) 

Pareto front for stage 1 & 2, and objective values for current rules, and operation rules corresponding to 

maximum hydropower, maximum yield, current operation rules and an example intermediate point on the 

Pareto front (the red-circled blue dot in (a)) of (b) Kotmale target storage for each month (c) Polgolla water 

diversion fraction of total inflow to the north for each month (d) Victoria target storage for each month (e) 

Randenigala target storage for each month 
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The Pareto optimal solution sets (18 solutions) for the Mahaweli reservoir cascade in the 

Yala season illustrate the trade-offs between energy and yield (Figure 4.5 (a)). The optimal 

solution sets show imporvements relative to the current operation rules for either or both 

hydropower and yield. For example, for the point on the Pareto front indicated by the red-circled 

blue dot in Figure 4.5(a), there would be a 1.8% increase in hydropower production and a 3.4% 

increase in agricultural yield relative to results using current rules. The second stage values depend 

on the Kotmale reservoir’s and Polgolla water distribution operation rules selected in the first 

stage, for which we used the Pareto solution that gave an energy of 892.5 GWh (dotted line in 

Figure 4.5 (a)). In the trade-off analysis maximum hydropower is achieved with high storage in 

reservoirs and low water diversion rules (Hydro_Max rules) and the maximum yield is achieved 

with the lowest storage in reservoirs and high-water diversion at Polgolla (Yield_Max rules). The 

operating rules for intermediate values of hydropower and yield are between the Hydro_Max and 

Yield_Max rules. For example, the rule curves for the point on the Pareto front indicated by the 

red-circled blue dot in Figure 4.5 (a) are indicated by the “selected rules” in Figure 4.5 (b-e). The 

Kotmale reservoir rules are consistently greater than the current rules (Figure 4.5 (b)), while 

Victoria and Randenigala rules are lower than current rules in the majority of the months (Figure 

4.5 (d),(e)).  

Similar to the lowest 10% multiobjective optimization, the average objective optimization 

indicates improvement in the objectives relative to the result for current operation rules (Figure 

4.6 (a)). Kotmale operation rules are again consistently higher than those used currently (Figure 

4.6 (b)). Victoria and Randenigala rules corresponding to the highest energy value solution are 

similar to current operation rules (Figure 4.6 (d), (e)).  

The optimization results of Maha seasons also indicate similar improvements of Pareto 

solutions relative to current operation rules. However, the improvement of agricultural yield 

corresponding to the Polgolla water allocation is smaller in the Maha season than in the Yala 

season. Hydropower production of the Maha season is about 500 GWh lower than the Yala season, 

but both seasons have a similar range of yield values.  
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Figure 4.6. Trade-off curves and operation rules for average objective optimization of Yala (a) Pareto front 

for stage 1 & 2, and objective values for current rules, and operation rules corresponding to maximum 

hydropower, maximum yield, current operation rules, and an example intermediate point on the Pareto front 

(the red-circled blue dot in (a)) of (b) Kotmale target storage for each month (c) Polgolla water diversion 

fraction of total inflow to the north for each month (d) Victoria target storage for each month (e) 

Randenigala target storage for each month  



58 
 

 

Figure 4.7. Hydropower generation variability in each month for the 1000 year sequence by applying the 

example set of reservoir cascade operation rules derived for average and dry objective optimization marked 

in the Figure 4.5, Figure 4.6, Figure B. 2, Figure B. 3; Yala season (April-September) and Maha season 

(October-March) 

Monthly variation of hydropower generation from six power plants across the 1000-year 

sequence of river basin inflows is conditioned by the set of rule curves applied. To illustrate, we 

use the rule curves for the average and dry objective optimizations corresponding to the selected 

solution from the Pareto front which is circled red in the blue dots (Figure 4.5 (a), Figure 4.6 (a), 

and Figure B. 2 (a), Figure B. 3(a) in Appendix B). Although the annual hydropower generation 

and agricultural yield is greater for the optimized cases than for the current case, the median 

monthly hydropower values for the current operating rules exceed those for the optimization rule 

curves for some months (Figure 4.7). The optimization rule curves are consistently better than the 

current RC from October through January and the current RC is better than the dry RC for February 

through September and better than the average RC for 5 of those 7 months.  
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4.7 Discussion 
 

Reservoir cascade operation rules derived from the multiobjective optimization in two stages 

can enhance the Mahaweli project hydropower generation and agricultural yield (Figure 4.5, 

Figure 4.6, Figure B. 2, Figure B. 3). Chapter 3 showed that changing only the water allocation 

policy at Polgolla can enhance agricultural yield to a limited extent but decrease hydropower 

substantially due to infrastructure limitations. Multiobjective optimization achieves a set of 

solutions for alternative operation rules of the main three reservoirs and the diversion rules at 

Polgolla that enhances agricultural yield and increases hydropower as well by taking into account 

infrastructure limitations and hydrological variability. Results from two problem formulations -- 

the lowest 10% objectives optimization and the average objectives optimization -- provide 

information that could be used to adapt water management practices for different hydrological 

conditions considering the trade-off between energy and yield.  

Pareto optimal solution set exposes trade-offs between energy and yield that correlate to the 

reservoir operation and water allocation rules. As results indicated, high hydropower values are 

corresponding to Polgolla low water allocation for the north and high reservoir storage levels of 

Victoria and Randenigala reservoirs (Figure 4.5 (a), Figure 4.6 (a)) On the other hand, high water 

diversion from Polgolla improves the agricultural schemes of northern area, meanwhile high-water 

releases of Victoria and Randenigala lowering the storage levels improves the downstream 

agricultural schemes. Generally, variation of reservoir storage level can be impacted to the 

hydropower generation in two ways. Lowering of reservoir levels allows capturing of monsoon 

rainfall, which increases the water releases through turbines (Qk (𝑡)). Meanwhile high storage 

levels correspond to the high head (Hk (𝑡)) for the hydropower generation (4.37). Analyzing trade-

offs, our results confirm that high hydropower generation of Mahaweli generators correspond to 

the high heads and high agricultural yield corresponding to the lowering storage levels and water 

releases. 

Optimization for two seasons Yala and Maha for two problem formulations suggested 

variable water allocation rules for Pollgolla corresponding to the Pareto optimal solutions. For 

example, for the Yala average objective value optimization, the Polgolla water diversion is 

comparatively lower than the lowest 10% objective optimization (Figure B. 2(c), Figure B. 3(c)).  

In addition, during the Maha season, although there is large range for the Polgolla water allocation 

for the Pareto optimal solution set, the corresponding agricultural yield range is very small (Figure 
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B. 2(a), Figure B. 3(a)). Meanwhile, a small gain of yield reduces the amount of hydropower 

significantly. During the Maha season, northern agricultural systems benefit from NEM rainfall, 

hence, water diversion from Polgolla can improve the system only marginally. Further, results 

indicate that the Polgolla water diversion patterns for Yala average optimization and Maha lowest 

10% optimization follow the pattern of crop water duty cycle. Operating to have high diversion 

during Yala low inflows, a diversion pattern similar to crop duty cycle for Yala average inflow 

and Maha low inflows, and a low diversion for Maha average inflows could give a reasonably 

balanced solution for the hydropower generation irrigation water delivery objectives. 

 In contrast to single objective optimization, multiobjective optimization provides a set of 

optimal solutions where water managers can make decisions considering the trade-offs among the 

two objectives, hydropower and agriculture yield. Furthermore, if one objective is considered to 

be of greater importance than the other, even better solutions than the ones we report are 

achievable. That is, in our two-stage optimization one set of rule curves for Kotmale reservoir and 

for the Polgolla diversion from the stage 1 optimization must be selected for use in stage 2.  

Although in our study, we selected an intermediate point on the Pareto front as an example, water 

managers could select other values, in particular either the maximum hydropower or the maximum 

yield values as the solution to move forward from stage 1 to stage 2. For example, using the stage 

1 Pareto solution corresponding to maximum hydropower and minimum yield that meets the 

annual yield target to define the rule curves for Kotmale and Polgolla in stage 2, it is possible to 

further increase hydropower energy in the second stage.  

Understanding of hydropower production variability is essential for power grid operation 

planning. Pareto optimal solutions show the 1000-year average hydropower values; however, 

hydropower generation for any set of operation rules has large variability for 1000 years (Figure 

4.7). The variability of hydropower across the months is related to the monsoon rainfall and water 

releases for agricultural systems (Figure 4.7). Specifically, in the Yala season agricultural systems 

depend strongly on irrigation water because the majority of the agricultural systems are located in 

the dry zone and do not get rainfall during May-August. On the other hand, hydropower reservoirs 

get substantially high rainfall during the Yala season (Figure B. 1) which results in higher 

hydropower. However, during the Maha season (September-March) hydropower reservoirs get 

relatively low inflows. The current rule curves result in relatively low hydropower generation 
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during this season; the rule curve sets from the two-stage optimization improves hydropower 

generation during the Maha season.  

A multiobjective optimization method enables the computation of operation rules for 

Mahaweli reservoir cascade that improves both hydropower production and agricultural yield. The 

stage-wise optimization method can be used without sophisticated advanced computation 

facilities. Water managers can select the solution from the Pareto optimal solutions that shows 

trade-offs among the objectives. The approach could be further developed to examine economic 

policies relevant to water-energy-food interconnections, power generation planning considering 

the uncertainty of hydropower generation, and water management of food crops. The methodology 

can be applied to similar complex multipurpose reservoir cascade studies. 

Optimization methods enable decisions to be made about efficient use of limited water 

within a given system. However, a requirement of new infrastructure for increasing water demand 

is inevitable. Hence, Sri Lankan water managers are looking to add new infrastructure for water 

resources management. Water resources infrastructure development is complex since it impacts 

multiple sectors and various stakeholders. Therefore, new infrastructure alternatives are best 

planned systematically by evaluating technical, economic, environmental and social aspects while 

considering diverse stakeholder views. 
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CHAPTER 5 

 

5 Decision Analysis for the Expansion of the Mahaweli Multi-Purpose Reservoir System in Sri 

Lanka 

 

 

5.1 Introduction 
 

Water is a key driver of socio-economic development of Sri Lanka similar to other parts of 

the world (FAO 2017; WWAP, United Nations World Water Assessment Programme 2014; 

USEPA 2013). Specifically, decisions surrounding choices about the development of Mahaweli 

water resources infrastructure are often very important with respect to sustainable development 

goals. Such decisions must account for all major water uses and consider economic, social, and 

environmental goals. Irrigated agriculture, various industries, municipal water supplies, and 

electrical power generation all depend on water infrastructure and all these sectors will have 

different goals. In addition, environmental values related to water are important to many who are 

impacted by water resources infrastructure.  

Reservoir cascade systems on major rivers are of great importance to many countries  

(Räsänen et al., 2015; Yang, Ringler, Brown, & Mondal, 2016). Increasing demand for water 

resources for multiple purposes such as energy, agriculture, and potable water supply within a 

variable hydrological regime makes development of new infrastructure essential. The objectives 

of infrastructure expansion of a multi-purpose reservoir system include, but are not limited to, (1) 

maximizing economic development, (2) maximizing food production and self-sufficiency, (3) 

ensuring adequate potable water supply, (4) maximizing hydropower generation, (5) improving 

water quality, (6) alleviating poverty by creating employment opportunities, and (7) minimizing 

project cost of implementation and maintenance. 

The various entities (stakeholders hereafter) that hold a strong interest in water resource 

management (politicians, utility companies, government entities, non-governmental agencies 

(NGO), among others) have different interests and seek different benefits, which can create 

conflict among these parties (Afshar, Mariño, Saadatpour, & Afshar, 2011). Cultural diversity – 

the life style, traditions, and beliefs of water use in different groups – impact stakeholder’s 

participation in water resource management (Cai, Lasdon, & Michelsen, 2004; Calizaya, Meixner, 
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Bengtsson, & Berndtsson, 2010). Plans for meeting water demands address multiple objectives 

that are valued differently by different stakeholders making the evaluation of alternatives for 

infrastructure development complex (T. H. Y. Li, Ng, & Skitmore, 2016). Decision analysis tools 

can be used to assess the values placed by different stakeholders on the multiple objectives and 

thereby assist decision makers to choose among a set of alternative development proposals to 

address the competing objectives (Flug, Seitz, & Scott, 2005).   

Multi-criteria decision analysis (MCDA) techniques have been used in a wide range of 

applications and, in particular, they are commonly applied to inform decision making for water 

resources planning in developing countries (Abrishamchi, Ebrahimian, Tajrishi, & Mariño, 2005; 

Giupponi & Sgobbi, 2013; Opricovic, 2009). MCDA constitutes a body of techniques capable of 

improving the transparency and auditability of decisions using mathematical modelling (Cole et 

al., 2018; Hajkowicz & Collins, 2007; Kim, Fontane, Julien, & Lee, 2018). The model structure 

facilitates assessment of multiple attributes (economic, social, and environmental) measured in 

incommensurable units and incorporation of stakeholders’ preferences.  

In this chapter, we analyse plans for infrastructure expansion in the Mahaweli multipurpose 

reservoir cascade system using a MCDA method. Government policies give a high priority to the 

economic and social development of the northern dry area of the country, and improvement of 

Mahaweli water resource management is a major goal. New infrastructure is to be developed to 

allow a larger capacity of water storage in the river basin, and two new routes are planned to divert 

additional water towards the northern area to serve new irrigation lands (Figure 3.1, Figure 5.1). 

The current infrastructure of the project is capable of managing 2400 Mm3 of water in the basin 

while the upgraded Mahaweli water resource management project with the new infrastructure will 

increase its capacity to 4000 Mm3 (Ministry of Irrigation and Water Resources Management, 

2013a, 2014). As explained in the previous chapters the largest sectors that use water in the 

Mahaweli are agriculture and hydroelectric power generation, and so water and energy are 

especially tightly linked in Sri Lanka (Manthrithilake & Liyanagama, 2012; Perrone & 

Hornberger, 2016). The integration of water resources planning with power generation planning is 

not routinely done, and, in particular, the issue has not been studied for the Mahaweli expansion 

project. We consider water for irrigation, hydropower and potable water supply. Objectives 

considered include the economic viability of the massive investment, the environmental 

sustainability of the project, and enhancement of the country’s stability through supplying the 
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water needs of different ethnic groups. Stakeholders’ preferences for economic, social and 

environmental objectives are incorporated in the decision process (De Silva Manikkuwahandi, 

Hornberger, & Baroud, 2019).   

 

 

 

Figure 5.1 The schematic diagram of Mahaweli reservoir network with proposed infrastructure additions 

under four alternative plans develop through three water transferring routes. 
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5.2 Multicriteria Decision Analysis (MCDA) Method 
 

MCDA aims to rank options of alternatives based on selected evaluation criteria. Criteria are 

measured by attributes, and their importance judged by assigned weights. A performance matrix 

contains values of the attributes and a preference matrix contains values of the associated weights. 

Both matrices may have ordinal and cardinal data. Different MCDA techniques rank the 

alternatives according to specified algorithms of combining performance matrix and preference 

matrix (Hajkowicz & Higgins, 2008). 

The sequence of developing an MCDA model is identified as follows (Abrishamchi et al., 

2005; Cole et al., 2018; Mutikanga, Sharma, & Vairavamoorthy, 2011):  

• structuring the problem (objectives, constraints), 

• identifying the alternatives, 

• assigning alternative performance measures, 

• eliciting decision makers’ preferences, 

• evaluating alternatives through MCDA techniques, 

• analyzing the results (sensitivity and robustness), and 

• reporting information to allow decision makers to select a preferred alternative. 

There are various techniques of MCDA that have been used in water resource management. 

Multi attribute utility theory (MAUT), multi attribute value theory (MAVT), analytic hierarchy 

process (AHP), fuzzy set theory, compromise programming (CP) and outranking methods; 

elimination and choice expressing reality (ELECTRE) and preference ranking organization 

method for enrichment of evaluations (PROMETHEE) are generally popular tools of MCDA 

applied in water resource studies (Ahmadi, Arabi, Fontane, & Engel, 2015; Govindan & Jepsen, 

2016; Hajkowicz & Collins, 2007; Hajkowicz & Higgins, 2008; Huang, Keisler, & Linkov, 2011; 

Kang, Lee, Chung, Kim, & Kim, 2013).  

The selection of appropriate MCDAs in water resource planning is based on a number of 

considerations such as practicality, user familiarity, availability of information, effect on group 

dynamics, and likelihood of user acceptance of the results. This study applied two MCDA 

techniques, based on information availability and applicability in water resources management 

studies: the single synthesizing approach MAVT (Cole et al., 2018) and the outranking method 

ELECTRE (Cunha & Morais, 2012; Govindan & Jepsen, 2016; Raj & Nagesh Kumar, 1996). The 
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structure of MAVT with multiple decision makers’ participation helps in understanding the 

important details in policy negotiations, while ELECTRE guarantees robustness of the ranking of 

alternatives.   

 

5.3 MAVT with Multiple Decision Makers 
 

This method calculates a single value that represents the performance of each alternative 

through several steps (Fishburn, 1968; Keeney & Raiffa, 1976). A weighted sum is used to 

calculate a single value for MAVT (van Herwijnen, 2010). Weights for each attribute of an 

alternative plan are calculated from the preference elicited from the decision makers. Similar to 

Cai et al. (2004), multiple decision makers’ preferences for the criteria are incorporated to calculate 

the total score for alternative plans.  

