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DEFINITION OF TERMS 

 

Chapter 1 Terms 

Physicochemical model: A mathematical representation of a complex system that captures the 

specific biochemical interactions between system components. They are typically formulated sto-

chastically or as a system of ordinary differential equations (ODE) using an established chemical 

kinetics formalism. Physicochemical models produce quantitative predictions for variations of the 

models inputs [22]. 

 

Rule-based model: An abstracted model in which reactions between individual sites or domains 

on a protein are written down as rules. The network of all possible species configurations and the 

underlying representative system of equations is then automatically generated [26]. 

 

Model calibration: Fitting model outputs to experimental data via adjustment of the models pa-

rameters. When Bayesian methods are used, posterior distributions of the parameters can be ob-

tained [36]. 

 

Bayesian evidence: The normalizing constant for the derivation of the posterior distribution using 

Bayes theorem. Also called the marginal likelihood, it is the integral of the likelihood function 

over the prior distribution. In this work, likelihood functions are replaced with objective functions 

that represent quantities of interest and the prior distribution represents the current knowledge of 

model parameters. The evidence calculation then becomes the expected value of the quantity of 

interest over the given prior distribution of parameters. 

 

Nested sampling: An efficient method for the computation of the Bayesian evidence. It takes the 

multi-dimension integral over the parameter space and converts it to a one-dimensional integral 

over the prior likelihood volume. The method depends on an efficient method to continually nar-

row the prior search area to high likelihood regions [38]. 
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Expected value of a continuous function: The integral of the function over the given probability 

density function. In this work the (objective) function represents a quantity of interest and the 

probability density function represents the normalized parameter distribution. 

 

Chapter 2 Terms 

Apoptosis: Apoptosis, or programmed cell death, is a sequence of cellular events that allows cells 

in multi-cellular organisms to be removed in an orderly controlled fashion [51]. 

 

Extrinsic apoptosis reaction model (EARM): A physicochemical model of receptor mediated 

apoptosis [31]. The model includes two pathways, a direct caspase activation pathway, and a more 

complex mitochondrial pathway. 

 

Death inducing signaling complex (DISC): The DISC is a protein complex consisting of a death 

inducing member of the tumor necrosis factor family of receptors, a death domain containing pro-

tein such as FADD, and an initiator caspase like Caspase-8. Formation of the DISC immediately 

follows ligand binding to the receptor and propagates the apoptosis signal. [53, 54] 

 

Mitochondrial outer membrane permeabilization (MOMP): The process by which the mito-

chondria release the proapoptotic factors Cytochrome c and Smac/DIABLO. Regulation of 

MOMP, including its activation, inhibition, and execution, is controlled by the Bcl-2 family of 

proteins [60, 61]. 

 

Parameter range: The range, in Log10 space, for a model parameter. This is cast as a uniform 

prior distribution in the evidence calculation.  

 

Initial value: The starting value for any model species that changes over time as a simulation 

proceeds.  
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Multimodel inference method: In the context of this work, the multimodel inference method 

breaks the model into relevant sub-models and calculates the expected values of a quantity of 

interest for each under various regulatory conditions. Inferences regarding regulatory control of 

cellular fate are then made through examination of the differences in signal throughput. These are 

effectively in silico knockout experiments.  

 

Pathway targeted method: In the pathway targeted method the full model is retained and the 

targeted quantities of interest are the signal flux through different pathways. These flux values are 

estimated over various regulatory conditions and inferences are made regarding how the signal is 

directed through the network. Other targeted processes could also be analyzed with this method. 

 

Signal flux: The amount of signal carried through a particular pathway.  

 

Evidence ratios: Evidence ratios are equivalent to Bayes factors. In the context of this work the 

evidence ratios are used to infer key points in regulatory control of phenotypic shifts. 

 

Chapters 3 and 4 Terms 

Emergent behavior: Emergent behaviors are nonintuitive behavioral properties of complex net-

works that stem from interactions between networks components and crosstalk between pathways. 

Such behaviors are only observed in the context of the complete system. [1, 2] 

 

Phenotype: In the context of this work phenotype is the set of characteristics, both behavioral and 

in the concentrations of proteins, displayed by a particular cell type.  

 

Type I apoptosis: A cellular phenotype in which apoptosis can be successfully executed inde-

pendent from mitochondrial involvement [93]. 
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Type II apoptosis: A cellular phenotype in which successful execution of apoptosis depends on 

mitochondrial involvement [93]. 

 

Regulatory axes: In this work regulatory axes are those key points in the network that are hypoth-

esized to control the regulation of signal throughput. They may take the form of an effector-target 

pair of proteins like XIAP and Caspase-3, a complex like the death inducing signaling complex 

(DISC), or a network module like the mitochondria. 

 

Precision: In the context of this work precision is the estimated error on the estimates for the 

evidence calculations. 

 

Resolution: In the context of this work resolution is the (relative) density of evidence (expected 

value) calculations over a range of values for a given regulator. We have assumed here that evi-

dence estimates are made at evenly space intervals throughout a given range. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

Elucidation of the regulatory mechanisms that govern signaling dynamics through large 

complex biochemical networks is a challenging task. The interactions between the various 

pathways and the combined effects of regulatory elements can give rise to unexpected be-

haviors that are often difficult to explain [1, 2, 3]. Nevertheless, characterization of network 

dynamics and the underlying mechanisms that control their regulation is essential if we are 

to understand the complexities of signaling networks, the diseases their dysregulation 

causes, and effective treatments for those conditions [4, 5]. Cancer is a prime example [6, 

7]. Crosstalk between pathways can result in multiple deleterious effects from a single 

driver mutation. For example, constitutively active Ras, and its interaction with PI3K, can 

increase both growth and survival signals via the MAPK/Erk and PI3K/Akt pathways re-

spectively [8]. Signal dysregulation extends to the intercellular signaling network as well. 

Tumors shape the tumor microenvironment via a complex system of signals that remodel 

the surrounding extracellular matrix, promote angiogenesis, induce immune evasion, and 

promote many other growth and survival functions [9]. The fact that cancers typically ob-

tain multiple driver mutations before becoming tumorigenic makes the analysis of the al-

tered signaling dynamics enormously complex. 

    Deficiencies in knowledge regarding the complex interactions that govern the regulation 

of signaling dynamics can lead to difficulties in treating the diseases that result when sig-

nals become aberrant [10]. Target validation and target-based screening typically work on 

a “one-drug-one-gene paradigm” [11]. This can render effective treatments for diseases 

with complex etiologies out of reach. Drug development in such cases may benefit from 

combination treatments that attack multiple pathways and/or points of regulation [12, 13]. 

Drugs for complex diseases that pass the initial screening often fail in Phase II and III 



2 
 

clinical trials [12, 15, 16]. They often fail due to a lack of efficacy stemming from an in-

complete understanding of disease pathogenesis or from the advent of unanticipated side-

effects [14, 15]. The former is common in tumors with a heterogenous architecture, a fea-

ture that is implicated in treatment resistance after encouraging initial results [12, 16, 17, 

18]. Side-effects can result from drug interactions with unexpected targets or unexpected 

cross-talk between pathways [10, 11, 14]. Overall, the unknown complexities of disease 

systems along with the most prevalent methodologies used in drug discovery results in 

missed treatment opportunities, lower success rates, higher costs, and worse outcomes [19].  

    A number of experimental techniques from molecular biology and proteomics can, in 

general, be used to help examine the dynamics of complex networks. For example, gene 

knockouts, and conversely protein overexpression, can be used to inhibit or activate pro-

posed regulatory proteins or targeted pathways in order to examine the effects they elicit 

and attempt to infer their role in the overall dynamics of the system. Other methods like 

Förster resonance energy transfer (FRET) can be used to measure protein-protein interac-

tions in vivo at different time points and locations to characterize the dynamics of known 

pathways. Unfortunately, conclusive establishment of mechanistic explanations for ob-

served behaviors in large complex systems using these techniques would require their ap-

plication in a combinatorial fashion to examine the interplay between all pathways and 

regulatory elements. The requisite number of experiments would thus be prohibitively 

costly and time consuming.  

    Fortunately, computational modeling of biochemical networks has advanced greatly in 

recent years and has become an established adjunct to experimental methods. In silico ex-

periments can be designed to account for network complexities like cross-talk between 

pathways and multi-factor regulation [20, 21]. Hypotheses regarding emergent regulatory 

behavior can then be made that will guide experimentation to the most promising cost-

effective targets.  
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1.2 Mathematical Modeling of Biological Systems 

The use of mathematical modeling of biological systems alongside experimental methods 

typically follows an iterative approach [22, 23]. In short, a model that currently represents 

the best knowledge of a biological system of interest is used to make predictions of system 

behavior under various in silico experimental conditions. Those predictions are then used 

to guide wet bench experiments that ideally lead to novel insights. The additional 

knowledge gained from the bench experiments, whether new discoveries are made are not, 

are subsequently used to improve the computational model, beginning the cycle once again. 