The MCDA calculations produce a performance matrix, 𝐺(𝑖, 𝑗), of the alternative plans 

populated with the values of their respective indicators. The first step of MAVT consists of 

transforming the attribute performances of each plan, 𝑔(𝑖, 𝑗), to commensurate units through the 

value function or standardization. For this study, we use interval standardization, using (5.43) for 

criteria to be maximized and (5.44) for criteria to be minimized (Clemen, Robert T., Reilly, 2001; 

T. H. Y. Li et al., 2016). 

These two equations compute the elements of the evaluation matrix E, 𝑒(𝑖, 𝑗); 𝑔(𝑗, 𝑖 ) is the 

target value of attribute 𝑗 in plan 𝑖, max 𝑔(𝑗) is the maximum target value of value of criterion 𝑗, 

min 𝑔(𝑗) is the minimum target value of criterion 𝑗, and 𝑒(𝑗, 𝑖) is the standardized performance of 

plan 𝑖 on criterion 𝑗. Value path is a graphical representation of the standardized alternatives’ 

performance over the attributes, which facilitates the evaluation of alternatives (Cai et al., 2004; 

B. Hobbs & Meier, 2000). 

 
𝑒(𝑖, 𝑗) =

𝑔(𝑗, 𝑖) − 𝑚𝑖𝑛 𝑔(𝑗)

𝑚𝑎𝑥 𝑔(𝑗) − 𝑚𝑖𝑛 𝑔(𝑗)
 (5.43) 

 
𝑒(𝑖, 𝑗) =

max𝑔 (𝑗) − 𝑔(𝑗, 𝑖)

max  𝑔(𝑗) − min g(𝑗)
 (5.44) 

The method can be extended to account for multiple decision makers (DMs). Mathematically this 

is represented in (5.45) and  (5.46) (Cai et al., 2004). 
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In these equations,  𝑖 - 1,..,I refers to the alternative index, 𝑗 - 1, …, J is the criterion index,  𝑘 - 

1,…, K is the index representing each DM, E is the criterion evaluation matrix in which each entry, 

𝑒(𝑖, 𝑗), is the performance of plan 𝑖 on criterion 𝑗 (standardised), C is the DM’s preference matrix 

in which each entry, 𝑐(𝑗, 𝑘), calculates how important attribute 𝑗 is for DM 𝑘 (weight trade-off), S 

is the support plan matrix, 𝑠(𝑖, 𝑘) is the degree of approval of DM 𝑘 for plan 𝑖, U is the vector 

representing the multi-attribute value function of each alternative, 𝑈(𝑖) is the degree of approval 

of plan 𝑖 by all decision makers. 

The MAVT method helps in structuring the problem and understanding policy problems.  

Simplicity and transparency of the method with cardinal weights provides a means for 

communication and negotiation and for the incorporation of diverse views in selecting criteria and 

value functions (De Montis, Toro, Droste-Franke, Omann, & Stagl, 2000).  However, the main 

weakness of the method is that criteria are considered to be compensatory where a high value of 

any criterion can compensate for a correspondingly low value of another criterion. In addition, the 

calculation of the utility value as an additive function and using linear transformations for the 

criteria can lead to inaccurate results (Hajkowicz & Higgins, 2008). 

 

5.4 ELECTRE III 
 

The development of the outranking methods started in France in the late 1960s by Bernard 

Roy and his team (Benayoun, Roy, & Sussman, 1966; Roy, 1991). The method involves comparing 

two alternatives across a full range of criteria using an outranking relationship (Figueira, Greco, 

Roy, & Słowiński, 2013). As such, I decision alternatives result in I2-I pairwise comparisons to 

test the strength of hypothesis ‘at least as good as’ and opposition to the hypothesis. Three matrices 

populated with concordance indices, discordance indices and credibility indices are calculated to 

rank the alternatives.  

The ELECTRE method can handle four types of preferences considering three threshold 

values: preference threshold (𝑝𝑗), indifference threshold (𝑞𝑗) and veto threshold (𝑣𝑗) (Roy, 1991). 

The modelling of four types of preferences is done through outranking, which is associated with 

 𝑆(𝑖, 𝑘) = 𝐸(𝑖, 𝑗). 𝐶(𝑗, 𝑘) (5.45) 
 

𝑈(𝑖) = ∑𝑠(𝑖, 𝑘)

𝐾

𝑘=1

  (5.46) 
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two main concepts, pseudo-criteria  and binary relationships (Figueira et al., 2013). In (5.47), 

simulation of weak preference, indifference and strict preference, and incomparability (hesitating 

between the indifference and the opposition) are represented.  

 𝑐𝑗(𝑖, 𝑖
′) = 0;                𝑖𝑓𝑔(𝑖′, 𝑗) − 𝑔(𝑖, 𝑗) > 𝑝𝑗[𝑔(𝑖, 𝑗)] 

𝑐𝑗(𝑖, 𝑖
′) = 1;                𝑖𝑓𝑔(𝑖′, 𝑗) − 𝑔(𝑖, 𝑗) < 𝑞𝑗[𝑔(𝑖, 𝑗)] 

0 < 𝑐𝑗(𝑖, 𝑖
′) < 1;      𝑖𝑓 𝑝𝑗[𝑔(𝑖, 𝑗)] < 𝑔(𝑖′, 𝑗) − 𝑔(𝑖, 𝑗) < 𝑞𝑗[𝑔(𝑖, 𝑗)] 

(5.47) 

The concordance index is a measure of the degree of dominance of alternative 𝑖 over alternative 

𝑖′ given by the outranking relation given in (5.48). 

 𝑐(𝑖, 𝑖′) =  ∑ 𝑤𝑗
𝑗∈𝐶𝑆(𝑖𝑖′)

+ ∑ 𝑤𝑗
𝑗∈𝐶𝑄(𝑖𝑖′)

ψ𝑗 (5.48) 

In (5.48) and (5.49) 𝑐𝑖𝑖′  is the concordance index, 𝑤𝑗  represents the total weight associated 

with criteria 𝑔(𝑗), 𝐶𝑆(𝑖𝑖′) contains attributes (𝑗) where 𝑖 is at least as good as 𝑖′ with no reservation 

(indifference and strict preference), 𝐶𝑄(𝑖𝑖′) contains attributes (𝑗) hesitating between the 

indifference and the opposition that 𝑖 is at least as good as 𝑖′.  ψ – set of criteria agree about 

preference alternative 𝑖  with respect to 𝑖′.  

 
ψ𝑗 =

𝑔(𝑖′, 𝑗) − 𝑔(𝑖, 𝑗) + 𝑝𝑗[𝑔(𝑖, 𝑗)]

𝑝𝑗[𝑔(𝑖, 𝑗)] − 𝑞𝑗[𝑔(𝑖, 𝑗)]
 (5.49) 

The discordance index is a measure of the degree of opposition to the hypothesis that 𝑖 is 

as good as 𝑖′.  The discordance is measured with respect to the veto threshold as well. A veto 

threshold is associated with the most important criterion or with all the criteria instead of 

preference threshold to differentiate the weak performance of alternatives’ attributes. 

The credibility index provides a value for outranking relation of alternative 𝑖 over 

alternative 𝑖′ by combining the concordance index and the discordance index. If there is a criterion 

with discordance index greater than the overall concordance index, the concordance index is 

modified to a lower value according to (5.50) (Figueira et al., 2013). 

 𝜎(𝑖, 𝑖′) = 𝑐(𝑖, 𝑖′)∏𝑇(𝑖, 𝑖′) (5.50) 

𝑇(𝑖, 𝑖′ ) = (1 − 𝑑𝑗(𝑖, 𝑖′))/(1 − 𝑐(𝑖, 𝑖′))   , if 𝑑𝑗(𝑖, 𝑗) > 𝑐(𝑖, 𝑗), otherwise 𝑇(𝑖, 𝑖′) = 1 
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The relative values of the three thresholds have the relationship of 𝑣 > 𝑝 > 𝑞  (Rogers & 

Bruen, 1998) and for this study we select the ratio between thresholds as 2 and 𝑞 of 2%, 𝑝 of 5%, 

and 𝑣 of 10% for all criteria. Assigning values to the threshold are highly subjective in the decision 

making process and sometimes values are elicited from the decision makers. In practice, choosing 

values and doing sensitivity analyses are very common due to imperfect knowledge (Figueira, 

Mousseau, & Roy, 2005; Rogers & Bruen, 1998; Roy & Bouyssou, 1986).  

Ranking of alternatives is based on two pre-orders, ascending distillation and descending 

distillation. Ascending and descending pre-orders are based on credibility indices, and cut-off level 

and distillation threshold that are decided according to how strongly alternatives are outranked by 

each other (Marzouk, 2011; Rogers & Bruen, 2000). We selected 0.2 for both cut-off level and 

distillation thresholds. 

ELECTRE is a family of methods with comprehensive characteristics that can handle real 

time decision problems (Figueira et al., 2013). The main strength of the method is the ability to 

deal with quantitative and qualitative data and with non-compensatory effects (avoiding the choice 

of alternatives with a very low value for the criterion that is compensated by higher values for the 

rest of the criteria). The parameters have threshold values to avoid the compensation of the weak 

performance of certain criteria by improving the performance of other criteria. However, due to 

the complex analysis, communicating the results to stakeholders may be difficult. 

 

5.5 Application of MCDA Method to Case Study 

   

The influence diagram of the decision problem in the Mahaweli multipurpose water resource 

management (Figure 5.2) illustrates the fundamental objective (societal benefit) and means 

objectives (e.g., economic benefit from agriculture, amount of water shared with northern dry 

zone, etc.). Means objectives are clustered under four criteria: economic benefits, economic 

viability, societal aspects and environmental stewardship.  
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Figure 5.2 Influence diagram for multipurpose water resource planning and management decision 

5.5.1 Alternatives 

Four alternative plans are identified to improve the water management in this study (Figure 

5.1, Figure C. 1). New plans are developed to send different amounts of water captured from 

monsoons upstream to dry northern areas via three water diversion routes. Route 1 is the existing 

underground tunnel from Polgolla, which has a capacity of 1400Mm3, which is 525Mm3 higher 

than the present water diversion. Route 2 is a new underground tunnel from Randenigala reservoir, 

and route 3 involves pumping of water from downstream in the river at Kalinganuwara to 

agricultural reservoirs. 

Plan 1: 1400Mm3 water is diverted through route 1. Kotmale dam height will be increased to store 

an additional 175 Mm3 water to improve the system operation by having a larger water storage 

capacity (Ministry of Irrigation and Water Resources Management, 2013a; Ministry of Mahaweli 

Development and Environment, 2016).  

Plan 2: 1250Mm3 water is diverted through route 1 and 100 Mm3 is pumped through route 3. In 

addition to the Kotmale reservoir capacity increase, pumping water from Kalinganuwara allows 

for more hydropower generation (Ministry of Irrigation and Water Resources Management, 

2013a). 
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Plan 3: 875 Mm3 water is diverted through route 1 as is the present practice. An additional 500 

Mm3 is diverted through route 2 and 250 Mm3 is diverted through route 3. Construction of a new 

water diversion route from Randenigala reduces flexibility of operation because high water levels 

must be maintained in the Randenigala reservoir. Pumping additional water from Kalinganuwara 

relative to Plan 2 compensates for potential loss of hydropower due to operational restrictions at 

Randenigala (Ministry of Irrigation and Water Resources Management, 2013a, 2014; Ministry of 

Mahaweli Development and Environment, 2016).  

Plan 4: 875 Mm3 of water is diverted through route 1 as is the present practice and an additional 

600 Mm3 is diverted through route 3 by pumping. Diversion of water from upstream of Polgolla 

or Randenigala significantly affects hydropower generation. Pumping the water from downstream 

of the Rantambe power plant allows use of the water for maximum hydropower generation. 

Avoiding electricity peak demand period for pumping allows use of energy at lower cost. Irrigation 

tanks of system D1 will be used for the storage of pumped water to send to the northern areas. 

5.5.2 Evaluation of Criteria  

We assess the four alternative plans outlined above to achieve the ten means objectives that 

contribute to the fundamental objective. The ten objectives are clustered under four criteria 

(economic benefits, economic viability, societal aspects and environmental stewardship) and 

attributes are identified for each criterion for quantification. 

Economic development is measured using agriculture development, hydropower 

generation, and potable water supply for domestic and industrial use. Agriculture benefits are the 

economic benefits resulting from the paddy and other food crops (OFC) and the improvement of 

cropping intensity of existing agricultural lands as well as newly developed lands with high water 

availability (Table C. 1 in Appendix C). Hydropower benefit is the reservoir based hydropower 

capacity and energy benefit increase, and the replacement of fossil fuel-fired thermal power with 

more sustainable renewable energy sources (Table C. 2, Table C. 3). Potable water supply is an 

estimate of the benefits of drinking water and industrial water supply; the main infrastructure 

provides part of the indirect cost associated with potable water supply (Table C. 4). 

The project is financed through long-term loans from international funding agencies; hence 

economic viability of the new infrastructure development is important. The project cost is based 

on past construction of Sri Lankan infrastructure and similar projects of neighboring countries 
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(Ministry of Irrigation and Water Resources Management, 2013a) (Table C. 5). The value of 

economic internal rate of return (EIRR) is based on a 30-year return of a 4-year single investment 

accounting for annual operations and maintenance cost for irrigation, hydropower, and potable 

water (Table C. 6).  

To evaluate the social objectives of the project, social development is assessed through (i) 

new employments in agriculture, energy, transportation and construction sectors (Table C. 7), (ii) 

disturbance to the society by resettlement of people in areas providing water routes and reservoirs 

(Ministry of Irrigation and Water Resources Management, 2013a), and (iii) water diversion to 

northern post conflict areas (Table C. 8). 

Environmental impacts of the project are measured through natural river flow violation and 

disturbance to the wildlife.  Natural river flow will be reduced by diversions to the northern 

irrigation tanks with an impact on the downstream water users and aquatic habitats (Ministry of 

Irrigation and Water Resources Management, 2013a). Disturbance to wildlife (Table C. 9) in new 

water conveying routes and reservoirs are assessed.  

Values associated with each attribute for each plan were assembled from a variety of 

sources (Ministry of Irrigation and Water Resources Management, 2013a, 2014; Ministry of 

Mahaweli Development and Environment, 2016); detailed calculations are presented in the 

supplementary data (Table C. 1-C.9).  

5.5.3 Eliciting the Decision Makers’ Preferences (Weights) 

Multiple organizations represent the different sectors of the project. Presently, the 

Mahaweli Authority of Sri Lanka (MASL) operates major reservoirs and the Irrigation Department 

(ID) operates several irrigation reservoirs. The National Water Supply Board and local authorities 

manage potable water supplies. The Ceylon Electricity Board (CEB) manages all the hydropower 

generation stations. Water distribution decisions are made jointly by stakeholder agencies led by 

MASL. 

The stakeholders are agriculture experts, energy experts, environmentalists, social service 

sector experts, hydrologists, and a mixed group of stakeholders without a specific expertise. The 

Ministry of Mahaweli Development and Environment of Sri Lanka conducted meetings with 

participation of 98 stakeholders representing the various interest groups. In addition to government 

agencies, representatives included people from water resource management consulting companies, 
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from funding agencies, and from non-government organizations (NGOs). The stakeholders self-

identified themselves according to the six groups listed above and scored the importance of 41 

attributes that define the quantification of the multiple criteria considered (Ministry of Mahaweli 

Development and Environment, 2016). We obtained and used the results of the meeting conducted 

by the Ministry of Mahaweli Development and Environment and grouped them into the relevant 

attributes of this study. The preferences of experts, who are referred to as decision makers (DMs) 

below, were elicited on a scale from 1 to 10. These values were standardized using (5.43).  

5.5.4 Sensitivity Analysis 

The model result is sensitive to the uncertainties  of alternative performances due to natural 

variability such as climate variability for hydrology, economic parameters such as discount rates, 

agriculture and electricity market prices, decision maker priorities for the multiple criteria and 

parameters of decision models (Hyde, Maier, & Colby, 2004). The robustness of the MCDA results 

is tested for uncertainties of both attribute performances and decision makers’ weights. One 

thousand Monte Carlo simulation runs are carried out for ±20% sensitivity of attribute performance 

values and ±20% of decision makers’ weights.  

In addition to the general sensitivity analysis, we examine important elements of the 

Mahaweli water resources policy decisions. Economic and environmental aspects of the water 

resources management projects are two main elements of water policy. Therefore, economic and 

environmental aspects of the alternative plans are examined through the sensitivity in DMs’ 

weights for attributes categorized under the two categories by using MAVT method. Economic 

benefits from hydropower, agriculture, potable water, EIRR, project cost attributes are categorized 

under the economic category. Social attributes such as new employment, resettlement, water 

sharing with the northern area and environmental stewardship attributes such as river flow 

violation and impact to the wild life are categorized under the environmental category. Sensitivities 

of plan scores are calculated using DM’s (𝑢(𝑖) in  (5.46). We modify the average DM weights for 

the economic and environmental categories from 0 to 1 in 0.01 steps.   

Finally, a stylized analysis was done to explore the sensitivity of the rankings to variations 

of the commodity market. In Case 1, the original assumption that electricity price for pumping was 

50% of the base price because pumping was considered to be done at off-peak times; the sensitivity 

to this assumption was evaluated through an analysis assuming that electricity cost is constant in 
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time. In Case 2, we considered sensitivity to a 50% increase of agriculture benefit of each 

alternative. Sensitivity of rankings to the decision parameters of the ELECTRE III model was 

explored by selecting high threshold values for the indifference threshold q, preference threshold 

p, and veto threshold v from the original values of 2%, 5% and 10% using three cases (Cases 3, 4, 

and 5): p = 10%, q = 3%, v = 15%; p = 15%, q = 3%, v = 20%; p = 25%, q = 4%, v = 30%. 

 

5.6 Results 
 

The ten attributes fall into four criteria classes that express (1) economic development, (2) 

economic viability, (3) social development, and (4) environmental sustainability broken out in the 

performance matrix of the attributes (Table 5.1). The standardized values of the attributes illustrate 

the differences among the four alternative plans meeting multiple objectives represented by 

attributes (Figure 5.3 (a)). Plan 2 does not have minimum performances for any attributes while 

the performances of other plans vary between maximum and minimum values. 

Decision makers’ preferences show consistency with regard to a few attributes (e.g., 

potable water) but varied widely on several others (e.g., resettlement) (Table 5.1). The 

standardized stakeholder preferences calculated using interval standardization, illustrate how the 

various decision makers evaluate their relative preferences for the attributes (Figure 5.3 (b)). The 

weights of the power utility decision makers show large variation across the attributes, while the 

weights of the mixed (other) group vary over a smaller range. The mean value of weight per 

attribute is 0.1 and the standard deviation (SD) is 0.016. The maximum score value any attribute 

can achieve is 60 (6x10). EIRR has a total score of 49.6, the highest among the 10 attributes. Total 

project investment, water diversion to northern post-conflict areas, and drinking water also have 

high utility values (Table 5.1).  

Both MAVT and ELECTRE III methods results rank Plan 2 the highest, with small 

differences in other rankings (Figure 5.4). In the MAVT method, all decision makers rank the 

alternative plans from highest to lowest as Plan 2, Plan 4, Plan 3 and Plan 1 (Table C. 10). In the 

ELECTRE III, the decision makers rank plans from highest to lowest as Plan 2, Plan 4, Plan 1 and 

Plan 3, with Plan 4 and Plan 1 ranking equivalently. ELECTRE III ranks the alternatives (Figure 

5.4, Figure C. 3) according to credibility indices (Table C. 13), which are calculated using 

concordance (Table C. 11) and discordance indices (Table C. 12). 
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Table 5.1. Attribute performance matrix and decision makers’ preferences in 1-10 scale. DM1: 

Agricultural experts, DM2: Power experts, DM3: Environmental experts, DM4: Social experts, DM5: 

Hydrology experts, DM6: Other mixed stakeholder group 

Criteria 
Alternatives Decision Makers 

Plan 1 Plan 2 Plan 3 Plan 4 DM1 DM2 DM3 DM4 DM5 DM6 

C1:Economic development                     

Agricultural annual benefitsa 

($M) (maximize) 
39.9 47.5 47.8 39.9 8.5 5.3 5.5 8.7 6.7 5.9 

Hydropower annual benefitsb 

($M) (maximize) 
-0.6 30.9 26.6 43.2 6.4 10 7.3 6.2 6.5 5.4 

Potable water annual benefitsc 

($M) (maximize) 
7.18 9.02 9.02 9.02 7.4 7 6.9 7.9 7.9 7.2 

C2:Economic viability                     

Total investmentd ($B) 

(minimize) 
0.8 1.16 1.91 1.45 8.4 10 7.7 7.9 6.8 7.6 

Economic Internal Rate of 

Returne (%)(maximize) 
3.6 5.1 3.5 7.8 8.5 10 7.9 8.4 6.9 7.9 

C3:Social development                     

New employmentf (1000 person 

days ) (maximize) 
31016 34846 38055 31016 7.8 5.3 4.8 8.4 5.2 6.3 

Resettlement (Number of People) 

(minimize)  
3475 7880 8114 4910 6.2 4.3 6.8 8.9 5.1 6.4 

Water sharing with Northern 

areag (Mm3) (maximize) 
830 1030 1050 930 9.4 6.6 7.9 7.3 9.2 7.3 

C4:Environmental steward.                     

River flow 

violation(%)(minimize) 
22.63 25.79 29.5 25.79 5.9 7.7 8.7 7.1 5.7 6.1 

Impact to wildlifeh (1-10 scale) 

(minimize) 
3 6 10 5 5.6 6.6 9.2 7.8 6.2 6.4 
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Figure 5.3. Performances of four alternative plans and decision makers’ weight over ten attributes (a) Value 

path of trade-off between attributes of alternative plans (b) Standardized six decision makers’ weight trade-

off between attributes 
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Although, Plan 1 and Plan 4 have high uncertainty with respect to their relative ranking order, the 

majority of simulations have Plan 4 as higher than Plan 1. 

The ranking of alternatives across a wide range of variation in economic criteria and 
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insensitive to changes in weights of attributes (Figure 5.6). The Plan 1 score varies substantially 

with changes in weights of economics and environmental attributes, while the scores of Plans 2 

and 3 are stable. Nevertheless, the rankings are unchanged for modest changes in weights with 

changes in rank occurring only for very low (high) weights of economic (environmental) attributes 

(Figure 5.6).  

 

Figure 5.4. Ranking of alternatives by MAVT and ELECTRE-III methods. The rank obtained by each plan 

according to six decision makers' weight shown inside the bar graphs. 

Our stylized sensitivity analysis also confirms Plan 2 as the highest ranked. The ranks of 

other Plans change for extreme values of variables. For example, removing the difference in 

electricity price between peak and off-peak times or making moderate changes in the decision 

threshold values in the ELECTRE III method do not affect the ranking of alternatives. However, 

a drastic change, such as a as 50% increase in agriculture benefit, reorders the alternative rankings 

as Plan 2, 1, 4, 3. In addition, for large changes in threshold values in ELECTRE III (p = 25%, q 
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Figure 5.5. Sensitivity analysis of ranking order considering uncertainty of attribute performances and 

decision makers’ weight in ±20% range. Percentage of ranks obtained by each plan is shown in the 

corresponding box for each plan to method and decision 

MAVT ELECTRE III 

A
g

ricu
ltu

re 
E

n
v

ir
o
n

m
e
n

ta
l 

S
o

cia
l 

O
th

er 
H

y
d

ro
lo

g
y 

P
o

w
er 

R
a

n
k
 

R
a

n
k
 

R
a

n
k
 

R
a

n
k
 

R
a

n
k
 

R
a

n
k
 

Alternatives 



79 
 

 

Figure 5.6. Sensitivity of Plan score according to economics and environmental criteria weight 

 
 

5.7 Discussion 
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sectors give higher preference to the agriculture benefits while the DM from the power sector 

prioritizes hydropower. Agriculture and hydrology DMs give a higher preference to water sharing 

and amount of water diverted to the north, while environmentalists are mostly concerned with 

environmental sustainability. Resettlement of people is the highest and hydropower is the lowest 

priority attribute for the social DMs. For the power DM, hydropower is the highest and 

resettlement of people is the lowest priority. Even though DMs have their own priorities and 

preferences, they still acknowledge the importance of other less preferred attributes and their 

impact on social welfare overall; therefore, they do not overly penalize the attributes that are not 

highly ranked (weight mean 0.1and SD 0.016). All the DM groups have identified common goals 

associated with the project. All DM groups gave high preference values (>6.6) for these attributes. 

Therefore, common goals of the project such as potable water supply and water sharing with the 

northern conflict areas in an economically sound manner achieve the maximum score values 

(Table 5.1).   

The multi-attribute value function indicates that all the DMs have the highest utility value 

for Plan 2 and second highest utility value for Plan 4 (Table C. 10, Score column). Plan 4 has high 

economic development due to high hydropower development and high economic viability by low 

project cost and better EIRR. However, Plan 2 is associated with agriculture development and has 

less impact on the social and biological environment. The overall favoured ranking of plan 2 

reflects the combined valuation of different attributes by different stakeholders. Sensitivity 

analysis for attribute weights variation demonstrates that Plan 2 has high scores throughout the 

weight range, while Plan 4 gets high scores only for high hydropower benefit and EIRR attribute 

weights.  

The empirical data are not perfect and can certainly be further refined with more detailed 

studies and additional surveys. This study assumes risk neutrality of decision makers, without 

consideration of uncertainties of future water availability, engineering designs, and acceptance of 

the solution by society (including political preferences). However, the robustness of the best 

alternative selected by the MCDA framework with MAVT and ELECTRE is supported by the 

sensitivity analyses, which show that the rankings of the alternatives are stable to changes in 

assumptions.  

With the consideration of multiple competing objectives as well as the preference of 

multiple stakeholders from different water use sectors, an MCDA analysis is a good fit for decision 
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problems involving water resources trade-offs. The decision analysis methods that we use to 

explore planning alternatives in the Mahaweli basin in Sri Lanka highlight their usefulness for 

including preferences of stakeholders. The trade-off weights elicited from multiple decision 

makers reflect priorities of the institutions that they represent, with the highest weights assigned 

to criteria most closely associated with organizational goals (e.g., agricultural decision makers’ 

prioritized irrigation). Nevertheless, the various assigned weights also demonstrated an 

appreciation among all stakeholders of the importance of all of the criteria considered. The results 

indicate that an alternative that performs well across all the criteria considered, although it is not 

uniformly the “best” in any criterion, has broad support from stakeholders. This case study shows 

that MCDA models can be used as a platform for deriving a collective decision from stakeholders 

with diverse interests and thus serve as a guide to inform the decision regarding the development 

of water resources infrastructure, the extension of the Mahaweli multipurpose project.  

Moving from 100% hydropower to renewable thermal power mix to meet the increasing 

energy demand, energy managers face challenges to expand the infrastructure considering multiple 

objectives. Similar to the water resources infrastructure development, energy infrastructure is 

associated with many sectors. Stakeholders have diverse views about future power generation 

pathways. There are many conflicts that arise in expansion of power generation in Sri Lanka as a 

developing country with one aim being a transfer to low carbon pathways but at the same time 

securing the energy economically and in a technically efficient way. As with water resources, 

proper power generation expansion planning requires consideration of technical, economic, 

environmental and social aspects as well as considering diverse stakeholder views. 
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CHAPTER 6 

 

6 Decision Analysis to Support the Choice of a Future Power Generation Pathway for Sri 

Lanka 

 

 

6.1 Introduction 
 

Power planning in Sri Lanka is important due to the expected high growth in demand (U.S. 

Energy Information Adminstration, 2017), and heavy attention from stakeholders. The economy 

in the country relies heavily on the electricity supply (Wolfram, Shelef, & Gertler, 2012) and 

achieving sustainable objectives of power generation (Yi, Xu, & Fan, 2019; S. Zhang, Zhao, & 

Xie, 2018)  is challenging. The country enjoys significant clean hydropower, which catered the 

full electricity demand until the early 1990s. The country presently has no commercially proven 

fossil fuel resources and no grid connection to the neighboring countries. Electricity demand is 

expected to continue to increase over the next several decades, and plans have been developed to 

expand the generation system, i.e., appropriately construct new power plants over time as needed 

(Ceylon Electricity Board, 2015). Realization of power generation capacity plans of adding 

thermal power and renewable power other than hydropower to the system is constrained by both 

capital investments and stakeholder consultation (Chen et al., 2015).  

Power generation planning is a complex task under supply and demand uncertainties and 

investment challenges (Jin, 2009). The selection of power technologies should reflect the expected 

long-term electricity demand increases as well as changes in the pattern of demand from daily to 

seasonal time scales. Power generation planning must be done in the face of fluctuations and 

uncertainties in the price of fossil fuel and in the availability of renewable resources 

(Vithayasrichareon, Riesz, & MacGill, 2017). Capital investments in power generation are 

conditioned by long lead times and long-term payback periods. Investment additions for power 

grid expansion according to the locations of power generation is another consideration (Motamedi, 

Zareipour, Buygi, & Rosehart, 2010; Samarakoon, Shrestha, & Fujiwara, 2001). In addition, 

impacts to the natural and social environment from power generation add further complexity to 

the planning. Hence, planning of power generation expansion for time horizon of 20 years or 

longer must consider the engineering, economic, physical science, and social science aspects of 

the process.  
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The goal of power planning is supplying a reliable and affordable power supply to consumers 

in an environmentally friendly manner for multiple decades. To achieve this goal, power planning 

seeks to (1) maximize economic benefits of power generation as a business, (2) maximize the 

reliability of the power system, (3) minimize environmental impacts from power generation, and 

(4) minimize negative impacts and maximize positive impacts to society from power generation. 

Plans must be implementable in a timely manner to achieve a reliable outcome.  

Despite the multi-faceted nature of power generation planning, traditional planning by power 

utilities primarily focuses on meeting the forecasted electricity demand in an economically 

favorable manner (B. F. Hobbs, 1995) by centralized power capacity expansion (Kagiannas, 

Askounis, & Psarras, 2004). The process is to minimize cost (single objective optimization) under 

a few constraints for technical and environmental regulations  (Afful-Dadzie, Afful-Dadzie, 

Awudu, & Banuro, 2017). Since planning is mostly handled by utilities, energy policy analysis 

does not adapt a thorough process, rather it considers a few alternatives and sensitivity analyses 

done within a narrow bound around the “business-as-usual” plan. Comparison of alternative plans 

often highlights the technical and economic aspects with limited consideration of information on 

environmental and social aspects (Mai et al., 2015). 

Over the past two decades, the power generation planning process has evolved to consider 

multiple objectives with the participation of diverse stakeholders. The increase in environmental 

awareness and advances in technological innovations have put pressure on power generation 

planners to address sustainability objectives (Pfenninger, Hawkes, & Keirstead, 2014). Integrated 

resource planning, which considers both supply side and demand side options to meet power 

demand, is one initiative that helps facilitate the process (Greacen, Greacen, von Hippel, & Bill, 

2013; Tennessee Valley Authority, 2015; Wilson & Biewald, 2013). Increasing renewable energy 

share in a portfolio (Sharifzadeh, Hien, & Shah, 2019; Zappa, Junginger, & van den Broek, 2019), 

developing of carbon capture storage (Koelbl et al., 2016) constructing efficient fossil fuel plants 

(Pettinau, Ferrara, Tola, & Cau, 2017), instituting demand side management (Behboodi, Chassin, 

Crawford, & Djilali, 2016) and switching to different fuels for efficiency gains (Lewandowska-

Bernat & Desideri, 2018) are methods employed to achieve sustainability objectives. Several 

mathematical algorithms including linear programming (Clímaco, Henggeler Antunes, Gomes 

Martins, & Traça Almeida, 1995), mixed integer programming (Guerra, Tejada, & Reklaitis, 

2016), dynamic programming (Parpas & Webster, 2014), evolutionary programming (S.Kannan, 
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S.Mary Raja Slochanal, 2005) among other algorithms (Flores, Montagna, & Vecchietti, 2014), 

are used for energy policy analysis. Other power planning tools (Connolly, Lund, Mathiesen, & 

Leahy, 2010; Gacitua et al., 2018) such as TIMES (Pina, Silva, & Ferrão, 2013), OPTGEN, 

MESSAGE (Aliyu, Ramli, & Saleh, 2013; International Atomic Energy Agency, 2016), 

OSeMOSYS (Howells et al., 2011), LEAP (Heaps, 2016), EGEAS, PLEXOS and WASP-

IV(International Atomic Energy Agency, 2001) have also been used (Koltsaklis & Dagoumas, 

2018). However, multiple objectives can be conflicting and multiple stakeholders will have diverse 

views on the technical, economic, and environmental aspects associated with power planning, 

weighing the importance of various objectives differently. As a result, the importance of 

incorporating diverse concerns of stakeholders and building trust and confidence in the power 

generation planning process has become widely recognized (Grafakos, Flamos, & Enseñado, 

2015). 

A multicriteria decision analysis (MCDA) model provides a path to evaluate power 

generation alternatives (Løken, 2007).by analyzing both quantitative and qualitative data 

associated with multiple aspects of the plans (Pohekar & Ramachandran, 2004). MCDA also 

provides a platform for collaborative decision making considering diverse views of the decision 

makers on conflicting objectives (B. Hobbs & Meier, 2000). MCDA has been used for power 

generation planning in developed countries such as Portugal(Ribeiro, Ferreira, & Araújo, 2013) 

and other EU countries (Baležentis & Streimikiene, 2017) as well as developing countries 

Bangladesh (Rahman, Paatero, Lahdelma, & Wahid, 2016) and Mexico (Martinez, Lambert, & 

Karvetski, 2011). The method has been used for individual technology assessment such as solar 

PV (Al Garni & Awasthi, 2017), hydropower (Vučijak, Kupusović, MidŽić-Kurtagić, & Ćerić, 

2013), energy storage (Murrant & Radcliffe, 2018) and power technology comparison (Shaaban, 

Scheffran, Böhner, & Elsobki, 2018). It has also used to incorporate social aspects of technologies 

(Chatzimouratidis & Pilavachi, 2008). Specifically, in energy policy analysis, power generation 

pathway assessments have been carried out with a focus on specific targets for energy mix and a 

specific set of objectives. For example, decarbonization energy pathways for Bosnia and 

Herzegovina were studied using WASP-IV optimization with several attributes to measure 

economic, environment and technical criteria (Kazagic, Merzic, Redzic, & Music, 2014). In 

another example, a pathway analysis in Bangladesh was used to identify renewable investment 

opportunities (Shiraishi, Shirley, & Kammen, 2019). The diversification of a power generation 
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mix to achieve energy security for Tunisia (Brand & Missaoui, 2014), Jordan (Malkawi, Al-Nimr, 

& Azizi, 2017) and Australia (Hong, Bradshaw, & Brook, 2014) has been studied. These power 

investment portfolios were evaluated under uncertainty using multiple resource options as criteria 

(Martinez et al., 2011), using macro and micro economic attributes (Hernandez-Perdomo, Mun, & 

Rocco, 2017), conducting sensitivity analysis (Georgopoulou, Lalas, & Papagiannakis, 1997), and 

considering uncertainty of technologies and decision-maker preferences (Heinrich, Basson, 

Cohen, Howells, & Petrie, 2007). In addition, MCDA has been used to incorporate social concerns 

into the decisions of power generation planning (P. Ferreira, M. Ara´ujo, 2010).   

This chapter illustrates the use of MCDA to support decision making of generation capacity 

expansion planning in Sri Lanka to meet future electricity demands. The power generation plans 

have been controversial at least in part because of a lack of transparency for the public (Jayasuriya 

& Avanthi, 2017; Ratnasingham, 2017) and environmental issues of the energy choices (Economic 

Consulting Associates, Consultants, & ERM, 2010; Meier & Munasinghe, 1994). Sri Lanka would 

benefit by having a transparent planning process where stakeholders’ diverse views can be 

accommodated rather than a closed evaluation process by a power utility that has a monopoly over 

the power sector. Although, energy policy analysis with MCDA has been used for certain 

developing countries, comprehensive analysis considering stakeholder views has not been 

conducted for the Sri Lanka.      