    A wide range of well-established modeling techniques are available to systems model-

ers, the choice of which depends on the size, type, and level of detail of the system [24, 

25]. Qualitative methods can be used to get a broad snapshot of the interactions or coarse-

grained dynamics of a system. Conversely, quantitative methods are used to make analyses 

of system dynamics with much more precision, so long as enough mechanistic detail of the 

system is available. Quantitative physicochemical modeling requires knowledge of the im-

portant components of the system, the specific interactions between those components (i.e. 

inhibitory binding, enzymatic cleavage, etc.), and the rates at which those interactions take 

place. With that knowledge in hand, a mathematical representation of the system can be 

constructed to simulate network dynamics and formulate new hypotheses. Quantitative 

models are typically simulated as either stochastic or deterministic systems of equations 

and deterministic systems often take the form of ordinary differential equations (ODEs) 

[22, 23, 24, 25]. Although one could opt to write down such systems directly the number 

of binding interactions and molecular modifications in realistic representations of biologi-

cal systems results in a combinatorial explosion of new molecular species and a concomi-

tant explosion of equations [26]. Rule-based modeling systems are aimed at simplifying 

construction of these models.  

    Rule-based systems such as BioNetGen and the Kappa language are designed to more 

easily construct models that incorporate detailed biochemical interactions of the system 

components [27, 28, 29, 30]. These formalisms are designed specifically to address the 
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problem of the combinatorial explosion of unique protein states that arises from protein 

modification and complex formation. The solution is to write rules for the individual sites 

or domains on a protein rather than for every possible protein complex configuration. The 

software then automatically generates a network of interactions as well as all the underly-

ing equations. In general, these systems allow for ODE or stochastic based simulation of 

mechanistic models and form the foundation of more sophisticated systems like PySB [31]. 

 

1.3 Calibration of Kinetic Models 

    When reaction rate parameters for kinetic models are unknown, and they often are, they 

must be calibrated. The goal is to find the parameter set that best explains a set of experi-

mental data. Any calibration scheme for finding a suitable parameter set starts with an 

objective function that provides a measure of ‘fit’ to the data for any proposed parameter 

set. A typical objective function is the residual sum of squares. 

    Next, a method to search the given parameter space for an optimal parameter set is em-

ployed, and many methods have been devised for the task. Local methods can be applied 

in a multi-start fashion to find global minima or used in combination with global methods 

to form hybrid approaches [32]. Deterministic methods will find a minimum that is guar-

anteed to be globally optimal within a defined level of certainty but at a high computational 

cost [32]. Stochastic techniques that give no assurances of optimality can often efficiently 

find a minimization that is, in practice, often close to optimal. Many stochastic methods 

are inspired by natural processes such as simulated annealing (cooling metal), particle 

swarm optimization, (group dynamics such as a flock of birds), and the class of evolution-

ary computation algorithms (improved fitness through selection).  

    Another approach to the parameter calibration problem is through Markov chain Monte 

Carlo methods [36, 37]. These methods allow for both calibration and estimation of pa-

rameter posterior distributions that can be used to analyze their uncertainty given the avail-

able data. This is a key point in traditional computational modeling. Estimated outcomes 

that depend on parameters with broad uncertainty are suspect at best. Parameter distribution 
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estimates, in turn, depend on the available experimental data, which may be sparse or spe-

cific to a particular biological question. This can potentially result in a need to generate 

new data for every proposed in silico experiment, a costly and time-consuming endeavor. 

Methods to guide experimentation to productive targets without the need for calibrated 

parameters would close a gap in the cycle of experimentation and computational modeling. 

 

1.4 Bayesian Machinery 

1.4.1 Bayesian Evidence  

    Given a prior distribution 𝑃(𝜃|𝑀) =  𝜋(𝜃) and likelihood function 𝑃(𝐷|𝜃,𝑀) ≡ 𝐿(𝜃) 

there are two unknowns in a Bayesian calculation (1.1), the posterior distribution 

𝑃(𝜃|𝐷,𝑀) and the evidence 𝑃(𝐷|𝑀) ≡ 𝑍 where 𝜃 represents a parameter set, 𝐷 represent 

the data, and 𝑀 represents a model [38, 39]. 

𝑃(𝜃|𝐷,𝑀) =
 𝑃(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀)

𝑃(𝐷|𝑀)
                                                    (1.1) 

The normalizing evidence term is typically ignored for parameter estimation purposes as 

inferences can be made directly from the unnormalized posterior generated using MCMC 

methods. However, when comparisons of different models are desired the evidence pro-

vides a means to do so. Calculating the evidence is equivalent to calculating the expected 

value of the likelihood function over the prior distribution, i.e., finding the average of the 

function over the prior. Typically, the likelihood, or objective function, calculates a fit to 

experimental data. As will be explained in Chapter 3, the objective functions used in this 

work represent quantities of interest and the evidence calculation estimates the expected 

values of those quantities.  

    To compute the Bayesian evidence for a model, also called the marginal likelihood, one 

integrates the likelihood function over the model’s prior distribution (1.2).  

𝑃(𝐷|𝑀) = ∫𝑃(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀)𝑑𝜃                                                (1.2) 
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This is done numerically when no analytical solution exists, as is often the case, and is 

typically a computationally intensive task, particularly for high parameter models. Unfor-

tunately, simpler methods that use the maximum likelihood, like the Bayesian information 

criterion (BIC) and related algorithms [40], are inappropriate when the models to be com-

pared can obtain equally good results for a given likelihood function. This is often the case 

for highly parameterized biological models. Thermodynamic integration is an often-used 

option to estimate evidence values [41]. In that method a series of unnormalized posterior 

averages are estimated using MCMC methods with a power (T) on the likelihood function 

that increases from 0, representing the prior, to 1, representing the true posterior. These 

averages are then integrated over T to produce an estimate of the log-evidence. This is a 

very computationally intensive exercise. Fortunately, a much more efficient algorithm 

called nested sampling has been developed [38].  

 

1.4.2 Nested Sampling 

    Nested sampling takes the multi-dimensional integral over 𝜃 and converts it to a one-

dimensional integral over the prior volume 𝑋, where 𝑑𝑋 = 𝜋(𝜃)𝑑𝜃. Then the accrued vol-

ume of the prior for 𝐿(𝜃) > 𝜆 is given by the monotonically decreasing function 

𝑋(𝜆) = ∫ 𝜋(𝜃)𝑑𝜃
𝐿(𝜃)>𝜆

.                                                       (1.3) 

This function’s inverse, 𝐿(𝑋) ≡ 𝜆, is similarly monotonically decreasing from 0 to 1 and 

we write the evidence calculation as  

𝑍 = ∫ 𝐿(𝑋)𝑑𝑋.
1

0

                                                                  (1.4) 

The error estimate is given for log (𝑍) as ± √𝐻 𝑁⁄  where N is the number of live points in 

the nested sampling algorithm and H is the relative information contained in the posterior 

vs the prior. It is a measure of concentration of the posterior mass within the prior and is 

expressed as  



7 
 

𝐻 = ∫𝑙𝑜𝑔 (
𝑑𝑃

𝑑𝑋
)𝑑𝑃                                                                (1.5) 

where 𝑃 is the prior and 𝑋 is the posterior mass. With this foundation, a scheme can be 

used to continually narrow the sampling of the prior distribution to areas of higher likeli-

hood. Note that the notation used above is drawn directly from [38]. An overview of the 

numerical computation of the evidence is in Chapter 3 and a more detailed treatment for 

both the evidence and the error estimate can be found in [38, 39]. We also note that the 

varied complexity of the models is automatically accounted for by the integration process. 

The better fit to data afforded by the higher parameter models is countered by the increase 

in the number of dimensions that must be integrated. 

 

1.4.3 Point Selection Algorithms 

    After the nested sampling method was introduced by Skilling, much effort has gone into 

finding efficient algorithms to search the prior for high likelihood regions. The original 

work suggests an MCMC walk from an existing point to find a new point with likelihood 

higher than the lowest likelihood point in the current population (Llow). The new point is 

then added to the population and Llow is added to the sum that estimates equation 1.2 (see 

Section 2.2 and [38]). A number of more sophisticated and efficient algorithms have since 

been developed. MultiNest, for example, clusters the points in the existing population and 

forms hard ellipsoid bounds around the clusters at each iteration [42, 43]. The next point is 

then searched for within those bounds. The PolyChord algorithm uses slice sampling, 

where, given a density function f(x) and current point x0, a new point x1 within the density 

is found by randomly choosing a level y between 0 and f(x0), and then randomly choosing 

a new point within a horizontal interval at that level [44, 45]. Points are chosen until one is 

found within the density and those outside put new bounds on the interval. The program 

DNest4 is an implementation of a method called diffusive nested sampling in which a mix-

ture of successive distributions is sampled to better handle complications like multimodal 
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posteriors [46, 47]. Other methods such as importance sampling and dynamic sampling 

have often been incorporated into existing software packages like those above [48, 49, 50].  