The objective of this study is to apply a planning method using optimization and decision 

methods to help decision makers by identifying the strengths and weaknesses of power generation 

pathways for Sri Lanka considering multiple technologies, multiple objectives, and the variety of 

views held by groups of different stakeholders. We first construct various hypothetical alternatives 

of energy mixes that reflect emphasis on different strategic elements of energy policy put forward 

by Sri Lanka (Ministry of Power and Energy, 2008). We next find the least-cost implementation 

pathway for each alternative using an optimization model; these optimized versions (the pathways) 

provide the economic, technical, environmental and social aspects of each proposed plan. Finally, 

MCDA incorporates stakeholder preferences using a number of metrics in addition to economic 

costs and benefits to explore how various pathways are valued. These results are interpreted to 

suggest a possible preferred pathway (De Silva M., Hornberger, & Baroud, 2019).  
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6.2 Background 
 

The total power capacity of Sri Lanka is comprised of oil-fired thermal power (1233 MW), 

coal-fired thermal power (900 MW), large hydropower with reservoir storage (1384 MW), run-of-

the- river small hydropower (354 MW), wind power (131 MW) and other renewable power (45 

MW) plants. The total electricity generation in 2017 was 14671 GWh, which was 31% from 

renewable energy and 69% from fossil fuel fired power plants (Ceylon Electricity Board, 2016). 

The average power generation growth and peak demand growth for the last 20 years are 5.1% and 

4.7%, respectively (Ceylon Electricity Board, 2016) and continued growth in demand is expected. 

The national energy policy for Sri Lanka determined specific targets, milestones and 

implementation strategies for the energy sector (Ministry of Power and Energy, 2008). Supplying 

basic energy needs of the nation, ensuring energy security, protecting consumers, providing high-

quality power supply, promoting indigenous resources, increasing energy efficiency, and 

implementing transparent tariff policy are key elements of the national energy policy. In addition, 

special attention is given to increase the share of renewable energy. These elements provide the 

basis for formulating alternatives to consider for power generation expansion in Sri Lanka. 

In Sri Lanka, as elsewhere, planning involves the evaluation of different pathways to meet 

anticipated demand. A pathway is a scheduling plan detailing the timeline for the addition of power 

plants to the system over the course of the planning period, which we take to be 20 years. Different 

alternatives of mixes of types of power generation plants lead to different pathways. This study 

provides a mechanism to evaluate the pathways using criteria that account for stakeholders’ 

preferences.  

  

6.3  Methods 
 

Our approach consists of four components, (1) identification of alternatives, (2) formulation of an 

implementation pathway for each alternative, (3) identification of criteria and attributes, and (4) 

evaluation of the pathways (Figure 6.1). 
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Figure 6.1 Methodology for power generation pathway selection by developing the details of each 

alternative (the best way to implement each alternative) through optimization followed by evaluation using 

MCDA. 

 
 

6.4 Identification of Alternatives 
 

Six alternatives are proposed. The alternatives are based on elements of the national energy 

policy (Ministry of Power and Energy, 2008), current power generation plans of the country 

(Ceylon Electricity Board, 2015), communication between the Ceylon Electricity Board (CEB), 
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the power utility responsible for the preparation of power generation expansion plan for the 

country, and the Public Utility Commission (PUCSL), the regulatory authority on power planning 

matters (Public Utility Commision of Sri Lanka, 2017, 2018), stakeholder views gleaned from 

media coverage (Jayasuriya & Avanthi, 2017; Ratnasingham, 2017), and power plans prepared by 

utilities of other countries such as the United States (Tennessee Valley Authority, 2015), Korea 

(MOTIE KPX (Korea Power Exchange), 2015) and Thailand (Ministry of Energy Thailand, 2015) 

(Table 6.1).  

 
Table 6.1. Alternative plans for power generation pathways in Sri Lanka 

Alternatives Description 

1. Reference case (RC). Traditional planning concepts are used; the total power capacity 

is planned with conventional power plant options (large hydro and 

thermal) with the least cost plant combination selected. Power 

capacity contribution from variable renewable energy (VRE) 

sources (wind, solar, small hydro, and biomass) is not considered. 

2. Energy mix case (EM): The total power capacity is planned with conventional power 

plants, with an emphasis on diverse technology and fuel mix. 

Power capacity contribution from variable renewable sources is 

not considered. 

3. Energy efficiency case  

(EE) 

Both energy and power capacity savings from demand-side 

management (DSM) techniques (Sri Lanka Sustainable Energy 

Authority, 2017) are considered for this alternative. Projected 

power capacity and energy demands are reduced by the projected 

savings from DSM. Power capacity is planned with conventional 

thermal power plant options and both large hydropower and VRE 

power plant options. Additional contingency reserves to meet the 

variability of VRE resources (Hummon, Denholm, Jorgenson, 

Palchak, & Kirby, 2013; Ueckerdt, Hirth, Luderer, & Edenhofer, 

2013) are considered. 

4. Maximum indigenous 

resource case (IR): 

Priority is given for indigenous resources such as local natural gas 

(NG) (currently, under investigation) and maximum use of 

renewable power sources. Conventional thermal power plant 

options are used to balance power demand and availability.  

5. Low emission case (LE): Power capacity is planned with maximum use of renewable 

sources and gas-fired thermal power plants. Oil is considered as a 

candidate for near future power supply; coal is not considered. 

Power capacity contribution from VRE is considered with 

additional contingency reserves. 

6. Energy security case 

(ES): 

Power capacity is planned with a combination of fossil fuel-fired 

thermal power mix (coal, oil, and natural gas) and renewable 

power sources.  Power capacity contribution from VRE is 

considered with additional contingency reserves 
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6.5 Development of Possible Pathways  
 

Various energy pathways – the scheduling across 20 years of the addition of power plants of 

different types – can be envisioned. Some of these will be more or less favorable with respect to 

the objectives implied by the alternatives in Table 6.1. An optimal pathway for each alternative 

can be determined by minimizing costs within constraints. 

6.5.1 Candidate Power Plants to Develop Energy Pathways  

 

Table 6.2. Candidate power plants for future power generation capacity addition (Ceylon Electricity Board, 

2015; Institute of Policy Studies, Associates, Resource Management Associates, & Tiruchelvam 

Associates, 2011; Japan International Corporation Agency, 2015; JPower, 2014; Oriental Consultants, 

Tokyo Electric Power Services, & Consulting Engineers and Architects, 2014). 

Candidate power technology Unit Capacity 

1. Diesel fired gas turbine power plants 35 MW, 70 MW, 105 MW 

2. Diesel fired combined cycle power plants 150 MW, 300 MW 

3. Coal fired sub critical thermal power plants 225 MW, 290 MW 

4. Coal fired super critical thermal power plant 500 MW 

5. Natural gas fired combined cycle power plant 270 MW 

6. Biomass fired thermal power plant 5 MW 

7. Nuclear power plant 500 MW 

8. Interconnection to power grid of India (stage I) 550 MW 

9. Pumped storage hydropower plants 200 MW 

10. Large and small hydropower plants (site specific) 35 MW, 120 MW, 31 MW 

11. Wind power plants (site specific) 50 MW, 25 MW 

12. Solar photovoltaic power plants (site specific) 10 MW, 15 MW 

 

 

Pathways are developed for forecasted electricity demand (Table D. 1 (a) in Appendix D) 

using candidate power plants considered by Ceylon Electricity Board (2015) (Table 6.3). The 

projected average electrical energy and power capacity growth rates for the 20-year planning 

horizon are 5.2% and 4.6%, respectively (Ceylon Electricity Board, 2015). Power generation 

options are screened against the load duration curve (Shape of the electricity demand (a) Daily 
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demand profile evolution through past 25 years (b) Load duration curve of present and forecasted for 

year 2034 

to identify suitable candidate power plant options (International Atomic Energy Agency, 

1984; Mohan Munasinghe & Peter Meier, 2005). In addition, power system operation security 

constraints such as contingency reserve requirements, isolated grid operation of important areas 

under emergency, and diversity of resources to face the uncertainty of availability (renewable, 

fossil fuel) are considered. Due to the long lead-time to introduce new technology (e.g., NG, 

nuclear), short-term candidate options (e.g., oil fired power plants) are considered to address 

immediate demands, including for the Low emissions case.  

6.5.2 Pathway Optimization 
 

The Wien Automatic System Planning version IV (WASP-IV) optimization package 

developed by the International Atomic Energy Agency (International Atomic Energy Agency, 

2001) is used to identify the new power plant additions to the system under each pathway. Inputs 

for the WASP-IV model include existing and candidate power plant characteristics (Table D. 2, 

Table D. 5), fuel cost, hydrology (Table D.4), discount rate (10%), economic loss of electrical 

energy not served (ENS: Economic loss to society not supplying energy due to outage of power 

plants or shortage power plant capacity) to the country, plant depreciation rate, maintenance 

schedules, reliability standards, and environmental emissions. Environmental emissions of power 

plants are given by levels of CO2, SOx, NOx and particulate matters (PM) (Table D. 3, Table D. 6) 

(Ceylon Electricity Board, 2015).  

The objective function (𝐵𝑖) to be optimized is a combination of cost elements: capital 

investment cost (𝐼𝑖,𝑡), salvage value of investment cost (𝑆𝑖,𝑡), fuel cost (𝐹𝑖,𝑡), fuel inventory cost 

(𝐿𝑖,𝑡), nonfuel operation and maintenance cost (𝑀𝑖,𝑡) and cost of energy not served (𝑂𝑖,𝑡), (6.51).  

 

𝐵𝑖 =∑[𝐼𝑖,𝑡 − 𝑆𝑖,𝑡 + 𝐹𝑖,𝑡 + 𝐿𝑖,𝑡 +𝑀𝑖,𝑡 + 𝑂𝑖,𝑡]     

𝑇

𝑡=1

  (6.51) 

To avoid end effect distortions (bias against capital intensive plants near the end of the time 

horizon) an extended simulation period of 30 years is selected with results reported for the 20-year 

planning period. The discounted cost of the plan for the 30-year study period is minimized under 

given constraints and a probabilistic hydrology forecast. Constraints for the optimization are 
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reliability standards, system level emissions, and installation schedule limitations for candidate 

power plants. The WASP-IV model reports the power plant schedule to be added to the system, 

cost (capital investment, salvage of investment cost, fuel cost, maintenance cost and ENS cost), 

fuel quantities, and emissions to the environment (CO2, SOx, NOx, PM) (International Atomic 

Energy Agency, 2001).  

The resulting optimal schedule for addition of power plants for each alternative is the best 

implementation of a pathway in terms of the criterion and constraints above. In what follows, we 

refer to these optimal pathways simply as “pathways” as there should not be any ambiguity going 

forward. Six alternative pathways are generated by six optimization exercises carried out using 

WASP-IV separately. 

6.5.3 Identify the Criteria and Attributes and Measure the Performance of Attributes  
 

We identify five criteria to evaluate the different pathways, (1) economic aspects, (2) technical 

flexibility of the power system, (3) uncertainties, (4) environmental stewardship, and (5) social 

aspects. We use 15 attributes to measure these criteria.  

(1) Economic performances of alternatives are measured with two attributes, the present value of 

the revenue requirement to recover the 20-year cost (PVRR) and the revenue requirement per 

unit of electricity (1 MWh) for the first 10 years of the planning period (Unit Cost).  The 

discounted total cost of the 20-year plan to 2015 is calculated using a 10% discount rate. The 

revenue requirement is calculated using estimated annual sales and cost, (Tennessee Valley 

Authority, 2015).  

 
𝑈𝑛𝑖𝑡 𝐶𝑜𝑠𝑡 =

1

10
∑ [

𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑜𝑠𝑡

𝐴𝑛𝑛𝑢𝑎𝑙 𝑠𝑎𝑙𝑒𝑠
]

2024

𝑖=2015 𝑖

  (6.52) 

 In addition to the PVRR, the investment requirement for alternatives is examined. For the first 

years 2015-2024 investment (Cost1) and second years 2025-2034 investment (Cost2) are used.  

(2) Technical flexibility for operating the power system is improved with high peaking power 

capacities and high dispatchable power capacities. Therefore, peaking power share (capacity 

of peaking power plants /capacity of total power plants) (P-share) and dispatchable power share 

(capacity of dispatchable power plants/capacity of total power plants) (D-share) are used as the 

attributes for measuring the technical flexibility of the system (Tennessee Valley Authority, 
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2015). For the calculation, large hydropower plants and diesel fired gas turbine power plants 

are considered as the peaking power plants. In addition, variable renewable capacity is not 

considered as dispatchable power sources. 

(3) Uncertainty is measured by four attributes, (1) risk exposure of the cost of the plan, (2) risk-

benefit ratio, (3) diversity of fuel mix for power generation, and (4) dependency on energy 

sources from foreign countries. The economic cost of alternative plans is uncertain due to 

variables related to climate, fossil fuel prices (BP Global, 2017; Mundi Index, 2017), demands, 

and financial parameters. For this study, variation of hydropower generation according to the 

climate variation (Figure D.4) (Ceylon Electricity Board, 2015) and fossil fuel (NG, oil, coal) 

price variation (International Energy Agency, 2016) are used to calculate the uncertainty of the 

planning cost. Fossil fuel price volatility of individual fuel types is assumed independent from 

other fuel types. The 95th percentile (𝑃𝑉𝑅𝑅 𝑃( 95)) cost is reported as the measurement of 

risk exposure of the plan. 

  The risk-benefit ratio of the plan (RBR) is computed as the risk of exposure of the cost 

exceeding its expected value divided by the benefit of having the plan cost less than the 

expected value (Tennessee Valley Authority, 2015). 

 

𝑅𝐵𝑅 =
𝑃𝑉𝑅𝑅 𝑃( 95) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑃𝑉𝑅𝑅 𝑃(5)
  (6.53) 

 The diversity of the fuel mix is calculated using the Shannon Wiener index (H) (Jansen, Arkel, 

& Boots, 2004) and the dependency on foreign countries energy sources is measured by the 

NEID index (Kruyt, van Vuuren, de Vries, & Groenenberg, 2009). 

 
𝐻 = −∑ 𝑝𝑖 ln 𝑝𝑖

𝑛
𝑖=1    (6.54) 

 
𝑁𝐸𝐼𝐷 =

∑ 𝑚𝑖𝑝𝑖ln 𝑝𝑖
𝑛
𝑖=1

∑ 𝑝𝑖ln 𝑝𝑖
𝑛
𝑖=1

 (6.55) 

 

 In (6.54) and (6.55), 𝑝𝑖 is the share of fuel i in the fuel mix, and  𝑚𝑖 is the share of net imports 

of fuel carrier i. 

(4) The power plants’ impact to the environment is assessed by gases and solid waste emitted, 

water use, and damage to flora and fauna. The land-use requirement for power plants has both 

social and environmental impacts. For this study, we select the sum of annual average emission 

of CO2, SOx, NOx, PM (Table D. 3, Table D. 6) and the land requirement for the 20-year 
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planning period (Table D. 7) as attributes to measure the environmental stewardship of each 

alternative (Chatzimouratidis & Pilavachi, 2008; Simons & T. Peterson, 2001; Singh & Fehrs, 

2001).  

 

(5) Power generation has both positive and negative impacts on society, and stakeholders have 

diverse views regarding such implications. To account for positive impacts to society which 

are not measured from other attributes, we select new job opportunities from power plant 

construction and operation and evaluate using values from literature on similar studies carried 

out for other countries (Table D. 7) (Chatzimouratidis & Pilavachi, 2008; Simons & T. 

Peterson, 2001; Singh & Fehrs, 2001; U.S. Department of Energy, 2017).  Further, social 

acceptance is selected to account for general public opinion on the positive and negative 

impacts of the power generation technologies. Assessment of social acceptance is based on a 

short survey conducted among 23 energy sector stakeholders including the power utility, social 

and environmental agencies, financing institutes, regulators, and professional bodies of Sri 

Lanka. These professionals are actively involved in the system level power generation planning 

as well as implementation of projects representing multiple sectors. They ranked the different 

power technologies according to their understanding of public opinion from the experience of 

previous power generation and other infrastructure project developments. According to the 

rankings, we calculate weights, which indicate social acceptance per MW capacity of each 

power technology (Table D. 7). The value of social acceptance for each alternative plan is the 

sum of technology capacities (MW) weighted by the social acceptance of the technologies (per 

MW).  

6.5.4 Evaluation of Pathways  

 

Within the MCDA framework the evaluation of multiple criteria is accomplished by assigning 

different weights to each attribute to reflect the priorities of each stakeholder (Malkawi et al., 2017; 

Ribeiro et al., 2013; Shackley & McLachlan, 2006; Talinli, Topuz, & Uygar Akbay, 2010). In this 

work, we consider three hypothetical stakeholders, a regulator, a power utility operator, and an 

environmental protection agency representative to represent agents that would have important 

input into the decision-making process. The weights chosen for the criteria are deliberately 

selected to emphasize particular values assumed for each stakeholder. The weights for attributes 
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are distributed equally within each criterion for all cases. Below we present the weight distribution 

for each simulated stakeholder. 

Regulator: Equal importance for all the criteria is considered. Economic, technical flexibility, 

environmental stewardship, uncertainty, and social criteria are each assigned an overall weight of 

0.2, which is then distributed equally among the attributes associated with each criterion. 

Utility Operator: Power generation is considered as a business and economic, reliability and 

uncertainty criteria are considered as more important than others. Economic, technical flexibility, 

environmental stewardship, uncertainty, and social criteria are each assigned overall weights of 

0.3, 0.25, 0.1, 0.25, and 0.1, respectively.  

Environmental Agency: Environmental and social impacts are taken to be priortized by the 

stakeholder for this case. Economic, technical flexibility, environmental stewardship, uncertainty, 

and social criteria are assigned overall weights of 0.1, 0.1, 0.4, 0.1, and 0.25, respectively.  

The outranking method ELECTRE III is used to explore how stakeholder preferences can be 

expressed in energy planning. The advantages of this method include the ability to deal with 

quantitative and qualitative scales (Pohekar & Ramachandran, 2004) and non-compensatory 

effects (avoiding the choice of alternatives with a very low value for the criterion that is 

compensated by higher values for the rest of the criteria).  

6.5.5 ELECTRE III 

 

The elimination and choice translating reality (ELECTRE) method was developed in the 

late 1960s by Bernard Roy and his team (Benayoun et al., 1966; Roy, 1991). The family of 

ELECTRE methods (ELECTRE I, II, III, IV, TRI) is widely used in Energy planning (B. Hobbs 

& Meier, 2000; J. J. Wang, Jing, Zhang, & Zhao, 2009). The method involves comparing two 

pathways at a time across all the attributes. Brief technical details are presented here; detailed 

descriptions can be found in the references provided. 

Ranking of pathways is done through modelling of preference by outranking relations and 

ordering them. The outranking technique of the method handles four type of preferences through 

three thresholds. The strength of one pathway over another is represented by a concordance index 

(𝐶(𝑖, 𝑖′)). Concordance index values are calculated using outranking relationship (Eq.(6.(5.48))) 

and weights associated with attributes (w𝑗) (Eq. (6.56) and (6.57)). The difference (𝑑𝑖𝑓𝑓) between 
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pair of attribute values for the pathways, (𝑔𝑗(𝑖) − 𝑔𝑗(𝑖
′)), is compared with a preference threshold 

(𝑝𝑗) and an indifference threshold (𝑞𝑗) to assess the outranking relationship; indifference (𝑖 as good 

as 𝑖′), weak preference and incomparability (Roy, 1991).  

 
𝐶(𝑖, 𝑖′) =

1

𝑊
∑w𝑗c𝑗(𝑖, 𝑖

′)

𝑛

𝑗=1

 (6.56) 

 
𝑊 =∑𝑤𝑗

𝑛

𝑖=1

 (6.57) 

 

𝑐𝑗(𝑖, 𝑖
′) =  

{
  
 

  
 1                                             𝑖𝑓 𝑑𝑖𝑓𝑓 ≥  𝑞𝑗 (𝑔𝑗(𝑖))

0                                            𝑖𝑓  𝑑𝑖𝑓𝑓 ≤ 𝑝𝑗 (𝑔𝑗(𝑖))

𝑝𝑗 (𝑔𝑗(𝑖)) + 𝑑𝑖𝑓𝑓

𝑝𝑗 (𝑔𝑗(𝑖)) − 𝑞𝑗 (𝑔𝑗(𝑖))
                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.58) 

The discordance index (𝑑𝑗(𝑖, 𝑖
′)) measures the degree of opposition of pathway 𝑖 over pathway 𝑖′ 

using outranking relationship (6.59) and weights of each attributes similar to (6.56) and (6.57). 

The discordance is measured with respect to the veto threshold (𝑣𝑖), which is associated with the 

most important criterion or with all the criteria. The relative values of the three thresholds have 

the relationship 𝑣 > 𝑝 > 𝑞 (Rogers & Bruen, 1998). For this study, we choose 2 as the ratio 

between the thresholds, the values 2% for 𝑞, 5% for 𝑝, and 10% for 𝑣.  

 

𝑑𝑗(𝑖, 𝑖
′) =  

{
  
 

  
 1                                             𝑖𝑓 𝑑𝑖𝑓𝑓 ≥  −𝑣𝑗 (𝑔𝑗(𝑖))

0                                            𝑖𝑓  𝑑𝑖𝑓𝑓 ≥ 𝑝𝑗 (𝑔𝑗(𝑖))

−𝑝𝑗 (𝑔𝑗(𝑖)) + 𝑑𝑖𝑓𝑓

𝑣𝑗 (𝑔𝑗(𝑖)) − 𝑝𝑗 (𝑔𝑗(𝑖))
                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.59) 

The credibility index (𝜎(𝑖, 𝑖′)) is calculated combining the both concordance index and 

discordance index. If the concordance index is higher than or equal to the discordance index over 

all the attributes, the credibility index is equal to the concordance index. Otherwise the credibility 

index is calculated by (6.60). 

 𝜎(𝑖, 𝑖′) = 𝑐(𝑖, 𝑖′)∏𝑇(𝑖, 𝑖′) (6.60) 
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𝑇(𝑖, 𝑖′) =
1−𝑑𝑗(𝑖,𝑖

′)

1−𝑐(𝑖,𝑖′)
  , if 𝑑(𝑖, 𝑗) > 𝑐(𝑖, 𝑗), otherwise 𝑇(𝑖, 𝑖′) = 1 

The ranking of pathways is based on two pre-orders ascending distillation and descending 

distillation according to the credibility indices(Marzouk, 2011; Rogers & Bruen, 2000; B. X. Wang 

& Triantaphyllou, 2006). 

6.5.6 Value Path and Weight Tradeoff  
 

A value path is a graphical representation of the pathways’ performance over the attributes 

(B. Hobbs & Meier, 2000). Transforming the attribute performance to commensurate units through 

standardization is the first step of representing the value path. We use interval standardization, 

using (6.61) and (6.62) (Clemen, Robert T., Reilly, 2001). (6.61) is used for the criteria to be 

maximized and (6.62) is used for the criteria to be minimized. Linearity across the attributes’ 

performance interval is assumed. 

 𝑒(𝑗, 𝑖) =
𝑔(𝑗,𝑖)−𝑚𝑖𝑛 𝑔(𝑗)

𝑚𝑎𝑥 𝑔(𝑗)−𝑚𝑖𝑛 𝑔(𝑗)
  (6.61) 

 𝑒(𝑗, 𝑖) =
max𝑔(𝑗)−𝑔(𝑗,𝑖)

max  𝑔(𝑗)−min g(𝑗)
  (6.62) 

Next, a dominance analysis of pathways can be performed using two concepts, significant 

dominance and strict dominance. If all the attributes of a pathway are better than or equal to another 

pathway, it is identified as strictly dominant. If only several attributes are better, the pathway is 

identified as significantly dominant (B. Hobbs & Meier, 2000).  

Further, decision makers’ preferences can be interpreted in monetary terms to illustrate the 

tradeoffs implied by the weights they assign to the attributes (B. Hobbs & Meier, 2000). That is, 

the equivalent monetary value for one unit of an attribute, 𝑤′(𝑗, 𝑃𝑉𝑅𝑅), is calculated by dividing 

its normalized weight by the normalized weight for the present value of the revenue requirement 

(6.13). 

 𝑤′(𝑗, 𝑃𝑉𝑅𝑅) = (
𝑤 (𝑔(𝑗))

𝑚𝑎𝑥 𝑔(𝑗)−min𝑔(𝑗)
) / (

𝑤 (𝑃𝑉𝑅𝑅(𝑗))

𝑚𝑎𝑥 𝑃𝑉𝑅𝑅(𝑗)−min𝑃𝑉𝑅𝑅(𝑗)
)  (6.13) 

 

6.5.7 Sensitivity Analysis 
 

Uncertainties are associated with assumptions of alternative plans development, attributes 

assessment and decision makers’ weights on the attributes. We perform a sensitivity analysis of 
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decision makers’ weights and attributes using Monte Carlo simulation. We use a uniform 

distribution of decision makers’ weights around ±20% and a uniform distribution of attribute 

performance around ±5% to study the sensitivity of the ranking of pathways to the uncertainty in 

the attributes.  

 

6.6 Results 
 

The WASP-IV model results indicate that the addition of power generation capacity from different 

sources varies under different pathways according to constraints for the technologies and the 

environment (Figure 6.2). Investment for power capacity expansion varies according to the unit 

capacity of power plants and contingency reserves requirement for the power system. The power 

source mix and power capacity additions at the end of the 20-year planning period represent the 

specific policy goal of each alternative. For example, the pathway for the Low Emission alternative 

consists of 28% large hydropower, 3% diesel fired gas turbines, 9% coal fired steam generators, 

36% natural gas fired combined cycle plants and 24% mix of solar, wind and run-of river small 

hydro power plants, which is the mix that minimizes emissions within constraints (Figure 6.3).  

 

Figure 6.2 New power capacity addition of different power plants using different primary energy sources 
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Figure 6.3 Power capacity mix in 2034 including existing power plants and new power plants 

 
 

Table 6.3. Performance of power generation pathways over the criteria and their attributes (values are 

rounded to report three significant figures). 

Criteria Reference 

Case 

Energy 

Mix 

Energy 

Efficiency 

Max. Ind. 

Resource 

Low 

Emission  

Energy 

Security 

Economica PVRR ($M) 12800 13400 10900 12300 14000 12700 

Unit Price 

($/MWh) 
57.7 56.8 55.8 64.8 68.2 62.8 

Technical 

Flexibilityb 

P- share (%)                           26 27 21 22 22 22 

D- share (%) 86 86 67 65 68 68 

Environment 

Stewardshipc 

SOx (kT) 741 777 637 400 379 398 

NOx (kT) 456 417 323 312 181 293 

PM (kT) 34.9 34 28.8 30.4 14.2 29.7 

CO2 (MT) 301 260 209 223 165 216 

Land requirement 

(km2) 
659 658 1873 2284 2284 2284 

Uncertaintyd PVRR P(95) (M$) 15000 15800 13600 13900 15300 14300 

RBR 0.70 0.61 1.03 0.63 0.35 0.47 

SWI - H 1.10 1.69 1.13 1.49 1.39 1.44 

NEID 52.8 69.2 51.8 37.7 49.5 51.5 

Sociale New jobs  22800 21800 37700 47500 47700 47800 

Social acceptance 540 700 680 760 870 790 

aFigure D. 2, bFigure D. 3, cFigure D. 4, dFigure D. 5, eFigure D. 6 
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Figure 6.4 Value path of power generation pathways. 

 

The pathways have diverse performances over the various attributes (Table 6.3, Figure D. 2, Figure 

D. 3, Figure D. 4, Figure D. 5, Figure D. 6). Some of the pathways are dominant in several 

attributes, while others are dominant in very few (Table D. 8). The value paths of 15 attributes 

illustrate that no pathway strictly dominates the others (Figure D. 4). For example, Energy mix has 

the best peak power share among the alternatives, but the worst new jobs (Table 6.3). On the other 

hand, Low emission is the lowest in the emissions (SOx, NOx, PM, CO2) but worst in the cost.   
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Equivalent monetary values assigned to the Environmental Stewardship attributes vary among 

decision makers (Table 6.4). For example, 1kT of SOX is valued at about 3 M$ by the regulator 

and about 12 M$ by the environmental agency stakeholder.  

 

Table 6.4. Equivalent monetary values for decision makers’ weights assigned to attributes of 

Environmental Stewardship criteria ($M)  

Criteria Regulator Utility operator 
Environmental 

agency 

Environmental 

Stewardship 

SOx (kT) 3.0 1.0 12.1 

NOx (kT) 4.4 1.5 17.6 

PM (kT) 58.3 19.4 233.2 

CO2 (kT) 0.009 0.003 0.036 

 

 

 

Figure 6.5 Decision graphs for hypothetical decision makers (a) Regulator (b) Utility operator (c) 

Environmental agency representative. Direction of an arrow indicates that one pathway outranks the other 

 

Weights assigned to attributes for the three stakeholder groups resulted in variation in the 

preferred energy pathway.  Energy security outranks all other pathways according to the weights 

of Regulator and Utility Operator. Low emission outranks other pathways according to the 

Environmental Agency Representative weights (Figure 6.5). The Utility Operator weights rank 

pathways clearly as Energy security, Energy efficiency, Energy mix, Reference case, Low emission 

and Maximum Indigenous resources respectively. However, according to the other two decision 

makers, the second place in the ranking is not unique, since several pathways have the same 

ranking.  
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Figure 6.6 Sensitivity of pathway ranking. Percentage of the ranks obtained by each pathway for (i) decision 

makers weight uncertainty and (ii) decision makers’ weight and performance uncertainty. 

   

 The ranking of the preferred choice for each decision maker is robust under uncertainty in 

the decision weights (Figure 6.6 (i)). However, the ranking for the second through sixth pathway 

is fairly stable only for the Utility Operator, whereas for others there is more variability under 

uncertainty of weight (Figure 6.6(i)). Incorporation of performance uncertainty results in higher 

variability in the rankings (Figure 6.6(ii)). 

 

6.7 Discussion 
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criteria and the Environmental agency’s weights elevated the preference for this pathway. On the 

other hand, the Energy mix pathway, based on conventional power technologies, performs well in 

cost and technical criteria and relatively poorly in environmental and social criteria due to high 

coal power share and lack of VRE development. The utility stakeholder’s high weights on cost 

and technical criteria indicate acceptance of the tradeoff between (1) cost and technical flexibility 

and (2) environmental and social criteria implicit in the Energy mix pathway.  

The analysis from ELECTRE III also indicates that the Regulator and Utility stakeholders 

have a preference for the Energy security pathway, while the Environmental stakeholder favors 

the Low emission pathway (Figure 6.5). As such, there is not a “clear winner.” Nevertheless, there 

is consistency in the rankings that suggests that the Energy security and Energy mix pathways have 

high potential for reaching an agreement among parties (Figure 6.6). These two pathways can be 

used as a foundation to develop a power generation pathway that satisfies multiple criteria and 

reflects decision makers’ preferences.  

 The expression of the weights of the environmental attributes in terms of dollars provides 

a chance to compare with other valuations. In our analysis for Sri Lanka 1 kT of CO2 is valued as 

9-36 $/ton (Table 6.4) and can be compared with world carbon market taxes that range from 1 to 

139 $/ton. Although these values are high for a developing country (World Bank, 2018), they are 

not unreasonable. The equivalent weight values in our analysis range from 3,000 to 12,000 $/ton 

for SOx, from 1,500 to 17,000 $/ton for NOx, and from 19,000 to 231,000 $/ton for PM2.5 (Table 

6.4). These can be compared with estimated costs of health impacts in the U.S. of 28,000, 5,000, 

and 52,000 $/ton respectively (Jaramillo & Muller, 2016). Although the cost of the health impacts 

of emission are highly dependent on the local conditions, our assumed Environmental agency’s 

weights tradeoff between economic and environmental criteria imply very higher monetary values 

for the SOX, NOX, PM emissions compared to the values estimated for the U.S. If the MCDA were 

implemented in an iterative way by providing feedback to stakeholders, the participants might be 

led to alter the weights assigned to environmental attributes to make them conform more closely 

with estimated values for health impacts. Hence, the method provides a platform for decision 

makers to do the trade-off analysis among the criteria with ranking of the energy pathways, while 

incorporating their preferences into the energy choices.  

There are some limitations of the MCDA model in capturing the range of multiple criteria 

and the information available for evaluating alternatives. Some of the uncertainties in the pathway 
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development such as the implementation of DSM measures, the use of local NG, the use of biomass 

as an energy resource, the political uncertainty of connecting to the grid of a neighboring country, 

and the probable public opposition for a nuclear power plant construction are not captured in the 

MCDA decision analysis. For example, implementation of DSM measures is carried out by 

individuals so is not easily subject to central control for the power utility and the power utility is 

not able to judge the likelihood of the success of DSM to the same extent as for other options 

(Greacen et al., 2013; Tennessee Valley Authority, 2015; Wilson & Biewald, 2013). Other 

limitations include the lack of specification for the availability of land to satisfy production of 

biofuels and challenges in the fuel supply chain (Ariyadasa, 2015; UNDP, 2017).   

Analysis of social aspects in power generation choices is complex given that power 

generation has direct and indirect implications and positive and negative impacts on society. For 

example, society benefits from new employment opportunities created during the plant’s 

construction and operation as well as from new foreign investment opportunities that can arise due 

to low electricity prices. Household livelihood is enriched by enabling the use of electricity-driven 

technologies. On the other hand, society can be negatively impacted by air and water pollution, 

noise, aesthetic disturbance, and displacement through land requirements. The various aspects and 

impacts were taken into account in this study by including available measures for attributes across 

the different environmental, technical, and social criteria. 

  Considering the captured and uncaptured uncertainties, the Energy security alternative may 

be a practical approach for Sri Lanka if our assumed stakeholders and their preference weights are 

found to be reasonable. This option shows average performance across all the criteria including 

economic, technical, environmental and social aspects (Figure 6.4). In the past, Sri Lanka 

examined the tradeoff between economic and environmental objectives in power planning 

(Economic Consulting Associates et al., 2010; Meier & Munasinghe, 1994). Most studies 

concluded with recommendations for state-of-the art coal power technologies and DSM options, 

since NG and VRE were not economically favorable in the past. However, presently, NG and VRE 

technologies are more competitive economically than they were in the past and low carbon 

technologies are welcomed by society. Our multiple objective analysis provides an approach for 

identifying a mix of renewable and fossil fuel alternatives for future power generation that 

incorporates attributes that go beyond economic and environmental considerations and illuminate 

possible pathways that are broadly acceptable to a spectrum of stakeholders.      
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In practice, the method described here is likely to be most useful to help make sensible 

decisions through an iterative process with the presence of multiple stakeholders.  The MCDA 

approach can be used repetitively to assess, refine, and reassess options to collaboratively identify 

priorities and develop pathways accordingly. An actual decision would be selected with wide 

energy sector stakeholder consultation with the MCDA model providing a platform for the 

collaborative process.  

Since conditions that dictate preferences for power generation options change over time, it 

is essential to use an iterative and adaptive planning approach that considers future variations of 

planning strategies, multiple attributes and stakeholder preferences. Such an approach is clearly 

needed given that our analyses show that ranking of alternatives is highly sensitive to attribute 

performance and decision makers’ preferences (Figure 6.6). Measures of the performance 

associated with various attributes will be altered as technology advances, as better information and 

data become available, and as social, environmental, and economic conditions of a country evolve. 

New power generation strategies may become feasible. Similarly, decision-makers’ preferences 

regarding the attributes will change through time. The methods illustrated in this paper can be 

adapted to take future variations into account through an iterative process.     

Provision of adequate electricity is vital for a modern society. Selection of an appropriate 

plan for future power generation aims at achieving multiple objectives, which in part are not 

directly related to the generation or use of power. Therefore, the selection of pathways for power 

generation to meet future demands has to account for multiple criteria. The alternative pathway 

selection through optimization and MCDA is a good fit for power generation planning, allowing 

decision makers to navigate the advantages and disadvantages of different pathways and 

understand the impact of stakeholder preference weights on the value placed on different criteria. 

The approach can inform decisions for energy development as shown in the example for Sri Lanka. 

The results indicate that the methods would be useful for decision analysis in other similar energy 

planning studies.  
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CHAPTER 7 

 

7                                                                Synthesis 

 

 

Planning and managing of water and energy infrastructure for increasing demand is 

challenging. Developed and developing countries face serious difficulties in meeting the 

infrastructure needs for mitigating poverty and hunger and increasing access to clean water, 

energy, and economic growth. Like other countries, Sri Lanka, a densely populated small island, 

faces problems related to infrastructure with some aspects unique to them. The obstacles facing 

the country in meeting the infrastructure needs include securing the necessary technical and 

financial resources as well as determining how to take into account the differences of opinion about 

the best options held by different stakeholders. In addition, demographic, economic and 

environmental changes increase the complexity of planning and management of water-energy 

infrastructure of the country. 