 

1.5 Purpose and General Methodology 

The overarching purpose of this work is to provide a methodology for the exploration of 

mechanistic biological networks with limited or even no knowledge of the reaction rate 

parameters and/or the data needed to calibrate them. We take a probabilistic approach to-

ward accomplishing this task. If one cannot produce a value for an outcome of interest due 

to the uncertainty in the parameters, one may still produce an expected value based on all 

topological and parameter information that is known. Initial hypotheses based on in silico 

experiments can then suggest targets for experimentation and data collection. Expected 

values are calculated using the Bayesian machinery described in Section 1.4, as Bayesian 

evidence is by definition an expected value (1.2). We can leverage this by writing objective 

functions that represent quantities of interest. In the chapters below we use two such ob-

jective functions. The first is the proportion of the protein PARP that is cleaved, which is 

a proxy for apoptosis, and the second is the flux of the apoptosis signal through various 

pathways. Comparison of these outputs under different in silico experiments can then lead 

to exploitable insights and guided experimentation. To summarize the idea: if we cannot 

confidently calibrate, simulate, and produce values for quantities of interest, an alternative 

is to find prior distributions, integrate, and produce expected values for those quantities. In 

chapters 4 and 5 below we take the worst possible case, i.e., generic priors that represent 

reasonable uniform (in log space) parameter ranges and test this methodology against a 

model of extrinsic apoptosis. We show that even in the worst case, good knowledge of the 

reaction topology and generic knowledge of reaction rates, the qualitative results strongly 

agree with existing experimental evidence.  
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Chapter 2 

 

Model and Methods 

 

2.1 Extrinsic Apoptosis Model 

2.1.1 Summary 

Extrinsic apoptosis is a receptor mediated process for programmed cell death. It is essential 

for normal development and homeostasis and is therefore a well-studied system, making it 

ideal for demonstrating the efficacy of new computational approaches. In Chapters 3 and 

4 below we focus heavily on the two known extrinsic apoptosis phenotypes: Type II, in 

which the apoptosis signal is dependent on amplification via the mitochondrial pathway, 

and Type I, in which it is independent. The base model used in those chapters is a modified 

version of the Extrinsic Apoptosis Reaction Model (EARM) from Lopez et al. [31]. Here 

we describe the signaling network that is represented by the modified model (Figure 2.1) 

and show that the model is calibratable to existing experimental data. We also define the 

literature derived initial values and the parameter ranges used for the nested sampling-

based evidence/expected value estimation.  
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Figure 2.1. Schematic of apoptotic signal flow through the extrinsic apoptosis network. 
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2.1.2 Description of the Extrinsic Apoptosis Signaling Network 

    The apoptosis signal is initiated when a death inducing member of the tumor necrosis 

factor (TNF) superfamily of receptors (FasR, TNFR1, etc.) is bound by its respective ligand 

(FasL, TNF-α, etc.), setting off a sequence biochemical events that result in the orderly 

deconstruction of the cell [51]. The first stage of this sequence is the assembly of the DISC 

at the cell membrane ① and the subsequent activation of Caspase-8. Upon ligand binding 

and oligomerization of a receptor such as FasR or TRAIL, an adapter protein, like FADD 

(Fas-associated protein with death domain), is recruited to the receptors cytoplasmic tail 

[52, 53, 54]. FADD, in turn, recruits Caspase-8 via their respective death effector domains 

(DEDs), thus completing DISC formation [53, 54]. Other DISC components could also be 

included here, such as the regulator cFlip [55]. Once recruited, proximal Procaspase-8 

monomers dimerize, inducing their autoproteolytic activity and producing active Caspase-

8 [56, 57, 58]. 

    After Caspase-8 activation the apoptotic signal can progress down two distinct pathways 

that both lead to the activation of Caspase-3 and the ensuing proteolysis of downstream 

targets. One pathway consists of a caspase cascade in which active Caspase-8 directly 

cleaves and activates Caspase-3 ② [59], while another more complex pathway is routed 

through the mitochondria. In the mitochondrial pathway Caspase-8 cleaves the proapop-

totic Bcl-2 family protein Bid in the cytosol, which then migrates to the mitochondria ③ 

where it initiates mitochondrial outer membrane permeabilization (MOMP) and the release 

of proapoptotic factors that lead to Caspase-3 activation [60, 61]. 

    MOMP has its own set of regulators that govern the strength of apoptotic signaling 

through the mitochondria ④. After Caspase-8 activated Bid, (tBid), migrates to the mito-

chondria it activates proteins in the outer mitochondrial membrane, such as Bax, that sub-

sequently self-aggregate into membrane pores and allow exportation of Cytochrome c and 

Smac/DIABLO to the cytosol [62]. Bid and Bax are examples of proapoptotic proteins 

from the Bcl-2 family, all of which share BH domain homology [63]. Other members of 

this family act as MOMP regulators; the antiapoptotic Bcl-2, for example, binds and 
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inhibits both Bid and Bax while the proapoptotic Bad similarly binds and inhibits its target, 

Bcl-2 [64, 65, 66, 67]. Many other pro- and antiapoptotic members of the Bcl-2 family 

have been discovered and together regulate MOMP [68]. 

    Regardless of which pathway is chosen, the intermediate results are Caspase-3 activation 

and subsequent cleavage of PARP ⑧, a proxy for cell death in the analyses here [69, 70]. 

XIAP (X-linked inhibitor of apoptosis protein) is an inhibitor of Caspase-3 and has been 

proposed to be a key regulator in determining the apoptotic phenotype of a cell (Type I/II 

cells are, respectively, independent/dependent on the mitochondrial pathway) [71]. XIAP 

sequesters Caspase-3 but also contains a ubiquitin ligase domain that directly targets 

Caspase-3 for degradation. The inhibitor also sequesters and inhibits the Caspase-3 acti-

vating Caspase-9 residing within the apoptosome complex [72, 73, 74]. Apoptosome for-

mation is initiated by Cytochrome c exported from the mitochondria during MOMP ⑤. 

Cytochrome c induces the protein APAF-1 to oligomerize and subsequently recruit and 

activate Caspase-9, thus forming the complex [75]. Another MOMP export, the protein 

Smac/DIABLO ⑥, binds and inhibits XIAP, working in tandem with Cytochrome c to 

oppose XIAP and carry out the apoptosis inducing activity of the Type II pathway [76]. 

Finally, Procaspase/Caspase-6 constitutes a feed forward loop between Caspase-3 and 

Caspase-8 ⑦ [77]. 

 

2.1.3 Parameter Ranges and Initial Conditions 

    The prior distribution takes the form of a set of parameter ranges, one for each reaction 

rate parameter. The chosen ranges span four orders of magnitude around generic reaction 

rates deemed plausible [22] and are specific to the type of reaction taking place. The ranges 

of reaction rate parameters, in Log10 space, are 1st order forward: [-4.0, 0.0], 2nd order for-

ward: [-8.0, -4.0], 1st order reverse: [-4.0, 0.0], and catalysis: [-1.0, 3.0]. These ranges were 

also used in calibration of the base model. Initial conditions, where possible, were either 

gleaned from the literature [78, 79] or taken from a previous model of extrinsic apoptosis 
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[31]. Because the baseline model was designed to concur with Type II cells, literature de-

rived initial conditions were based on Type II Jurkat or Hela cell lines (Table 2.1). 

 

Table 2.1. Initial values for the baseline extrinsic apoptosis model. 

Monomer Initial Value Monomer Initial Value 

Ligand 1000 C3pro 21000 

ParpU 1000000 CytoCM 500000 

C8A 0 CytoCC 0 

SmacM 100000 BaxA 0 

BaxM 40000 ApafI 100000 

Apop 0 BidU 171000 

Fadd 130000 BidT 0 

SmacC 0 C3A 0 

ParpC 0 Bad 53000 

Xiap 42000 ApafA 0 

C9 100000 BidM 0 

C3ub 0 Receptor 100 

C8pro 130000 C6A 0 

Bcl2 328000 C6pro 100 

 

2.1.4 Calibration of the Base Model to Experimental Data 

    The modified model recapitulates extrinsic apoptosis execution to experimental data 

[80] upon calibration to time-dependent trajectories of Bid, Smac, and PARP (Figures 2.2-

2.4). Data can be found at https://github.com/clopezx/earm. 

 

 

 

 

 

 

 

 

 

 

https://github.com/LoLab-VU/BIND
https://github.com/LoLab-VU/BIND
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Figure 2.2. Trajectories of cleaved Bid, exported Smac, and cleaved PARP (solid lines) for 

the calibrated EARM model along with the data used for the calibration (points).  
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Figure 2.3. Bid trajectory along with estimated error bars for the associated FRET data. 

 

 

 

 

 

 

 

 



16 
 

 

 

 

 

 

 

Figure 2.4. PARP trajectory along with estimated error bars for the associated FRET data. 
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2.2 Methods 

2.2.1 Summary 

    Suppose we have a certain amount of knowledge with regard to the reaction topology 

for a biological signaling network and the associated reaction rates. Given that knowledge, 

we estimate expected values for quantities of interest under various in silico experimental 

conditions. Hypotheses are then generated based on differences in those values and how 

fast they change as regulatory conditions are varied. The methods needed to accomplish 

this are detailed in this section and applied to the extrinsic apoptosis model, or variants of 

it, in Chapters 3 and 4. 

 

2.2.2 Modeling and Simulation  

    Models were written in the format of PySB, a rule-based system for constructing and 

simulating physicochemical models under mass-action kinetics [31]. Simulations were run, 

in the context of Bayesian evidence estimation, using the PySB software (http://pysb.org/). 

All representative models and software are distributed with open-source licensing and can 

be found in the GitHub repository https://github.com/LoLab-VU/BIND. 

 

2.2.3 Bayesian Evidence Estimation 

    Bayesian evidence is expressed as 

𝑃(𝐷|𝑀) = ∫𝐿(𝐷|𝜃,𝑀) 𝑃(𝜃|𝑀) 𝑑𝜃                                                       (1) 

where 𝑀 is the model under consideration, 𝐷 is the data, 𝜃 is a particular set of parameter 

values, 𝐿(𝐷|𝜃,𝑀) is the likelihood function describing the fit of the data to the model under 

those parameter values, and 𝑃(𝜃|𝑀) is the prior distribution of parameters. Note that this 

also represents the expected value of the likelihood function over the given prior distribu-

tion. All evidence estimates were made using nested sampling; introduced by Skilling in 

[38]. This method simplifies the evidence calculation by introducing a prior mass element 

http://pysb.org/
http://pysb.org/
https://github.com/LoLab-VU/BIND
https://github.com/LoLab-VU/BIND
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𝑑𝑋 = 𝑃(𝜃|𝑀) 𝑑𝜃 that is estimated by (𝑋𝑖−𝑖 − 𝑋𝑖) where 𝑋𝑖 = 𝑒−𝑖/𝑁, 𝑖 is the current iter-

ation of the algorithm, and 𝑁 is the total number of live points. The evidence is then written 

as  

𝑍 = ∫𝐿

1

0

𝑑𝑋 ≈∑𝐿𝑖(𝑋𝑖−1 − 𝑋𝑖)

𝑖=1

                                                          (2) 

Initialization of the algorithm is carried out by randomly selecting an initial population of 

parameter sets (points in parameter space) from the prior distribution, scoring each one 

with the likelihood function, and ranking them from 𝐿ℎ𝑖𝑔ℎ to 𝐿𝑙𝑜𝑤. At each iteration of the 

algorithm a new set of parameter values is selected and scored. If that score is higher than 

𝐿𝑙𝑜𝑤, then it is added to the population, at the appropriate rank, and 𝐿𝑙𝑜𝑤 is removed from 

the population and added to the evidence sum (2).  

 

2.2.4 Nested Sampling Software 

    All evidence estimates in this work are calculated with MultiNest, a nested sampling-

based algorithm designed for efficient evidence calculation on highly multimodel posterior 

distributions [42, 43]. MultiNest works by clustering the live points (population of param-

eter sets) and enclosing them in ellipsoids at each iteration. The enclosed space then con-

stitutes a reduced space of admissible parameter sets. This lowers the probability of sam-

pling from low likelihood areas and evaluating points that will only be discarded. The ev-

idence estimate is accompanied by an estimate of the evidence error. The algorithm termi-

nates when the presumed contribution of the highest likelihood member of the current set 

of live points, 𝐿ℎ𝑖𝑔ℎ𝑋𝑖 is below a threshold. Here, we use a threshold of 0.0001 and a pop-

ulation size and 16,000 unless otherwise noted. See [42, 43], for more details on the 

MultiNest algorithm. We use MultiNest with the Python wrapper PyMultiNest [81], which 

facilitates the integration of PySB into the nested sampling pipeline.  
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2.2.5 Objective Functions 

    In this work we will present two methodologies with two different objective functions 

that use changes evidence values as regulatory conditions are varied to make inferences on 

changing network dynamics. We note that our objective functions are not true likelihood 

functions but instead represent values for quantities of interest.  

 

2.2.5.1 Multimodel Inference Method 

    In the multimodel inference method we break down the network into various subnet-

works and test each over increasing values of proposed regulatory elements for efficacy in 

achieving apoptosis. A proxy for apoptosis in this model, and the objective function for the 

nested sampling calculation, is the proportion of the protein PARP that has been cleaved 

by caspase-3 at the end of the in-silico experiment (20160 seconds). The function is thus 

𝑂𝑏𝑗𝑚𝑢𝑙𝑡𝑖𝑚𝑜𝑑𝑒𝑙 =
𝑐𝑃𝑎𝑟𝑝

𝑡𝑃𝑎𝑟𝑝
 

where 𝑐𝑃𝑎𝑟𝑝 is the amount of PARP that has been cleaved and 𝑡𝑃𝑎𝑟𝑝 is the total amount 

of PARP in the system. When substituted into equation (1) in place of the likelihood func-

tion, the evidence calculation produces an expected value for the proportion of PARP that 

has been cleaved. It is an estimate of the average PARP cleavage over the chosen parameter 

ranges. 

 

2.2.5.2 Pathway Targeted Method 

    In the pathway targeted method, we again vary proposed regulators but retain the full 

model while using targeted objective functions that represent the signal flux through dif-

ferent pathways in the network, similar to [83]. We consider the signal flux through the 

caspase pathway and the mitochondrial pathway. The objective function estimating signal 

flux through a pathway is  
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𝑂𝑏𝑗𝑝𝑎𝑡ℎ𝑤𝑎𝑦 =∑
∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

𝑇

𝑡=0

× (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) 

where 𝑡 represents time in seconds, ∑ 𝐶3𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑡
0  is the amount of Caspase-3 activated via 

the target pathway up to time t, ∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0  is the total Caspase-3 activated up to time t, and 

∑ 𝐶3𝑐𝑎𝑠𝑝𝑎𝑠𝑒
𝑡
0

∑ 𝐶3𝑡𝑜𝑡𝑎𝑙
𝑡
0

 is the proportion of activated Caspase-3 that was produced via the target 

pathway up to time 𝑡. (𝑐𝑃𝑎𝑟𝑝𝑡 − 𝑐𝑃𝑎𝑟𝑝𝑡−1) is the total PARP that has been cleaved, and 

activated, by Caspase-3 from time 𝑡 − 1 to time 𝑡. Thus, at time t we know how much 

Caspase-3 has been activated via the target pathway and we have an estimate for how much 

PARP was activated (via Caspase-3) for the discrete time period 𝑡 − 1 to 𝑡. Multiplication 

of these two terms returns an estimate for the amount of PARP cleaved via the target path-

way at time t. Summing over T then returns an estimate for the total apoptosis signal flow-

ing through the target pathway. Like the PARP cleavage objective function, the signal flux 

objective substituted into equation (1) produces an expected value for this quantity on the 

given prior distributions. 

 

2.2.6 Evidence Ratios 

    Evidence estimates are often used to select between two competing models by calculat-

ing the Bayes factor, or the ratio of their evidence values. This provides a measure of con-

fidence for choosing one model over another. We can likewise use changes in evidence 

values to track changes in evidence ratios that provide additional insights into the dynam-

ical relationship between pathways. To facilitate visualization of the changes in evidence 

ratios, with a continuous and symmetric range, the Bayes factors were calculated as  

𝐵𝑓 =  

{
 

 −
𝑍2
𝑍1
+ 1  𝑖𝑓 𝑍1 < 𝑍2

𝑍1
𝑍2
− 1  𝑖𝑓 𝑍1 > 𝑍2

 

where 𝑍1 and 𝑍2 are the evidence estimates for two pathways under comparison.  
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2.2.7 Computational Resources 

    Because of the high computational workload necessary for this analysis, a wide range of 

computational resources were used. The bulk of the work was done on the ACCRE cluster 

at Vanderbilt University which has more than 600 compute nodes running Intel Xeon pro-

cessors and a Linux OS. As many as 300 evidence calculations were run in parallel on this 

system. Additional resources included two local servers, also running Intel processors and 

a Linux OS, as well as a small local four node cluster running Linux and AMD Ryzen 1700 

processors. 
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Chapter 3 

 

Bayesian Evidence Based Analysis of Network Dynamics 

 

3.1 Summary 

Characterization of signal execution dynamics within complex biochemical networks is 

highly challenging but necessary to understand how cells process signals and commit to a 

biological phenotype. Mechanistic interpretation of experimental results can be inaccurate 

due to limited data or the need for an unrealistic number of measurements. Mathematical 

simulation of network dynamics has emerged as a complement to experimentation for the 

exploration of signal execution mechanisms. However, traditional computational methods 

require either detailed knowledge of model parameters or sufficient data to calibrate mod-

els to experiments, both of which can be difficult to obtain.  

    To address this challenge, we take a probabilistic approach to the analysis of network-

driven biochemical processes using a Bayesian inference formalism to explore network 

dynamics when data is limited and identify the regulatory mechanisms of biochemical sig-

naling. We applied the approach to the well-studied signal execution pathways of mamma-

lian extrinsic apoptosis and produced results consistent with experimental evidence as well 

as additional (theoretical) hypotheses regarding the mechanisms of mitochondrial signal 

amplification.  

This chapter, along with Chapter 2, was written as a stand-alone manuscript and is meant 

to both introduce the concept of probabilistic, objective function-based modeling and to 

give proof of concept examples of the methodology. A version of the manuscript can be 

found here: https://www.biorxiv.org/content/10.1101/732396v2. 

 

 

 

https://www.biorxiv.org/content/10.1101/732396v2
https://www.biorxiv.org/content/10.1101/732396v2


23 
 

3.2 Challenges in the Analysis of Dynamics of Physicochemical Networks 

Emergent behaviors of complex biological networks are difficult to characterize [1, 2]. 