This dissertation research used systematic approaches for infrastructure planning 

considering multiple interdependent objectives, variability of resources in a changing 

environment, and diverse stakeholder views about infrastructure planning. Evaluation of issues 

was done using a number of mathematical modelling methods. Understanding the influence of 

climate variability is required for informing water-energy infrastructure decisions. Specifically, 

understanding climate teleconnections such as ENSO and IOD with river basin precipitation can 

assist in making choices for adaptation to drought conditions by water users in the agricultural and 

energy sectors. Understanding how trade-offs among agricultural yield, electricity generation and 

environmental impacts are affected by both climate variables and operational rules for 

infrastructure can inform policy decisions. We integrated a reservoir cascade simulation model 

with reliability, resilience and vulnerability concepts to understand the variability of water stresses 

to the agricultural and energy sectors. Further, using an optimization algorithm in conjunction with 

the cascade model, a trade-off frontier was developed to illustrate how current operating rules can 

be adjusted to provide improved performance of the system. In our research, we examined the 

trade-offs implicit in the allocation of water resources for various purposes by considering the 

agricultural yield and electricity generation, the yield and land use, and the differences among 

reliability, resilience, and vulnerability indices associated with reservoir cascade operation 

decisions. 
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This research also addressed infrastructure expansion planning, which involves estimating 

the future resource availability and the demands placed on them and then optimizing use to meet 

multiple objectives of diverse stakeholders. Integrating physical infrastructure models with 

decision models allows the examination of the trade-offs among the competing goals considering 

the uncertainty of resources, economics, technologies and decision makers’ priorities associated 

with them. Interdependent competing objectives of water-energy infrastructure expansion can be 

measured with economic, technical, social and environmental metrics. This research combined 

mulcriteria decision models with physical simulation models that represent interdependencies 

among the sectors through multiple constraints and optimization tools to provide information that 

can assist decision makers in selecting water and energy infrastructure systems that achieve 

technically reliable, economically efficient, environmentally sustainable and socially acceptable 

outcomes. 

This dissertation included research that integrates a variety of information and 

perspectives. Nevertheless, there is a need to go beyond even these approaches. The complexity 

of socio-technical systems indicates that novel modeling methods will have to be developed. 

Multidisciplinary study approaches that integrate economic and social behavior models to 

engineering and decision models are badly needed to address infrastructure needs for a future with 

large uncertainties (Sharmina et al., 2019). Integrated planning for water and energy resources 

jointly will require the involvement of stakeholders who will be affected by the energy-water 

projects (Rodriguez et al., 2013) and models will have to be developed to incorporate the co-

evolution of individual and social behavior with infrastructure. In Sri Lanka in particular, moving 

beyond the government owned and operated current strategy to transparent, efficient strategies will 

require further research investments to enhance economic, social, and environmental modelling 

capabilities. 

The research skills of bringing together diverse modeling capabilities to study how the 

coupled technical, economic, environmental and social aspects of planning to meet the water and 

energy infrastructure needs of a small developing country are also applicable for addressing the 

complex issues in infrastructure systems of larger countries. One example is consideration of water 

related impacts on energy infrastructure that affect the reliability of the power grid. Water stresses 

for hydropower generation and thermal power generation, which must be managed in 

consideration of the needs of other water users and the natural environment, place serious 
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constraints on large power systems such as in the United States. The complexity of the issue is 

multiplied because of climate variability and change (e.g. systematic variations in ENSO and 

stochastic changes in  extreme weather events) and because of social behavior and economic 

factors (Voisin et al., 2016). The infrastructure issues that arise are addressed through integrated 

water resource management models, socioeconomic water and energy demand models, and power 

grid cost and technical operation models (Miara et al., 2017). Hence, decision support tools based 

on integrated diverse modelling capabilities are essential to inform the strategies for addressing 

the increasing demands of water and energy infrastructure for using variable resources for every 

nation. The research reported in this dissertation provides a base for such future work. 
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APPENDIX A 
 

A Additional Results for Identifying ENSO Influences on Rainfall with Classification 

Methods 
 
 

A.1 Normality Testing 

 

The Shapiro-Wilk’s method is used to identify the normality of rainfall anomaly distribution. The 

Manampitiya NEM normality test results are given below as an example.  

Data 1: original data 

W =  0.96675, p-value = 0.08185 

Data 2: data transformed by square root 

W =  0.98772, p-value = 0.7772 

Data 3: data transformed by log 

W =  0.91577, p-value = 0.0003325 

Further, from data plots (Figure A. 1) and the S-W statistic, we conclude that the square root 

transformed data is closer to being normally distributed than the other forms. 
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Figure A. 1 Manampitiya NEM standardized data (a) original form qqplot (b) square root form qqplot (c) 

original form density plot (d) square root form density plot 

 

A.2 Classification of Data 

 

Using 0.5 as a threshold for a normal distribution defines portions of the data that are fairly evenly 

distributed into three categories – about 31 %, 38 %, and 31 % for a normal distribution (Figure A. 

2). We deemed this a reasonable choice for our analysis. 
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Figure A. 2 (a) Norton Bridge SWM rainfall anomaly distribution (b) Manampitiya NEM rainfall anomaly 

distribution 

 
 

A.3 Correlation Analysis with Multiple Climate Indices 

 

Figure A. 3 Correlation between Norwood rainfall anomalies with multiple climate indices 

 
 

We examined the correlation between rainfall anomalies and multiple climate indices to choose 

the two climate indices MEI and DMI (Figure A. 3, Table A. 1). The ENSO phenomenon is 

represented by MEI, NINO34, NINO3, NINO4 indices.  Correlation analysis indicates that MEI, 

which is estimated using several climate factors such as sea-level pressure, zonal and meridional 

components of the surface wind, sea surface temperature, surface air temperature, and total 
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cloudiness fraction of the sky (National Oceanic and Atmospheric Administration, 2017), 

demonstrates higher correlation with rainfall anomalies in sub-basins for all rainfall seasons 

compared to the NINO34, NINO3 and NINO4. The Indian Ocean dipole phenomenon is 

represented by the DMI index, which represents the gradient of the sea surface temperature. Based 

on the correlation analysis and the content of the indices, we selected MEI as the indicator for 

ENSO and DMI as the indicator for IOD. 

 

Table A. 1 Correlation analysis of rainfall anomalies and climate indices 

Rainfall Morape   Peradeniya 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 

NEM -0.35 -0.35 -0.34 -0.38 -0.09   -0.38 -0.40 -0.39 -0.42 -0.11 

FIM -0.28 -0.19 -0.28 -0.07 -0.11  -0.27 -0.18 -0.30 -0.06 -0.06 

SWM -0.35 -0.24 -0.23 -0.26 -0.29   -0.35 -0.26 -0.25 -0.27 -0.31 

SIM 0.21 0.23 0.27 0.19 0.12   0.17 0.19 0.21 0.15 0.09 

Rainfall Laxapana   Norwood 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 

NEM -0.27 -0.26 -0.28 -0.27 -0.01   -0.28 -0.26 -0.29 -0.27 -0.04 

FIM -0.28 -0.16 -0.27 -0.03 -0.07  -0.27 -0.18 -0.26 -0.03 -0.13 

SWM -0.3 -0.23 -0.21 -0.25 -0.31   -0.21 -0.12 -0.15 -0.16 -0.24 

SIM 0.1 0.10 0.14 0.06 0.08   0.29 0.31 0.32 0.27 0.28 

Rainfall Randenigala   Bowatenna 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 

NEM -0.30 -0.31 -0.29 -0.34 -0.11   -0.35 -0.36 -0.35 -0.38 -0.2 

FIM -0.29 -0.23 -0.33 -0.10 -0.04  -0.23 -0.17 -0.25 -0.09 -0.02 

SWM -0.17 -0.12 -0.09 -0.18 -0.24   -0.18 -0.09 -0.05 -0.11 -0.12 

SIM 0.37 0.38 0.41 0.36 0.35   0.35 0.41 0.40 0.40 0.36 

Rainfall Norton Bridge   Manampitiya 

Month MEI NINO34 NINO3 NINO4 DMI   MEI NINO34 NINO3 NINO4 DMI 

NEM -0.32 -0.30 -0.33 -0.33 -0.01   -0.26 -0.28 -0.26 -0.28 -0.16 

FIM -0.18 -0.12 -0.21 -0.01 -0.08  -0.2 -0.17 -0.31 -0.06 -0.14 

SWM -0.31 -0.22 -0.21 -0.22 -0.37   -0.07 0.08 0.08 -0.01 -0.03 

SIM 0.02 -0.02 0.03 -0.04 -0.15   0.45 0.46 0.44 0.46 0.51 

 

 

A.4 Correlation Analysis with MEI and DMI Climate Indices 

Correlation coefficients between rainfall anomalies and MEI and DMI are negative for the NEM, 

FIM and SWM seasons and positive for the SIM season. Rainfall anomalies correlations to the 
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DMI are not stronger as the correlations to the MEI. However, there are strong correlations for the 

anomalies of major monsoons to the sub basins and DMI values. For example, wet sub basins 

(Morape, Peradeniya, Laxapana, Norwood, Norton Bridge) have high correlation coefficient 

between SWM rainfall anomalies and DMI, while dry zone (Manampitiya) and intermediate zone 

(Randenigala, Bowatenna) sub basins have high correlation coefficient between NEM and SIM 

rainfall anomalies.   

 

Table A. 2 Correlation between rainfall anomalies and MEI, DMI indices. High correlation coefficients are 

highlighted. 

Rainfall Morape Peradeniya Randenigala Bowatenna 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.35 -0.09 -0.38 -0.11 -0.30 -0.11 -0.35 -0.20 

FIM -0.28 -0.11 -0.27 -0.06 -0.29 -0.04 -0.23 -0.02 

SWM -0.35 -0.29 -0.35 -0.31 -0.17 -0.24 -0.18 -0.12 

SIM 0.21 0.12 0.17 0.09 0.37 0.35 0.35 0.36 

Rainfall Laxapana Norwood Norton Bridge Manampitiya 

Month MEI DMI MEI DMI MEI DMI MEI DMI 

NEM -0.27 -0.01 -0.28 -0.04 -0.32 -0.01 -0.26 -0.16 

FIM -0.28 -0.07 -0.27 -0.13 -0.18 -0.08 -0.20 -0.14 

SWM -0.30 -0.31 -0.21 -0.24 -0.31 -0.37 -0.07 -0.03 

SIM 0.10 0.08 0.29 0.28 0.02 -0.15 0.45 0.51 

 

 

Classification methods classification tree models, random forest and quadratic discriminant 

analysis identify the relationship between standardized rainfall anomaly classes (dry, average, wet) 

and MEI and DMI values (Figure A. 4, Figure A. 5, Figure A. 6, Figure A. 7). Positive values of 

MEI and DMI values resulted dry or average rainfall class for the NEM, FIM and SWM seasons. 

However, for SIM rainfall has wet or average class for the positive values of MEI and DMI. 

Accuracy of model result are high for the dominant monsoon rainfall seasons of each sub basin 

(Table A. 3, Table A. 4, Table A. 5). Ensemble model approach with random forest has given 

comparatively lower out-of-bag error rate for the dominant monsoons’ rainfall anomaly 

classification (Table A. 5).  For example, wet zone sub basins such as Norton Bridge, Norwood, 

Laxapana, Peradeniya and Morape random forest error rate is lower for the SWM and SIM seasons. 
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Same as, dry and intermediate sub basins Manampitiya, Randenigala and Bowatenna NEM and 

SIM rainfall classes accuracy rate is high than other rainfall seasons. Also all three models have 

higher accuracy rate in identifying dry events and error rate of identifying wet and dry class also 

less 15 % (Table A. 3, Table A. 4, Table A. 5).  Further analysis of two rainfall classes dry and not 

dry rainfall classes are identified relevant to the MEI and DMI values with classification tree and 

random forest methods (Figure A. 8, Figure A. 9). Classification tree models for two classes have 

higher accuracy rate as 65 % - 84 % for eight sub basins (Table A. 6). Random forest out-of-bag 

error for two classes models are vary between 20 % - 39 % and shows higher skill in identifying 

rainfall classes for major monsoons of the sub basins (Table A. 7). MEI shows higher variable 

importance of identifying the rainfall classes compare to the DMI values. Specially, for NEM and 

SIM which are important to the dry zone sub basins importance of MEI is high in the classification. 

However, some of the wet zone sub basins shows equal importance of DMI variable in identifying 

two rainfall classes in FIM and SWM (Figure A. 10).  
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Figure A. 4 Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI 

values using classification tree models. (a)Morape (b)Peradeniya (c)Randenigala (d)Bowatenna 
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Figure A. 5 Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI 

values using classification tree models. €Laxapana (f)Norwood (g)Norton Bridge (h)Manampitiya 
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Table A. 3 Classification tree model results. Highlighted cells indicate where there may be information 

content with respect to forecasting either dry or wet anomaly classes 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 21/21 13/29 0/14 10/20 24/31 0/13 

FIM 5/19 19/25 12/20 5/20 28/28 6/16 

SWM 12/24 13/21 12/19 9/23 11/19 18/22 

SIM 8/19 18/28 9/17 12/25 16/19 5/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 11/24 11/25 12/15 24/24 12/19 0/21 

FIM 8/20 24/25 3/19 17/21 17/25 0/18 

SWM 8/21 23/24 8/19 18/25 6/21 12/18 

SIM 14/24 11/21 15/19 17/21 9/26 13/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 0/19 24/24 6/21 4/19 22/28 10/17 

FIM 2/20 14/26 18/18 7/19 19/21 12/24 

SWM 19/23 14/20 8/21 10/20 14/27 11/17 

SIM 8/21 22/26 9/17 16/20 15/25 11/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 11/20 18/29 8/15 12/23 9/25 11/16 

FIM 13/21 6/23 15/20 9/21 19/24 8/19 

SWM 19/22 8/22 9/20 6/21 25/27 7/16 

SIM 19/22 5/22 14/20 20/25 0/20 17/19 
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Figure A. 6 Identifying relationships between three rainfall classes (dry, average, wet)  and MEI and DMI 

values using QDA models.(a) Morape (b) Peradeniya (c) Randenigala (d) Bowatenna 
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Figure A. 7 Identifying relationships between three rainfall classes (dry, average, wet) and MEI and DMI 

values using classification tree models. (e) Laxapana (f) Norwood (g) Norton Bridge (h) Manampitiya 
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Table A. 4 Classification QDA model results. Highlighted cells indicate where there may be information 

content with respect to forecasting either dry or wet anomaly classes 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 6/21 28/29 0/14 10/20 28/31 0/13 

FIM 7/19 22/25 9/20 5/20 28/28 2/16 

SWM 19/24 6/21 13/19 20/23 6/19 13/22 

SIM 5/19 26/28 2/17 13/25 16/19 4/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 17/24 8/25 4/15 24/24 9/19 3/21 

FIM 8/20 13/25 12/19 9/21 23/25 1/18 

SWM 4/21 13/24 8/19 19/25 7/21 8/18 

SIM 19/24 16/21 6/19 13/21 15/26 10/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 4/19 15/24 14/21 8/19 23/28 6/17 

FIM 4/20 22/26 8/18 6/19 16/21 13/24 

SWM 20/23 13/20 10/21 6/20 19/27 8/17 

SIM 9/21 22/26 3/17 11/20 13/25 8/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 5/20 25/29 2/15 22/23 11/25 1/16 

FIM 3/20 14/23 14/20 9/21 20/24 5/19 

SWM 16/22 9/22 9/20 2/21 26/27 6/16 

SIM 7/22 15/22 11/20 17/25 13/20 7/19 
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Table A. 5 Random forest model results. Highlighted cells indicate where there may be information 

content with respect to forecasting either dry or wet anomaly classes 

Season 
Morape Peradeniya 

Dry Normal Wet Dry Normal Wet 

NEM 12/21 12/29 5/14 9/20 17/31 5/13 

FIM 8/19 14/25 10/20 7/20 17/28 6/16 

SWM 11/24 6/21 11/19 11/23 1/19 13/22 

SIM 8/19 16/28 2/17 5/25 9/19 6/20 

Season 
Randenigala Bowatenna 

Dry Normal Wet Dry Normal Wet 

NEM 10/24 8/25 4/15 16/24 6/19 11/21 

FIM 9/20 8/25 8/19 16/21 14/25 4/18 

SWM 9/21 14/24 6/19 14/25 7/21 5/18 

SIM 15/24 6/21 7/19 3/21 14/26 11/17 

Season 
Laxapana Norwood 

Dry Normal Wet Dry Normal Wet 

NEM 3/19 11/24 9/21 9/19 16/28 8/17 

FIM 1/20 18/26 1/18 8/19 10/21 12/24 

SWM 19/23 9/20 4/21 6/20 15/27 4/17 

SIM 10/21 12/26 3/17 8/20 14/25 8/19 

Season 
Norton Bridge Manampitiya 

Dry Normal Wet Dry Normal Wet 

NEM 11/20 12/29 6/15 14/23 10/25 5/16 

FIM 7/21 8/23 8/20 10/21 11/24 6/19 

SWM 9/22 6/22 8/20 6/21 17/27 5/16 

SIM 13/22 9/22 9/20 15/25 8/20 7/19 
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Figure A. 8 Identifying relationships between two rainfall classes (dry, not dry)  and MEI and DMI values 

using classification tree models for wet zone sub basins for SWM and SIM seasons. (a) Morape (b) 

Peradeniya (c) Laxapana (d) Norwood (e) Norton Bridge 
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Figure A. 9 Identifying relationships between two rainfall classes (dry, not dry) and MEI and DMI values 

using classification tree models for dry and intermediate zone sub basins for NEM and SIM seasons. (f) 

Randenigala (g) Bowatenna (h) Manampitiya 

 

Table A. 6 Classification tree model results for major rainfall season to the sub basins.  