They arise from the interplay between various components and pathways that make up the 

larger system and because they appear only when those pieces are brought together, deter-

mining the role of any singular part can pose a significant challenge. To study the myriad 

of possible cellular regulatory conditions and accelerate the formation of predictive hy-

potheses, computational modeling is often used alongside experimental methods [3]. Phys-

icochemical models representing the currently known biochemical interactions of a system 

are constructed from knowledge garnered from years or even decades of experimentation. 

Unfortunately, such models depend on reaction rate parameters that are typically unknown 

and must therefore be calibrated to experimental data – data that is often scarce [20]. An 

especially difficult behavior to study is the evolution of signal execution dynamics under 

shifting regulatory conditions, the analysis of which is essential to the identification of 

regulatory elements that govern signal transduction between pathways or those with the 

potential to elicit phenotype transitions. In such cases, calibration of a complex model to 

inadequate data can result in equally good fits for very different parameter sets [37], po-

tentially leading to inconsistent conclusions regarding the signaling dynamics of the sys-

tem. Methods that retain the extensive mechanistic knowledge gleaned from the literature 

without using explicit parameter values will allow for greater exploration of network dy-

namics and accelerate the generation of new biological hypotheses. 

 

3.3 Overview of Bayesian Inference-Based Analysis of Network Dynamics 

In this work, we have taken a probabilistic approach to the exploration of network dynam-

ics over regulatory perturbations by utilizing methods from the field of model selection and 

multimodel inference [82, 83]. We use a Bayesian inference-based framework for the anal-

ysis of network dynamics across regulatory conditions. In particular, we use Bayesian 

model evidence as a metric for comparisons of signal flow through different pathways and 
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subnetworks. Two complementary approaches are used. The first employs a multimodel 

inference approach that deconstructs the test model into subnetworks, all of which can suc-

cessfully execute the apoptotic signal. Bayesian evidence estimates, for an objective func-

tion representing a quantity of interest and over a realistic range of reaction rate parameter 

values, are computed over a range of regulatory conditions. This is equivalent to calculat-

ing the expected value of that quantity over the given parameter range for various in silico 

experiments. The second approach retains the full network but defines the objective func-

tions to represent processes on target pathways, in this case the signal flux through those 

pathways. The expected flux values are then compared to provide a view of signal execu-

tion that inherently includes crosstalk between pathways. Because the evidence estimate 

takes the form of an expected value calculation these approaches are effectively probabil-

istic analogs to traditional modeling methods that calibrate and simulate to obtain explicit 

values of interest. 

    As a test case, we apply these methods to a modified version of the extrinsic apoptosis 

reaction model (EARM; see Section 2.1) [17]. Apoptosis is a well-studied system making 

it ideal for demonstrating the efficacy of computational approaches [17, 84-88]. There exist 

two extrinsic apoptosis phenotypes: Type I, which is independent of mitochondrial ampli-

fication of the apoptotic signal, and Type II, which is dependent on it. In the following we 

will use our method to examine the effects of changes in various regulatory axes on signal-

ing dynamics and phenotypic outcome in the context of the established experimental liter-

ature. 

 

3.4 Results 

3.4.1 General Strategy and Workflow 

    To investigate the dynamics of apoptotic signaling, we take a Bayesian inference ap-

proach to examine how different network components contribute to signal execution. The 

goal is to build a composite description of system dynamics by observing variations in 

signal throughput between these subnetworks relative to changes in regulatory conditions. 
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This differs from traditional model selection and multimodel inference applications where 

models are typically ranked based on their fit to experimental data and high-ranking models 

may be averaged to obtain a composite model [82, 83, 86, 89, 90, 91]. In contrast, the 

objective functions used here represent quantities of interest and evidence calculations re-

sult in expected values of the quantities given the prior distributions of parameters. A 

higher evidence estimate thus indicates a more robust signal over the prior range of param-

eters. It should be noted that Bayesian evidence inherently incorporates model complexity 

as the objective functions are integrated over normalized prior distributions that consist of 

as many dimensions as parameters [86, 42, 92]. 

    The general approach is shown schematically in Figure 3.1. Two complementary meth-

ods are used. In a multimodel inference approach the model is deconstructed into biologi-

cally relevant subnetworks and the probability of achieving apoptosis under various regu-

latory conditions is estimated via Bayesian evidence. If we tailor the objective function to 

represent signal execution strength, as measured by cleaved PARP at the end of the simu-

lation run, then the evidence describes the likelihood that the signal is effectively transmit-

ted through the network. As we will see, comparisons of changes in signal strength through 

relevant subnetworks subsequently allows inferences to be made on the effect of the per-

turbed network regulator as well as various network components on the overall dynamics 

of the system. We use these changes in Bayesian evidence to examine how variations in 

regulatory elements alter the dynamics of the extrinsic apoptosis model and gain insight 

into the mechanisms that commit the network to either Type I (mitochondria independent) 

or II (mitochondria dependent) execution modes.  

    The EARM reaction topology was deconstructed into several network variations (Figure 

3.2A-3.2F). These include the full model, the caspase pathway, and the mitochondrial path-

way including two subpathways that either directly transduce the apoptotic signal (via 

Caspase-3 cleavage) or inhibit XIAP, the inhibitor of activated Caspase-3 (and Caspase-9 

in the Apoptosome). Also included are combinations of the caspase pathway with either of 
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the two mitochondrial subpathways and the mitochondrial signal transduction pathway in 

isolation. We focus primarily on the complete network and caspase pathway as these are 

the most relevant for the analysis of Type I/II phenotypic outcome. The second method, 

deemed the pathway targeted approach, retains the complete network and uses objective 

functions that measure apoptotic signal flux (see Section 2.2 for details) through the 

caspase and mitochondrial pathways, as well as the total flux through the network. We 

primarily consider the influence of the apoptosis inhibitor XIAP on regulatory dynamics 

and phenotypic fate but also look at the regulatory effect of the death inducing signaling 

complex (DISC). 
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Figure 3.1. Workflow for Bayesian evidence-based analysis of network dynamics and sig-

naling regulation. 
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Figure 3.2. Extrinsic apoptosis subnetworks. (A) The isolated caspase pathway. (B) The 

caspase pathway with the Caspase-3 activating component of the mitochondrial pathway. 

(C) The caspase pathway with the XIAP inhibiting component of the mitochondrial path-

way. (D) The isolated Caspase-3 activating component of the mitochondrial pathway. (E) 

The complete network. (F) The isolated mitochondrial pathway. 

 

3.4.2 Differential Downregulation of Extrinsic Apoptosis Subnetworks by XIAP  

    XIAP has been put forth as a critical regulator in the choice of apoptotic phenotype. In 

Jost et al. [71] they examined hepatocytes (Type II cells) and lymphocytes (Type I cells) 

under different conditions to examine the role XIAP plays in Type I/II determination and 

made several observations. They reported that Fas ligand (FasL) induced apoptosis resulted 

in increased levels of XIAP in hepatocytes but lowered levels in thymocytes. They then 

found that while XIAP deficient mice died earlier than wild-type when injected with 

hepatocyte targeted FasL or anti-Fas antibody, XIAP deficient thymocytes showed no in-

crease in apoptosis. From this they concluded that XIAP must be a key regulator of apop-

tosis in hepatocytes. Lastly, they treated XIAP, Bid, and XIAP/Bid deficient mice, along 

with wild-type, with FasL or Fas-antibody. All but the Bid-only deficient mice showed 

hepatocyte effector caspase activation, implying that the loss of XIAP rendered previously 

apoptosis resistant Bid-only knockouts susceptible to apoptosis through the Type I path-

way. Altogether, they concluded that XIAP is the key regulator that determines the choice 

of pathway. 

    The results in Jost et al. [71] imply that the cellular level of XIAP determines the pre-

ferred apoptotic pathway with higher levels specific to Type II cells and lower levels spe-

cific to Type I. To examine possible mechanistic explanations for this behavior, and to 

explore the general dynamics of the model, we computed the Bayesian evidence for the six 

apoptosis-inducing subnetworks described above at varying concentrations of XIAP.  
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3.4.2.1 XIAP Control of the Type I/II Phenotype 

    Here we compare two of those networks, the caspase only pathway and the complete 

model, to gauge the effect of XIAP on networks with and without a mitochondrial compo-

nent (Figure 3.3). The effect of XIAP on all subnetworks are displayed in Figure 3.4. The 

log-evidence version of Figure 3.4 along with estimated errors generated by MultiNest are 

displayed in Figure 3.5. XIAP was varied from 0 to 200,000 molecules per cell in incre-

ments of 250 to explore how changes in XIAP affect the likelihood of apoptosis execution. 