Season 

Morape Peradeniya Laxapana Norwood Norton Bridge 

Dry Not dry Dry Not dry Dry Not dry Dry Not dry Dry 
Not 

dry 

SWM 21/24 22/40 18/23 26/41 19/23 27/41 12/20 34/44 19/22 29/42 

SIM 10/19 39/45 12/19 30/45 8/21 36/43 11/20 38/44 13/22 36/42 

Season 
Randenigala Bowatenna Manampitiya     
Dry Not dry Dry Not dry Dry Not dry     

NEM 11/24 31/40 14/24 34/40 13/23 34/41     
SIM 23/24 22/40 15/21 32/43 22/25 26/39     
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Table A. 7 Random forest model results. 

Season 

Morape Peradeniya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 10/21 33/43 33% 8/20 34/44 34% 

FIM 5/19 36/45 36% 6/20 37/44 33% 

SWM 11/24 29/40 38% 11/23 28/41 39% 

SIM 5/19 39/45 33% 5/19 37/45 34% 

Season 

Randenigala Bowatenna 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 8/24 31/40 39% 15/24 33/40 25% 

FIM 6/20 39/44 30% 13/21 38/43 20% 

SWM 7/21 38/43 30% 11/25 29/39 38% 

SIM 13/24 31/40 31% 6/21 35/43 36% 

Season 

Laxapana Norwood 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 8/20 37/45 30% 10/19 39/45 23% 

FIM 7/20 37/44 31% 8/19 39/45 26% 

SWM 12/23 27/41 39% 7/20 37/44 31% 

SIM 9/21 34/43 33% 7/20 37/44 31% 

Season 

Norton Bridge Manampitiya 

Dry Not dry 
OOB 

Error 
Dry Not dry 

OOB 

Error 

NEM 9/20 36/44 30% 13/23 33/41 28% 

FIM 5/21 35/43 38% 8/21 35/43 33% 

SWM 9/22 32/42 36% 5/16 34/43 39% 

SIM 10/22 36/42 28% 16/25 34/39 22% 
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Figure A. 10 Random forest importance of variable to identify the dry and not dry classes of rainfall 

anomalies 
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APPENDIX B 

B  Additional Results Relevant to the Deriving Reservoir Cascade Operation Rules  

 

B.1 Synthetic Inflows 

 

 

Figure B. 1 Validation of Synthetic inflow data (a) Kotmale inflow statistical prope rites (b) 

autocorrelation of Kotmale inflow (c) pairwise space correlation of Kotmale, Victoria, 

Randenigala and Rantambe inflow data 

 

Visual and statistical comparison of historical and synthetically generated data confirm that 

synthetic data follow the distribution, statistical properties (mean, variance), autocorrelation and 

spatial correlation of the historical data (Figure B. 1).  



126 
 

 

Figure B. 2 Trade-off curves and operation rules for minimum 10th percentile optimization of Maha (a) 

Pareto front for stage 1 & 2, and objective values for current rules, and operation rules corresponding to 

maximum hydropower, maximum yield and current operation rules and an example intermediate point on 

the Pareto front (the red-circled blue dot in (a)) of (b) Kotmale target storage for each month (c) Polgolla 

water diversion fraction of total inflow to the north for each month (d) Victoria target storage for each 

month (e) Randenigala target storage for each month 
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Figure B. 3 Trade-off curves and operation rules for average objective optimization of Maha (a) Pareto 

front for stage 1 & 2, and objective values for current rules, and operation rules corresponding to maximum 

hydropower, maximum yield and current operation rules, and an example intermediate point on the Pareto 

front (the red-circled blue dot in (a)) of (b) Kotmale target storage for each month (c) Polgolla water 

diversion fraction of total inflow to the north for each month (d) Victoria target storage for each month (e) 

Randenigala target storage for each month 
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APPENDIX C 

C Additional Information and Results for Decision Analysis of Mahaweli Project 

Expansion 
 

            C.1 Mahaweli Multipurpose Project 

Mahaweli is the largest multipurpose project of Sri Lanka use for potable water, irrigation and 

hydropower generation (Figure C. 1). The project associated with six river basin spread through 

variable rainfall zones (Figure C. 2). Sri Lanka gets rainfall from two monsoons (south-west and 

north-east) and two inter-monsoons (First and second). Different parts of the Mahaweli project 

benefit from these rainfall seasons. Upper catchment of the Mahaweli river basin, high elevation 

land mass have large amount of rain from south-west monsoon and second inter-monsoon. 

Hydropower plants; Upper Kotmale, Kotmale, Randenigala, Rantambe, Ukuwela and Bowatenna 

are associated with the major reservoirs that use to store monsoon water. Mahaweli water transfer 

to other five river basin for irrigation systems. 
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Figure C. 1 Mahaweli multipurpose project map reservoirs, stream network and irrigated agricultural 

systems spread through 25500km2 
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Figure C. 2 Rainfall pattern of six river basins of Mahaweli multipurpose project 

 

C.3 Calculation of Performance of Criteria 

 

Performance of 4 decision criteria; economic development, economic viability of the project, 

social development and environment stewardship are measured with 10 attributes. Calculation of 

the values for these attributes, use published results from the Ministry of Irrigation and Water 

Resources Management (2013), Ministry of Mahaweli Development and Environment (2016), and 

other published data sources. 
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field crops (OFC) such as black gram, chili and sugar cane. The highest increment of irrigated 

lands, an area of 83,380 ha, will be achieved with Plan 3 and the lowest increment, 68,900 ha, will 

be achieved with Plan 1. The price of OFCs varies according to the type of product; detailed 

calculation has been carried out under the Ministry of Irrigation and Water Resources Management 

(2013) and the average values estimated from that report was used for this study. The cost of new 

agricultural land development is in the range of 11750USD/ha – 13400USD/ha.  

 
Table C. 1 Agriculture benefits from the project (Ministry of Irrigation and Water Resources Management 

2013) 

Description Unit Plan 1 Plan 2 Plan 3 Plan 4 

Average Yield           
Paddy - Maha Season tonnes/ha 5.4 5.4 5.4 5.4 

Paddy - Yala Season tonnes/ha 5.3 5.3 5.3 5.3 

OFC - Maha Season tonnes/ha 21.9 (av.) 18.8 (av.) 18.7 (av.) 21.9 (av.) 

OFC - Yala Season tonnes/ha 24.4 (av.) 21.1 (av.) 21.0 (av.) 24.4 (av.) 

            

Irrigated Agriculture (total)           

Area – Maha Season           

Paddy 000 ha. 13 13 13 13 

OFC 000 ha. 6.3 14.2 14.3 6.3 

Total – Maha Season 000 ha. 21.4 27.2 27.3 21.4 

Area – Yala Season           

Paddy 000 ha. 43.6 43.6 43.6 43.6 

OFC 000 ha. 6.1 12.4 12.5 6.1 

Total – Yala Season 000 ha. 49.7 56 56.1 49.7 

Total Production (total)           

Paddy tonnes 000 p.a. 303.5 303.5 303.5 303.5 

OFC tonnes 000 p.a. 286.8 529.7 530.5 286.8 

Total tonnes 000 p.a. 590.3 833.2 834 590.3 

            

Agriculture Annual Benefits           

Paddy (48.84 $/tonnes) $M 14.82 14.82 14.82 14.82 

OFC (61.63$/tonnes) $M 17.67 32.64 32.98 17.67 

Total $M 32.50 47.47 47.80 32.50 
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C.5 Hydropower Benefits 

Hydropower has several roles in the power system according to the capacity of generators and 

reservoir capacity associated with the plant. Large capacity machines (major) with large capacity 

reservoirs serve roles as peaking, spinning reserve, and frequency control of the power system 

while power plants with small reservoirs (Run-of-River) cater to energy needs of the power system. 

The alternative to a major hydropower plant is a conventional plant with combustion turbines. 

Energy prices for combustion plants are higher than the energy price of small hydro power plants. 

  
Table C. 2 Energy from hydropower (Ministry of Irrigation and Water Resources Management 2013) 

Description Present  Plan 1 Plan 2 Plan 3 Plan 4 

Existing Peak HPP           

Upper Kotmale (GWh) 409 409 409 409 409 

Kotmale (GWh) 432 468 468 433 432 

Ukuwela (GWh) 190 324 324 187 190 

Victoria (GWh) 567 306 306 519.6 567 

Randenigala (GWh) 333 265 265 276.7 333 

Rantembe (GWh) 187 129 129 153.9 187 

Bowatenna (GWh) 38 24 88 39.8 38 

Total exst. peak energy (GWh) 2156 1924.7 1989 2019 2156 

New Peak HPP           

Heenganga (GWh)   19.5 19.5 6.1 19.5 

Hasalaka (GWh)   64 64 46.7 64 

Lower Umaoya (GWh)   27.7 27.7 28.4 27.7 

Moragahakanda (GWh)   47.3 104.9 91.2 47.3 

Total new peak energy (GWh)   158.5 216.1 172.4 158.5 

Peak Energy Loss (GWh)   72.8 -49.1 -35.4 -158.5 

 

A large portion of the hydropower from existing major power plants will be reduced by 

implementation of Plan 1, Plan 2 or Plan 3. The basic objective of Plan 4 is to not disturb the 

existing hydropower facilities and send a sufficient amount of water to irrigation. New 

development of small hydropower plants is considered for peaking power since they are associated 

with reservoirs more than 7Mm3. The cost of peaking energy is considered to be0.2$/kWh and the 
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cost of the base energy as 0.1$/kWh. The construction cost of a new hydropower plant is assumed 

as 1.42 $M/MW. 

 
Table C. 3 Hydro power benefit calculation (Ministry of Irrigation and Water Resources Management 

2013) 

Description Plan 1 Plan 2 Plan 3 Plan 4 

Exst. PP peak energy (GWh) 1515.7 1580 1610 1747 

Peak energy loss exst.PP (GWh) 231.3 167 137 0 

New PP peak energy (GWh) 158.5 216.1 172.4 158.5 

Pumping energy(GWh)   24 40 120 

Energy gain (GWh) 66.8 260.4 230.7 273.8 

Net peak enery loss(GWh) 72.8 -49.1 -35.4 -158.5 

Peak (0.2$/kwh)  -14.56 9.82 7.08 31.7 

offPeak (0.1$/kwh)  13.96 21.13 19.53 11.53 

Net Hydropower benefit ($) -0.6 30.95 26.61 43.23 

 

C.6 Potable Water Supply Benefits 

The main infrastructure for water management is part of the indirect cost associated with domestic 

and industrial water supply. Ministry of Irrigation and Water Resources Management (2014) 

shows it equal to 30% of the total cost of water supply. The cost per connection of domestic water 

supply ranges between 978$ and 2560$ and the cost of industrial water supply is between 5235$ 

and 11,788$. The benefit from the domestic water is the willingness to pay, 0.62$/m3 which is 

double the commercial price of a water unit. The industrial water benefit is considered as the 

replacement with a desalination plant with a water unit cost of 1.6$/m3.  

Table C. 4 Potable water benefit calculation (Ministry of Irrigation and Water Resources Management 

2013) 

Alternatives Plan 1 Plan 2 Plan 3 Plan 4 

Population served (1000 nos.) 2099 2099 2099 2099 

Domestic Connections (1000 nos.) 420 420 420 420 

Commercial & Industrial connections (1000 nos.) 8 8 8 8 

Water supply Domestic (Mm3/year) 114.9 114.9 114.9 114.9 

Water supply Industrial  (Mm3/year) 12.8 12.8 12.8 12.8 

Total water supply (Mm3/year) 127.7 127.7 127.7 127.7 

Additional cost of potable water infrastructure ($M) 581.4 581.4 581.4 581.4 

Total annual benefits from potable water supply ($M) 71.3 71.3 71.3 71.3 

Annual benefits from potable water ($M) 7.13 7.13 7.13 7.13 
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According to Ministry of Irrigation and Water Resources Management (2013), the water supply 

infrastructure cost is approximately 30%-45% of the total project cost and benefits are at least 50% 

of the total benefits. Construction of end user potable water supply infrastructure will not be 

implemented with the main project. The basic objective of the study is to inform investment for 

common infrastructure by selecting the best path to divert water to the northern part of the country. 

Therefore, the addition of the cost of potable water infrastructure is not considered.  

C.7 Project Cost Calculation 

 

 
Table C. 5 Project cost calculation (Ministry of Irrigation and Water Resources Management 2013) 

Description 
Estimated Costs in $ Millions (2012 prices) 

Plan 1 Plan 2 Plan 3 Plan 4 

Upper Elahera canal cost ( 42 m3/s ) 0 175 175 175 

Hasalaka reservoir and power house 71 71 71 71 

Heen Ganga reservoir and power house 111 111 111 111 

Investment on water duty improvements 24 24 24 24 

Construction of NCP canal from Huruluwewa to 

Chemmadukulam ; 0 - 32 km 63 102 102 102 

Distribution system to feed small tanks 9 14 14 14 

Kalu Ganga – Moragahakanda transfer canal capacity - 35 

m3/s   43 0 

Second Bowatenne tunnel & expansion of KHFC canal to 42 

m3/s 66   0 

Domestic and industrial water supply (115 Mm3) 581 581 581 581 

NWPC construction (96km+.94km tunnel) 20 20 20 20 

Raising of Minipe anicut by 4 m 5 5 5 5 

Raising Kotmale dam & spill 108 108   

Transfer canal from Randenigala to Kalu Ganga reservoir.   204 0 

Development of 8,500 ha in NCP  100 100 100 

Facilities for pumping from Kalinganuwara  133 166 333 

Lower Uma Oya reservoir, transfer canal to Randenigala and 

power house 159 159 159 159 

Development of 10,000 ha in System B 134 134 134 134 

 Project Cost (with domestic+industrial water) 1,357 1,736 1,915 1,651 

Project Cost (without domestic+industrial water) 775 1,155 1,333 1,070 

 

Ministry of Irrigation and Water Resources Management (2013) and (2014) prepared the cost 

data from the past projects of Sri Lanka and neighboring countries. Ministry of Irrigation and 

Water Resources Management (2014) considered only Plan-3 and the cost data were not 
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sufficient for this study. Therefore, Ministry of Irrigation and Water Resources Management 

(2013) cost data were used for the study with costs given in terms of 2012 prices.  

C.8 Economic Internal Rate of Return of the Project (EIRR) 

 

The calculation of EIRR a 4-year single investment is considered with a 30-year return period. 

Annual operation and maintenance cost (0.5% of capital cost) are included with annual benefits 

from agriculture, hydropower and potable water. 

The EIRR is calculated without additional end use infrastructure for potable water and considering 

10% of potable water (P.W.) benefits to the project from the main infrastructure. Both EIRR values 

with and without 100% potable water construction are given in the Table C. 6 and without EIRR 

value for the MCDA.  

Table C. 6 EIRR calculation 

Alternatives Capital  O&M Total Benefits EIRR 

Plan 1 (with P.W.) 1357 6.68 128.38 7.35 

Plan 1 (without P.W.) 775 3.88 48.19 3.61 

Plan 2 (with P.W.) 1736 8.68 165.97 7.44 

Plan 2 (without P.W.) 1155 5.77 85.78 5.12 

Plan 3 (with P.W.) 1915 9.57 161.93 6.27 

Plan 3 (without P.W.) 1333 6.67 81.74 3.5 

Plan 4 (with P.W.) 1651 9.91 178.55 8.59 

Plan 4 (without P.W.) 1070 6.42 98.36 6.96 

 

C.9 New Employment 

Table C. 7 New employment (Ministry of Irrigation and Water Resources Management 2013) 

Alternatives Plan 1 Plan 2 Plan 3 Plan 4 

Construction period (1000 person-days) 24,563 27,719 30,892 24,563 

Irrigated agriculture (1000 person-days/annum) 6,453 7,127 7,163 6,453 

Domestic water supply (1000 person-days/annum) 806 806 806 806 

Industry water supply (1000 person-days/annum) 319 319 319 319 

Total (without water supply) 31,016 34,846 38,055 31,016 

 

New employment will be created during the construction period and after project completion. The 

increased employment during construction is measured in 1000 person-days and 1000 person-days 

per annum after the construction during operation period.  
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C.10 Resettlement 

Ministry of Irrigation and Water Resources Management (2013) reported the number of families 

required to resettle for Plans 1-3. The number of resettlements under Plan 4 was estimated from 

the same study considering new infrastructure construction areas. The number of persons to be 

resettled for the 4 plans are 3475, 7880, 8114 and 4910 consequently. The number of families to 

be resettled are 695, 1576, 1623 and 982 consequently for the 4 plans. 

C.11 Water Sharing 

The main objective of the project is enhancing water management of the Mahaweli basin with new 

infrastructure addition. The present water management capability is about 2400 Mm3. With the 

new infrastructure this will increase to 4100Mm3. After 30 years of civil war, water sharing with 

northern areas is highly important. Plan 1 water diversion route is Bowatenna to Huruluwewa via 

the 2nd Huruluwewa feeder canal (HFC). For Plans 2-4 the water diversion route is Moragahakanda 

to Huruluwewa via Upper Elahera canal (UEC). The amount of water received by Huruluwewa is 

used for the MCDA.  

Table C. 8 Water diversion to post conflict areas (Ministry of Irrigation and Water Resources 

Management 2013) 

Location water 

diverting 
Location water diversion to 

Quantity in Mm3 

Plan 1 Plan 2 Plan 3 Plan 4 

Polgolla Bowatenne 1400 1250 887 887 

Randenigala Heen  Ganga 0 0 430 0 

Heen  Ganga Kalu Ganga 0 0 530 100 

Kalu Ganga Moragahakanda 102 102 632 202 

Angamedilla Minneriya 0 150 250 600 

Bowatenne 2nd  HFC  / Huruluwewa 830 0 0 0 

Moragahakanda UEC / Huruluwewa 0 1030 1050 900 

Huruluwewa NCP canal 548 738 758 600 

 

C.12 Violation of Natural River Flow 

Environmental and social assessments are considered as an integral part of the river basin planning 

process. This project alters the natural flow regime as well as inter basin water transfers which 

affect aquatic biodiversity. Modifications of the water flow leads to changes in diversity of aquatic 
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communities, loss of biodiversity of native species and introduction of exotic species which can 

be harmful. There are social activities associated with the downstream river such as drinking water, 

irrigation, among others. Therefore, sufficient water flow downstream from the water diversion 

point is extremely important. The number of river flow violations with the four plans was 

calculated from hydrology data and basic surveys.  