For those networks that include components of the mitochondrial pathway Bcl-2 was ex-

cluded to ensure those components were fully active. All other initial values were fixed at 

the levels shown in Table 2.1. In the absence of XIAP both the caspase pathway and com-

plete model have evidence estimates greater than 0.99, (Figure 3.3C) indicating that they 

both reach nearly full PARP cleavage, and by extension apoptosis, across the allowed range 

of parameters. 
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Figure 3.3. Comparison of the Bayesian evidence for achieving apoptosis via the isolated 

caspase pathway and the complete network and for increasing concentration of XIAP. (A) 

The isolated caspase pathway. (B) The complete network. (C) The trends in the expected 

values of cleaved PARP for each of the networks in (A)-(B) over a range of values of the 

apoptosis inhibitor XIAP and for an objective function that computes the proportion of 

PARP cleavage (a proxy for cell death) at the end of a simulation. 
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    As XIAP levels increase we see differential effects on these subnetworks in the form of 

diverging evidence estimates indicating differences in the efficacy of XIAP induced apop-

totic inhibition. The isolated caspase pathway (Figure 3.3C blue) shows the steepest decline 

which is most prominent for lower values of XIAP but diminishes as XIAP increases. The 

evidence values for the caspase pathway clearly diverges from those of the complete 

model. The expected value for the proportion of PARP cleavage, the average PARP cleav-

age over the provided parameter ranges, for the caspase pathway falls to 0.5 at an XIAP 

level of roughly 32,000. The complete network however, requires XIAP levels nearly 3x 

as high with the evidence value reaching 0.5 at around 92,000.  

    Because the caspase pathway is representative of the Type I phenotype, the dispropor-

tionate drop in its expected proportion of PARP cleavage as XIAP increases is consistent 

with experimental evidence showing XIAP induced transition to a Type II phenotype. The 

complete network, containing the full mitochondrial subnetwork, is also affected by XIAP 

but clearly shows a higher resistance to its antiapoptotic effects, particularly at moderate 

levels of the inhibitor. This suggests a growing dependence on mitochondrial involvement 

in apoptosis as XIAP increases from low to moderate levels. At higher levels of XIAP the 

evidence values for the caspase pathway level off and the gap between the two networks 

narrows. The disproportionate effect of XIAP inhibition of apoptosis on the caspase path-

way suggests that the mechanism for XIAP induced transition to a Type II pathway is 

simply differential inhibition of the apoptotic signal through the isolated caspase pathway 

versus a network with mitochondrial involvement. 

    We note here that the small differences in evidence values between the two models 

should not be surprising since every subnetwork being considered is capable of transmit-

ting the apoptotic signal. Thus, we should not expect differences of evidence that would 

rule out any of them under model selection criteria. In a classical model selection and mul-

timodel inference scenario small differences in evidence estimates that would not allow for 

selection of a favored model might be used to construct a composite model, weighting the 

various components by the evidence values [82, 83]. Fortunately, we have no need to 
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choose a best model as the complete model already represents the biology as we understand 

it. The goal here is to use the differences in evidence to construct a composite picture of, 

not the structure of the model, but signaling dynamics. For that we consider relative 

changes in the evidence values as XIAP is increased. 

 

3.4.2.2 Mechanistic Interpretation of the Extrinsic Apoptosis Subnetworks 

    Above the caspase pathway the next two highest trends in evidence values belong to the 

networks representing the caspase pathway with mitochondrial activation of Caspase-3 and 

mitochondrial activation of Caspase-3 alone (Figures 3.4 purple and 3.4 brown). For most 

of the range with XIAP below 100,000 these two trends have largely overlapping trajecto-

ries, despite the fact that the former has twice as many paths carrying the apoptotic signal. 

By the time XIAP reaches a level of 100,000 the two trends diverge as the decrease in 

evidence values for the mitochondrial activation only network accelerates. This could be 

explained by XIAP overwhelming the Apoptosome at these higher levels. The apoptosome 

is an apoptosis inducing complex (via Caspase-3 cleavage) consisting of Cytochrome c, 

APAF-1, and Caspase-9, and is an inhibitory target of XIAP. As XIAP increases past 

125,000 the mitochondrial activation only evidence values fall below even the caspase only 

values, possibly due to the two-pronged inhibitory action of XIAP at both the Apoptosome 

and Caspase-3. An interesting observation here is that the addition of the caspase pathway 

to the mitochondrial activation pathway does not appear to increase the likelihood of 

achieving apoptosis for lower values of XIAP.  
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Figure 3.4. Bayesian evidence for achieving apoptosis through all six subnetworks of the 

extrinsic apoptosis network and for increasing concentrations of XIAP. (A) The isolated 

caspase pathway. (B) The caspase pathway with the Caspase-3 activating component of 

the mitochondrial pathway. (C) The caspase pathway with the XIAP inhibiting component 

of the mitochondrial pathway. (D) The isolated Caspase-3 activating component of the mi-

tochondrial pathway. (E) The complete network. (F) The isolated mitochondrial pathway. 
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    Above those two evidence trends is the trend for the network consisting of the caspase 

pathway and mitochondrial inhibition of XIAP (Figure 3.4 red). Below an XIAP level of 

100,000 this trend is consistently above the evidence values for the network of the caspase 

pathway plus mitochondrial activation of Caspase-3. Note that while the caspase pathway 

does not appear to increase the likelihood of achieving apoptosis when added to the mito-

chondrial activation pathway (Figure 3.4 purple), the amplification of the caspase pathway 

via mitochondrial inhibition of XIAP leads to a higher likelihood than direct activation 

through the mitochondria. This suggests the possibility that the primary mechanism for 

mitochondrial apoptotic signal amplification, under some conditions, may be inhibition of 

XIAP, with direct signal transduction a secondary mechanism. Above an XIAP level of 

100,000, the caspase with XIAP inhibition trend drops to levels roughly in line with the 

evidence values for the caspase pathway plus direct activation, possibly due to the fact that 

Smac, the mitochondrial export that inhibits XIAP, is also set to 100,000 molecules per 

cell. Both, however, remain more likely to attain apoptosis than the caspase only pathway. 

    The two subnetworks with the highest trends in evidence for apoptotic signal execution 

are the complete model and the isolated mitochondrial pathway (Figures 3.4 orange and 

3.4 blue). As previously mentioned, both of these networks contain the full mitochondrial 

pathway implying that this pathway supports resistance to XIAP inhibition of apoptosis. 

Between XIAP levels of 0 to 100,000 the two trends track very closely, with the mitochon-

drial only pathway showing a slight but consistent advantage for apoptotic execution. The 

average difference between an XIAP level of 20,000 and 80,000 is roughly 0.014, meaning 

we expect the average PARP cleavage to favor the mitochondrial only pathway by about 

1.4 percentage points, which may seem unremarkable. Context matters however, and the 

context here is that the complete network has potentially twice the bandwidth for the apop-

totic signal, namely the addition of the more direct caspase pathway. Together, this raises 

the possibility that under some conditions the caspase pathway is not a pathway but a sink 

for the apoptotic signal. In such a scenario, the signal through the caspase pathway would 

get lost as Caspase-3 is degraded by XIAP. Not until the signal through the mitochondrial 
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pathway begins inhibiting XIAP could the signal proceed. Around the 100,000 level of 

XIAP the evidence trend for the mitochondrial pathway crosses below that for the complete 

network. This could be due to the parity with Smac, components of the Apoptosome, or a 

combination of the two. 

 

 

 

Figure 3.5. Log-evidence version of plots in Figure 3.4 with estimated errors generated by 

MultiNest. 
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3.4.3 Apoptosis Signal Strength Determines the Signal Route Through the Network 

    The Type I/II phenotypes for the extrinsic apoptosis system were first described by Scaf-

fidi et al. [92]. In that work they examined several cell lines and classified them into those 

that required the mitochondrial pathway to achieve apoptosis (Type II) and those that don’t 

(Type I). They made several interesting conclusions. They found that Type II cells had 

relatively weak DISC formation, that both phenotypes responded equally well to receptor 

mediated cell death, that there was a delay in caspase activation in Type II cells, and that 

caspase activation happened upstream of mitochondrial activation in Type I cells and 

downstream in Type II. Here we examine the effects of increasing XIAP, again from 0 to 

200,000 in increments of 250, at a low level of DISC formation by lowering the initial 

values of both the scaffold protein FADD and the initiator Caspase-8, from 130,000 to 100 

molecules per cell. In addition to the multimodel inference approach used above, we also 

use the pathway targeted approach, using the flux objective function (see Section 2.1), to 

get a holistic view of network dynamics that incorporates cross-talk from all pathways. 

    Figure 3.6 displays the PARP cleavage expected values from Figure 3.3 along with their 

low DISC counterparts. Two things are immediately apparent. The expected PARP cleav-

age for the caspase pathway under low DISC conditions is much lower across the entire 

range of XIAP. The complete network on the other hand shows almost no difference in low 

DISC conditions at lower values of XIAP and was even slightly higher at higher values of 

XIAP. This clearly supports the hypothesis that that mitochondrial involvement is neces-

sary to overcome weak DISC formation and that this constitutes a Type II trait.  
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Figure 3.6. Expected PARP cleavage for the caspase pathway and complete network under 

both low and high DISC conditions (100 and 130,000 molecules per cell of FADD and 

Caspase-8 respectively). 
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    Figures 3.7A and 3.7B display the expected flux through the caspase pathway and com-

plete network for the high and low DISC values respectively. At higher DISC values, signal 

flux through the caspase pathway is consistently higher than flux through the mitochondrial 

pathway, despite the greater effect on the caspase only pathway. At lower DISC values the 

signal flux through the mitochondrial pathway far outstrips the flux through the caspase 

pathway. This is interesting in the context of the hypothesis that mitochondrial activation 

is downstream of caspase activation in Type I cells and upstream in Type II [92]. If a 

weaker signal does indeed push the signal through the mitochondrial pathway the initial 

activation of Caspase-8 would be weak and the amplifying activity of the mitochondria 

would ramp up before either Caspase-8 or Caspase-3 became fully active. On the other 

hand, strong initial activation that pushes the signal through the caspase pathway would 

have the opposite effect. Also notable is the nearly identical trajectories of the total signal 

flux through the low and high DISC models. The average difference over the range of 

XIAP was only 0.011. This is consistent with the hypothesis that both Type I and Type II 

cells respond equally well to receptor mediated apoptosis. 