C.13 Disturbance to Wild Life 

Some of the new infrastructure such as water diversion routes and new reservoirs are inside the 

wild life reservations. Impact to the wild life is measured as an index (1-10) based on the land use 

pattern and literature survey. Assessment of disturbance to wildlife was based on the findings of 

Ministry of Mahaweli Development and Environment (2016) as shown in Table S9.  

Table C. 9 Calculation of index for disturbance to wildlife (Ministry of Mahaweli Development and 

Environment 2016) 

Alternatives Plan 1 Plan 2 Plan 3 Plan 4 

Presence of the protected habitats 4 5 8 5 

Habitat fragmentation 2 4 6 4 

Presence of species richness 4 5 6 5 

Presence of critical species (including endemic) 2 3 3 3 

Presence of protected areas 1 3 7 3 

Impact on wildlife migratory routes 1 2 3 2 

Total Qualitative values (MWSIP,2016) 14 22 33 22 

Total Land (ha) 450 710 600 295 

Land above reservoir (ha) 0 220 500 220 

Score for Disturbance to Wildlife          

Land without reservoirs (divide 50) 9 9.8 2 1.5 

Land above reservoir (divide 10)   22 50 22 

Total Qualitative values (MWSIP,2016) 14 22 33 19 

Total score 23 53.8 85 42.5 

Score  (1-10) 3 6 10 5 

 

C.14 MAVT Method Calculation 

MAVT method calculated six decision makers’ degree of approval (𝑠(𝑖, 𝑘)  and multi-attribute 

value function of each alternative,(𝑢(𝑖)) is the degree of approval of plan 𝑖 by all decision makers 

(Table C. 9). Ranking of plans according to six decision makers’ degree of approval (columns:2-
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7) as well as overall ranking order (columns: Total score, Rank) are important to understand insight 

of the decision analysis. 

Table C. 10 Plan support matrix and multi-attribute value vector 

Alternative 
DM1 

Agriculture 
DM2 
Power 

DM3 
Environment 

DM4 
Social 

DM5 
Hydrology 

DM6 
Other 

Total Score  
Rank original norm 

Plan 1  0.35   0.40   0.46   0.41   0.35   0.40   2.36  0.38 4 

Plan 2  0.66   0.64   0.63   0.62   0.67   0.63   3.86  0.68 1 

Plan 3  0.51   0.41   0.40   0.46   0.51   0.45   2.73  0.48 3 

Plan 4  0.56   0.64   0.62   0.57   0.60   0.59   3.57  0.62 2 

 

C.15 ELECTRE III Calculation of Decision Indices  

To compare the performance of each criterion in the four alternatives, we use the average weight 

to calculate the concordance index and discordance index. 

  

 

Table C. 11 Concordance indices 

Concordance 

  Plan 1 Plan 2 Plan 3 Plan 4 

Plan 1  0.37 0.53 0.52 

Plan 2 0.63  0.91 0.71 

Plan 3 0.63 0.40  0.39 

Plan 4 0.56 0.57 0.71  
 

Table C. 12 Discordance indices 

Discordance 

  Plan 1 Plan 2 Plan 3 Plan 4 

Plan 1  0.63 0.47 0.48 

Plan 2 0.37  0.06 0.29 

Plan 3 0.37 0.53  0.60 

Plan 4 0.44 0.43 0.29  
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Figure C. 3 Decision graph of outranking of alternative plan using ELECTRE method according to average 

weight of decision makers (a) ascending distillation (b) descending distillation (c) final ranking 

 

A credibility indices are equal to the concordance indices for most of the cases while few occasions 

are lowered due to some attributes are highly discordant than the overall credibility index (Table 

C. 10, Table C. 11). For example, Plan 2 dominates Plan 3 by 0.91 (Table C. 10) and without any 

highly discordant attribute than credibility index. However, Plan 1 over Plan 2 and Plan 3 over 

Plan 4 dominance are lowered to 0.04 and 0.06 due to the higher discordant attributes (Table C. 

11).   

 

 

 

 

 

 

Table C. 13 Credibility indices 

Credibility Index 

 Plan 1 Plan 2 Plan 3 Plan 4 

Plan 1   0.04 0.53 0.52 

Plan 2 0.63   0.91 0.71 

Plan 3 0.63 0.40   0.06 

Plan 4 0.56 0.57 0.71   
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APPENDIX D 

D Additional Information and Results for Selection of Future Power Generation 

Pathways  
 

D.1 Demand Forecast 

Table D. 1 Demand forecasts prepared considering base assumptions of social and economic factors and 

considering savings from implementation of demand side management measures [63] 

Year Base demand forecast Demand forecast with DSM 

Energy (GWh) Capacity (MW) Energy (GWh) Capacity (MW) 

2015 12901 2401 12580 2342 

2016 13451 2483 12893 2380 

2017 14368 2631 13561 2483 

2018 15348 2788 14208 2581 

2019 16394 2954 14812 2669 

2020 17512 3131 15396 2752 

2021 18376 3259 15687 2782 

2022 19283 3394 16075 2829 

2023 20238 3534 16499 2881 

2024 21243 3681 16988 2944 

2025 22303 3836 17672 3039 

2026 23421 4014 18328 3141 

2027 24601 4203 19104 3263 

2028 25829 4398 19950 3397 

2029 27100 4599 20866 3541 

2030 28410 4805 21847 3695 

2031 29756 5018 22886 3859 

2032 31135 5235 23983 4032 

2033 32565 5459 25156 4217 

2034 34055 5692 26413 4415 
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Figure D. 1 Shape of the electricity demand (a) Daily demand profile evolution through past 25 years (b) 

Load duration curve of present and forecasted for year 2034 

D.2 Existing Power System Thermal Power Plants and Hydropower 

All the cost data are in Year 2015 dollar terms. 

Table D. 2 Existing thermal power plant data and fuel data. 

Power Plant 

Unit 

Capacity 

Fuel 

Calorific 

Value 

Heat Rate Fuel Cost 
Fixed O&M 

Cost 

Variable 

O&M 

Cost 

MW kCal/kg kCal/kWh USCts/GCal $/kWmonth $/MWh 

GT-1 64 10500 4022 8858 3.56 0.77 

GT-2 113 10300 3085 6187 10.05 6.82 

Diesel Engine-1 68 10300 2245 6187 9.21 2.03 

Diesel Engine-2 72 10500 2015 8858 0.21 5.98 

Diesel Engine-3 27 10300 2178 6508 2.08 9.91 

Diesel Engine-4 100 10300 2230 6508 1.33 10.63 

Diesel Engine-5 60 10300 2265 6508 6.02 13.33 

Diesel Engine-6 50 10300 2222 6187 4.56 16.28 

Diesel Engine-7 30 10300 2217 6508 1.12 30.15 

Comb.Cycle-1 161 10880 2269 8282 2.22 3.23 

Comb.Cycle-2 270 10300 3109 6779 2.36 13.85 

Comb.Cycle-3 163 10300 2731 8858 1.55 1.17 

Coal 825 6300 2597 1553 5.02 3.49 

Biomass-1 13 3224 5694 857 2.75 5.05 

Biomass-2 10 3224 5694 1714 2.75 5.05 

(Ceylon Electricity Board, 2015) 
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Table D. 3 Emissions of fossil fuel burning from existing thermal power plants. 

Power Plant 
CO2 SO2 NOX PM 

g/MJ g/MJ g/MJ mg/MJ 

GT-1 74.1 0.453 0.28 5 

    GT-2 74.1 0.453 0.28 5 

Diesel Engine-1 77.4 1.109 1.2 13 

Diesel Engine-2 77.4 1.109 1.2 13 

Diesel Engine-3 76.3 1.639 0.96 13 

Diesel Engine-4 76.3 1.639 0.96 13 

Diesel Engine-5 76.3 1.639 0.96 13 

Diesel Engine-6 77.4 1.639 0.96 13 

Diesel Engine-7 76.3 1.639 0.96 13 

Comb.Cycle-1 73.3 0.03 0.28 2.5 

Comb.Cycle-2 77.4 0.453 0.28 5 

Comb.Cycle-3 74.1 0.03 0.28 13 

Coal 94.6 0.455 0.3 40 

Biomass-1a 0.0 0.0 0.0 255.1 

Biomass-2a 0.0 0.0 0.0 255.1 

(Ceylon Electricity Board, 2015) a Assuming CO2 absorption from the trees for biomass, CO2 emission 

from biomass power plants is considered as zero. 

 

Table D. 4 Energy and capacity of total hydropower plants according to variability of hydrology 

represented as five discrete hydrology conditions calculated from the past 50 years of record. 

Month 

Very Wet 

probability 0.1 

Wet 

probability 0.2 

Medium 

probability 0.4 

Dry 

probability 0.2 

Very Dry 

probability 0.1 

Energy 

(GWh) 

Power 

(MW) 

Energy 

(GWh) 

Power 

(MW) 

Energy 

(GWh) 

Power 

(MW) 

Energy 

(GWh) 

Power 

(MW) 

Energy 

(GWh) 

Power 

(MW) 

January 

February 

140.1 

225.0 

680.3 

712.0 

126.6 

214.0 

740.6 

705.2 

105.3 

197.2 

663.1 

668.0 

94.1 

213.7 

635.9 

715.6 

84.8 

183.6 

604.2 

642.5 

March 

April 

344.8 

408.7 

962.1 

999.3 

311.0 

362.0 

899.6 

946.4 

309.6 

343.8 

877.7 

919.0 

308.7 

314.5 

883.3 

854.9 

284.5 

307.7 

839.1 

871.3 

May 

June 

484.1 

484.8 

1138.2 

1100.1 

466.2 

450.0 

1111.1 

1084.2 

407.8 

394.8 

1021.0 

1049.3 

365.7 

357.6 

932.6 

994.8 

321.3 

323.7 

841.4 

972.5 

July 

August 

479.0 

431.4 

1033.9 

967.6 

469.5 

437.5 

1036.1 

970.0 

433.8 

376.0 

1007.5 

943.2 

386.8 

346.1 

971.4 

902.6 

335.2 

319.5 

919.3 

890.4 

September 

October 

494.3 

617.2 

1059.5 

1135.3 

452.2 

566.0 

1021.2 

1109.3 

397.5 

483.2 

943.8 

1033.8 

351.5 

424.2 

853.0 

986.9 

311.5 

411.2 

787.8 

948.6 

November 

December 

579.2 

554.4 

1129.9 

1161.5 

526.0 

536.2 

1108.2 

1151.6 

482.1 

443.2 

1044.8 

1053.1 

348.4 

328.7 

930.3 

891.2 

320.8 

277.6 

871.5 

862.5 

(Ceylon Electricity Board, 2015) 
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D.3 Candidate Thermal Power Plant Options for Next 20 years  

Table D. 5 Candidate thermal power plant data and fuel data. 

Power Plant 

Unit 

Capacity 

 Fuel 

Calorific 

Value  

Heat Rate 

(Min 

load)  

Fuel Cost 
Fixed 

O&M Cost 

Variable 

O&M 

Cost 

MW kCal/kg kCal/kWh USCts/GCal $/kWmonth $/MWh 

GT-3 35 10500 3060 8858 0.69 5.57 

GT-4 105 10500 4134 8858 0.53 4.17 

Comb.Cycle-4 144 10500 2614 8858 0.55 4.7 

Comb.Cycle-5 288 10500 2457 8858 0.41 3.55 

Coal-2 227 5500 2895 1485 2.92 5.6 

Coal-3 564 6300 2248 1541 4.5 5.9 

Coal-4 270 5900 2810 1515 4.47 5.9 

Biomass-3 5 3224 5694 1714 2.75 5.04 

Nuclear 552   2723 1160 7.62 17.6 

Comb.Cycle-6 287 13000 2457 5432 0.38 4.97 

(Ceylon Electricity Board, 2015) 

Table D. 6 Emissions of fossil fuel burning from candidate thermal power plants. 

Power Plant 
CO2 SO2 NOX PM 

g/MJ g/MJ g/MJ mg/MJ 

GT-3 74.1 0.453 1.2 5 

GT-4 74.1 0.453 1.2 5 

Comb.Cycle-4 74.1 0.453 0.2 5 

Comb.Cycle-5 74.1 0.453 0.2 5 

Coal-2 98.3 0.056 0.26 35 

Coal-3 94.6 0.035 0.035 7 

Coal-4 94.6 0.035 0.14 7 

Biomass-3a 0.0 0.0 0.02 255.1 

Nuclear 0.0 0.0 0.0 0.0 

Comb.Cycle-6 56.1 0 0.02 0.0 

(Ceylon Electricity Board, 2015) a Assuming CO2 absorption from the trees for biomass, CO2 emission 

from biomass power plants is considered as zero. 

D.4 Assumptions for Alternative Development 

Six alternative plans are developed considering several assumptions about fossil fuel and 

hydrology. Presently, the total fossil fuel requirement of the country is imported. A feasibility 

study was carried out for exploring  natural gas reserves of Sri Lanka and the process is being 

progressed slowly (Ministry of Petroleum Resources Development, 2017). Therefore, local natural 
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gas option is considered only for the Maximum indigenous resource alternative and imported liquid 

natural gas option is considered for other alternatives (Ceylon Electricity Board, 2015; Ministry of 

Petroleum Resources Development, 2017).  

Electricity demand profiles for the alternative plans are based on the past daily power demand 

profile of Sri Lanka, which has followed a similar pattern for the last 25 years (Figure D. 1(a)). 

The demand profile creates bottlenecks in power generation with a high evening peak demand and 

an early morning off-peak demand (40% of peak value). The addition of inexpensive baseload 

power plants such as thermal power (coal, nuclear) and renewable power plants (without storage) 

is limited due to this reason. Although peak and energy demands will be growing, there is high 

uncertainty of growing the off-peak demand (Figure D. 1 (b)). Therefore, a 600MW (200MW x 3 

nos.) pumped storage hydropower plant addition (Japan International Corporation Agency, 2015) 

is considered for the generation side efficiency improvement in all the alternative generation 

pathway developments.     

Reliability and environmental standards as stipulated by regulation are incorporated for developing 

possible power generation pathways. Reliability standards of power planning are defined as 

reserve margin (difference between deliverable power generation capacity and demand of the 

system) and loss of load probability (LOLP: measure of the probability that a system demand will 

exceed capacity during a given period; often expressed as the estimated number of days over a 

long period). Maximum (20%) and minimum (2.5%) reserve margin (RM) and LOLP (1.5%) 

values are selected according to the generation planning standards of the transmission licensee of 

Sri Lanka (Transmission Division of Ceylon Electricity Board, 2018). The environmental 

standards follow the Central Environmental Authority of Sri Lanka and World bank (Ceylon 

Electricity Board, 2015).   
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D.4 Attribute Measurement 

Table D. 7 New jobs, land requirement, social acceptance calculation 

Technology 
New jobs     

per 1MW 

Land         

103m2 per MW 

Social acceptance 

weight per MW 

Coal Steam 5 2.5 0.06 

Diesel  GT 5 2.5 0.12 

LNG CCY 4.9 2.5 0.12 

Hydro 5 750 0.25 

HVDC 5 0 0.12 

Nuclear 5 2.5 0.01 

Solar 10.7 100 0.23 

Wind 11.3 35 0.2 

Biomass 72.1 5000 0.15 

Small hydro 5 18 0.25 

 

D.5 Results 

 

Performances of alternatives plans are varied across the five criteria measured through 15 attributes 

(Figure D. 2, Figure D. 3, Figure D. 4, Figure D. 5, Figure D. 6). Although total investment for 

alternative power plans are different, cost percentage for first 10 years (cost 1) and  second 10 

years (cost 2) are approximately same as 40% and 60% respectively (Figure D. 2).  

 

Figure D. 2 Performance of power generation pathways across economic criteria 

 8.2

 8.4

 8.6

 8.8

 9.0

 9.2

 9.4

 9.6

 -

 5

 10

 15

 20

 25

 30

 35

 40

RC EM EE IR LE ES

U
n

it
 C

o
st

 $
/M

W
h

C
o

st
 $

M

Alternative Energy Pathways

Cost1 Cost2 PVRR Unit Cost



146 
 

 

 

Figure D. 3 Performance of power generation pathways across technical criteria 

 

Figure D. 4 Performance of power generation pathways across environmental stewardship criteria 
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Figure D. 5 Performance of power generation pathways across uncertainty criteria. (a) Energy security 

(SWI-H, NEID) and risk benefit ratio (RBR) (b) Total cost distribution over the uncertainty of resources 

(hydrology and fossil fuel price) 

 

 

Figure D. 6 Performance of power generation pathways across social criteria 
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Table D. 8 Evaluation matrix, comparison with Reference case 

Criteria Energy 

Mix 

Energy 

Efficiency 

Max.Indeg. 

Resources 

Low 

Emission  

Energy 

Security 

Economic Present Value 20-year Plan 

($M) 
5% -14% -3% 9% -1% 

10-year Avg. Energy Unit 

Price ($/MWh) -2% 2% 3% 7% 5% 

Technical 

Flexibility 

Peak power share                            6% -17% -17% -14% -16% 

Dispatchable power share  0% -22% -24% -21% -21% 

Environmental 

Stewardship 

SOx (kT) 5% -14% -46% -49% -46% 

NOx (kT) -9% -29% -32% -60% -36% 

PM (kT) -3% -17% -13% -59% -15% 

CO2 (kT) -14% -30% -26% -45% -28% 

Land requirement (km2) 0% 184% 247% 247% 247% 

Uncertainty 95th percntile cost (M$) 6% -10% -7% 2% -5% 

Risk/Benefit -13% 48% -10% -50% -32% 

SWI - H 5% -21% -4% 3% -4% 

NEID 20% -5% -26% -4% -8% 

Social Job opportunities 

(persons/year) -4% 65% 108% 109% 109% 

Social Acceptance 29% 26% 40% 61% 46% 
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