    Overall these results set up three scenarios. On one end, high DISC formation and low 

XIAP results in the independence of apoptosis from the mitochondrial pathway. This be-

havior is consistent with Type I cells like SKW6.4 and H9 cell lines [92]. On the other end 

of the spectrum is the case with low DISC formation (and by construction low Caspase-8 

activity) and near complete dependence on the mitochondrial pathway. Such behavior is 

consistent with Type II cells. In between these two extremes is the case with high DISC 

formation (and Caspase-8) activation but still has a dependence on mitochondrial activity. 

Such behavior is consistent with MCF-7 cell that are known to have traits of both pheno-

types. Based on these results, a hypothetical mechanism for this behavior is mitochondrial 

induced inhibition of XIAP and subsequent signaling through the caspase pathway. 
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Figure 3.7. Signal flux through the caspase and mitochondrial pathways as well as the es-

timated total flux through the system. (A) Signal flux under high DISC conditions (FADD 

and Caspase-8 both at 130,000 molecules per cell). (B) Signal flux under low DISC con-

ditions (FADD and Caspase-8 both at 100 molecules per cell). 

 

3.4.4 Evidence Ratios and XIAP Influence on Type I/II Apoptosis Phenotype 

    Typical model selection methods calculate the evidence ratios, or Bayes factors, to 

choose a preferred model and estimate the confidence of that choice [82, 83]. When com-

paring the changes in the evidence of an outcome as regulatory conditions change, the 

changes in the evidence ratios can provide additional information about changing network 

dynamics under regulatory perturbations. To characterize the effect of XIAP on the choice 

of apoptotic phenotype, Type I or II, we calculated the evidence ratios (Figure 3.8B) for 

each value of XIAP between the caspase pathway and both the complete network and mi-

tochondrial pathway (Figure 3.8A) with a fully active mitochondrial pathway (no Bcl-2 

activity). In these calculations, the denominator represents the caspase pathway so that 

higher values favor a need for mitochondrial involvement. An interesting feature of both 

the complete and mitochondrial evidence ratio trends is the peak and reversal at a moderate 

level XIAP. This reflects the initially intense inhibition of the caspase pathway that decel-

erates relatively quickly as XIAP increases, and a steadier rate of increased inhibition on 

networks that incorporate the mitochondrial pathway. The ratios peak between 45,000 and 

50,000 molecules of XIAP, more than double the value of its target molecule Caspase-3 at 

21,000, and represents the optimal level of XIAP for the requirement of the mitochondrial 

pathway and attainment of a Type II phenotype. Given the near monotonic decline of the 

evidence trends of both pathways, representing increasing suppression of apoptosis, the 

peak and decline in the evidence ratios may represent a shift toward complete apoptotic 

resistance. This was shown experimentally in Aldridge et al. [87]. 
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Figure 3.8. Evidence ratio calculations with no MOMP inhibition at increasing concentra-

tions of XIAP. (A) Trace of expected PARP cleavage for the caspase pathway (green), 

mitochondrial pathway (blue), and complete network (orange). (B) Ratios of expected 

PARP cleavage from (A): mitochondrial/caspase (blue), complete/caspase (orange). 

 

    A common technique to study apoptosis is to knockdown Bid, overexpress Bcl-2, or 

otherwise shut down MOMP induced apoptosis through the mitochondrial pathway. This 

strategy was used in Jost et al. [71] to study the role of XIAP in apoptosis and in the work 

of Aldridge et al. [87]. Taking a similar approach, we set Bcl-2 levels to 328,000 molecules 

per cell, in line with experimental findings [78], to suppress MOMP activity and recreated 

the evidence and evidence ratio trends (Figures 3.9A and 3.9B). Under these conditions the 

evidence trend for the mitochondrial pathway drops well below that of the caspase pathway 

which is reflected in the Bayes factor trend as a shift into negative territory, an indication 

that the caspase pathway is favored. The evidence trend for the complete network under 

MOMP inhibition is shifted closer to that for the caspase pathway but continues to be more 

likely to execute apoptosis throughout the range of XIAP. The peak for the associated 

Bayes factor trend is flattened by roughly two-thirds suggesting increased XIAP levels are 

less likely to induce a transition to a Type II phenotype in a system with an already ham-

pered mitochondrial pathway. Inhibition of MOMP to the point of annihilating any contri-

bution from the mitochondrial pathway would result in uninformative mitochondrial path-

way evidence values and a trend in mitochondrial/caspase ratio that is simply an inverted 

reflection of the caspase only evidence trend. The evidence trend for the complete network 

would be indistinguishable from that for the caspase pathway alone and the com-

plete/caspase ratio trend would simply flatline. Isolation of active biologically relevant 

subnetworks and direct comparison under changing conditions using trends in Bayesian 

evidence enables the extraction of information regarding the pathway interactions and dif-

ferential network dynamics. 
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Figure 3.9. Evidence ratio calculations with MOMP inhibited by Bcl-2 at 328,000 mole-

cules per cell and at increasing concentrations of XIAP. (A) Trace of expected PARP cleav-

age for the caspase pathway (green), mitochondrial pathway (blue), and complete network 

(orange). (B) Ratios of expected PARP cleavage from (A): mitochondrial/caspase (blue), 

complete/caspase (orange). 

 

3.4.5 Precision vs Computational Cost 

    Increasing the precision of the evidence estimates, and tightening the evidence trend-

lines, is accomplished by increasing the number of live points in the nested sampling algo-

rithm. The trade-off is an increase in the number of evaluations required to reach the ter-

mination of the algorithm and an accompanying increase in total computation time. Figures 

3.10A and 3.10B display the required number of evaluations for the caspase pathway and 

complete network at population sizes of 500, 1000, 2000, 4000, 8000, and 16,000, when 

run with the PARP cleavage objective function. For both models the number of evaluations 

roughly doubles for every doubling in population size. Of note here is the higher number 

of required evaluations for the lower parameter model. The caspase pathway has only 22 

parameters and required an average of 64,612 evaluations at a population size of 16,000 

while the complete network, with its 56 parameters required only 53,652 evaluations, on 

average (Table 3.1). Figures 3.10C and 3.10D are the average estimated errors calculated 

by the MultiNest algorithm over each population size for the caspase and complete net-

works respectively. As expected, error estimates fall roughly as n^(-1/2) [45], signifying 

clear diminishing returns as the number of live points is increased. The average CPU pro-

cess times, as estimated by Python’s time.clock() method, are given in Figures 3.10E and 

3.10F for the caspase and complete networks respectively. Despite the greater number of 

required evaluations for the caspase network the average clock times for the complete net-

work is significantly higher. At a population of 16,000 the caspase network had an average 

clock time of 11,964 seconds compared to 76,981 for the complete network. 
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Figure 3.10. Precision vs. computational cost. (A) and (B) Average number of evaluations 

before termination of the MultiNest algorithm over a range of population sizes for the 

caspase pathway and complete network respectively. (C) and (D) Average of error esti-

mates from MultiNest for each population size and the caspase and complete networks. (E) 

and (F) Average estimated CPU clock time over each population size for the caspase and 

complete networks respectively. *MultiNest was unable to estimate the error at XIAP = 0. 
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Table 3.1. Averages for the standard error, clock time, and number of evaluations before 

termination for different nested sampling population sizes. 

Average standard error Average clock time Average evaluations 

live points Caspase live points Caspase live points Caspase 

500 0.0342985 500 255.2357428 500 2189.952559 

1000 0.0242612 1000 769.5212609 1000 4200.756554 

2000 0.0171671 2000 1484.313521 2000 8199.962547 

4000 0.0121464 4000 3101.324894 4000 16171.84395 

8000 0.008586 8000 5499.347441 8000 32270.97628 

16000 0.006073 16000 11963.5571 16000 64612.04494       

live points Mitochondrial live points Mitochondrial live points Mitochondrial 

500 0.0306757 500 2112.236401 500 1775.50437 

1000 0.0217125 1000 4136.864189 1000 3424.536829 

2000 0.015362 2000 8130.265223 2000 6710.838951 

4000 0.0108627 4000 16362.12229 4000 13273.40075 

8000 0.0076846 8000 33172.76319 8000 26401.47191 

16000 0.0054326 16000 38408.39177 16000 52729.67915       

live points Complete live points Complete live points Complete 

500 0.0304191 500 3583.213421 500 1805.554307 

1000 0.0215387 1000 4863.895905 1000 3499.827715 

2000 0.0152105 2000 10403.40514 2000 6836.940075 

4000 0.0107683 4000 20917.64258 4000 13509.73658 

8000 0.0076136 8000 29435.60684 8000 26868.33583 

16000 0.0053777 16000 76980.86868 16000 53651.61798 

 

    Ultimately, the choice of population size for the methods we have laid out here will 

depend on the networks to be compared, the objective function, and how well the evidence 

trends must be resolved in order to make inferences about network dynamics. For example, 

at a population size of 500 the evidence trend for the caspase pathway is clearly discernable 

from the mitochondrial pathway and the complete network, but the latter two are largely 

overlapping (Figure 3.11A). At higher population levels, however, two distinct mitochon-

drial and complete trends become apparent (Figure 3.11K). If Bayes factor trends are de-

sired then the choice of population size must take into consideration the amplification of 

the noise from both trends (see Figures 3.11(B, D, F, H, J, L) for complete/caspase Bayes 

factor trends).  
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Figure 3.11. Evidence and evidence ratio plots over a range of XIAP concentrations at 

increasing population levels for the nested sampling algorithm. (A), (C), (E), (G), (I), and 

(K) Evidence plots for the caspase pathway (green), mitochondrial pathway (blue), and 

complete network (orange) with nested sampling population levels of 500, 1000, 2000, 

4000, 8000, and 16,000 respectively. (B), (D), (F), (H), (J), and (L) Complete/caspase 

Bayes factor plots derived from the respective evidence plots in (A), (C), (E), (G), (I), and 

(K). 
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Chapter 4 

 

Bayesian Evidence-Based Analysis of the Extrinsic Apoptosis Signaling Network 

 

4.1 Summary 

This chapter serves as a follow-up application chapter to chapters 2 and 3. It extends the 

probabilistic analysis of the extrinsic apoptosis system. Apoptosis, a type of programmed 

cell death, is essential to normal development and homeostatic but also implicated in nu-

merous diseases when misregulated. In many cancer types, for example, cells are, or be-

come, resistant to apoptosis and overcoming this resistance has been the focus of much 

recent research. Thus, it is vitally important not only to identify key regulators of apoptosis 

but to predict the phenotypic changes they induce. Unfortunately, making such predictions 

in rigorous fashion is challenging with current computational methods. Here, we extend 

our previous analysis of the extrinsic apoptosis system using the methods described in 

Chapter 2 and applied in Chapter 3. In short, we calculate the Bayesian evidence over a 

proposed distribution of parameters for an objective function that represents some quantity 

of interest. This is equivalent to calculating the expected value of that quantity given what 

we know about the system. The expected value is calculated over a range of initial condi-

tions for selected regulatory proteins and for various in silico experimental setups, allowing 

for exploration of network dynamics, differential effects on different subnetworks, and 

possible explanations of phenotypic control. We apply these methods to three well studied 

regulatory axes of extrinsic apoptosis: initiation of the apoptotic signal at the death induc-

ing signaling complex (DISC), regulation of Caspase-3 by the apoptosis regulator XIAP, 

and regulation of mitochondrial outer membrane permeabilization by the family of Bcl-2 

proteins. Where available we verify our results with existing experimental evidence. 
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4.2 Introduction 

Apoptosis is a type of programmed cell death and a critical process for normal development 

and homeostasis [94]. Its importance is made manifest by its role in numerous illnesses 

including cancer and neurodegenerative and autoimmune diseases [95, 96]. The role of 

apoptosis in cancer has been a particularly prominent research topic. Evasion of apoptosis 

by cancer cells, often by upregulation of antiapoptotic regulators like Bcl-2, is thought to 

be responsible for the resistance to chemotherapy/radiotherapy, as these treatments act by 

initiation of apoptotic pathways [97, 98]. This has led to an abundance of research identi-

fying the regulatory and effector elements of apoptosis and targeting them to initiate or 

prime an apoptotic response [66, 99, 100]. Although this has led to the discovery of much 

of the apoptotic regulatory machinery, the phenotypic response to changes in those regula-

tors has not been fully defined.  

    Alterations in cellular phenotype due to changes in regulatory conditions are typically 

difficult to predict. Such behavior emerges from the interactions between many compo-

nents of a system and variations in expression of one, or a few, regulatory elements can 

have complex effects that result in unexpected outcomes [1, 2]. Characterization of systems 

with such complexity via experimental methods is an arduous and expensive task. Hence, 

computational simulation methods are often used in conjunction with experimentation to 

better advance the understanding of these systems [3]. A particularly important topic with 

regard to apoptotic phenotype concerns the conditions under which apoptosis is independ-

ent of the mitochondria (Type I phenotype) or dependent on it (Type II) [71, 93, 101, 102, 

103]. Computational studies on this question include the work of Aldridge et al. using Lya-

punov exponents and bifurcation diagrams, and Raychaudhuri and Raychaudhuri using 

Monte Carlo-based methods [87, 88]. Unfortunately, confidence in computational predic-

tions requires a precision in model parameter values that is often lacking.  

    In the previous chapters we devised a probabilistic approach to the computational anal-

ysis of such complex systems. We used Bayesian methods from the field of model selection 

and multimodel inference, in particular nested sampling, to compare the effect of changes 
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in the apoptosis regulator XIAP on various pathways and processes of the extrinsic apop-

tosis system. Nested sampling is designed to estimate the model evidence, or fit to data, 

given a likelihood function for a statistical model. (See Chapters 2 and 3) The evidence 

estimate is calculated by integrating the likelihood function over the prior distribution. For 

the mechanistic apoptosis model, we used an objective function representing apoptosis and 

plausible parameter ranges for biological reactions. In short, instead of calibrating the pa-

rameters of a model and predicting quantitative values for targets within the system, we 

integrate out the parameters and produce expected values for those targets. 

    In this follow-on work we have expanded the application of these methods on three ma-

jor regulatory axes of apoptosis to further investigate targets of control over the modes of 

apoptotic execution (Figure 4.1). First we examine various conditions that favor a Type I 

or II phenotype, or regulatory changes that could transition a cell from one phenotype to 

the other. Two mechanistic processes are examined in this case: death-inducing signaling 

complex (DISC) driven activation of apoptotic signaling, and the interplay between the 

apoptotic regulator XIAP and its target Caspase-3. The DISC consists of a ligand bound 

receptor from the tumor necrosis factor (TNF) family, a scaffold protein such as FADD, 

and Caspase-8, which is recruited to the complex and cleaved into an active form that prop-

agates the apoptotic signal [52-54]. XIAP binds and ubiquitinates Caspase-3, which con-

veys the apoptotic signal via cleavage of the protein PARP, marking it for degradation and 

permanently deactivating it [72, 73]. For a Type II phenotype, amplification via signaling 

through the mitochondria is paramount. Thus, mitochondrial outer membrane permeabili-

zation (MOMP) is the third regulatory axes studied here. MOMP, governed by the Bcl-2 

family of proteins, amplifies and propagates the apoptotic signal by allowing the release of 

proapoptotic factors from the mitochondria [62, 104]. Many pro- and antiapoptotic Bcl-2 

proteins have been identified. Here we analyze the effects of the antiapoptotic proteins Bcl-

2, Bcl-xl and Mcl-1, as well as the inhibitors of those proteins Bad and Noxa [63-68]. 
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Figure 4.1. Schematic of the extrinsic apoptosis model and axes of regulation. A full de-

scription of the model can be found in Chapter 2. Here we focus on three major regulatory 

axes of this network, axes that have all been the subject of previous experimental and/or 

computational studies. ① We first consider the interplay between the apoptosis regulator 

XIAP and its target, the apoptosis effector Caspase-3. The ratio of these two components 

have previously been investigated as potentially determining the apoptotic phenotype of 

the cell. ② Next we consider components of the DISC including the TNF receptor, the 

scaffold protein FADD, and the initiator Caspase-8. Weak activation of Caspase-8 is 

thought to necessitate amplification of the signal via the mitochondrial pathway [93]. Re-

ceptor expression in particular has been implicated as the DISC component responsible for 

this phenotype. ③ Lastly, we consider regulation of MOMP and the Bcl-2 family compo-

nents that control it. Here we primarily examine the effects of variations in expression 

levels of antiapoptotic proteins such as Bcl-2 that bind to and inhibit Bcl-2 family effectors 

of MOMP, and proapoptotic proteins such as Bad that bind and inhibit the antiapoptotic 

components. 
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4.3 Results 

The general strategy in this chapter closely parallels that found in Chapter 3. In a multi-

model inference approach the extrinsic apoptosis network is broken down into relevant 

subnetworks and the Bayesian evidence for each is estimated with respect to an objective 

function that represents successful apoptosis over a range of regulatory conditions. Here 

the proportion of PARP that is cleaved at the end of a simulation is our proxy for a suc-

cessful apoptotic signal that will result in cell death (see Section 2.2). As regulatory con-

ditions change each subnetwork will respond in a unique way, produce distinct trends in 

the Bayesian evidence for apoptosis, and provide insights into the regulatory control of 

apoptosis. In chapter 3 we focused primarily on the role of the apoptosis regulator XIAP 

in signal transduction and determination of apoptotic phenotype. In this work we broaden 

that scope and focus on three purported regulatory axes of apoptosis, all of which have 

been studied experimentally. First, we again consider the regulator XIAP but this time in 

conjunction with its target Caspase-3. The ratio of these two network components has been 

previously suggested as the key factor in determining the phenotype of the cell [87]. A cell 

with a Type I phenotype is able to achieve apoptosis after knockdown of the mitochondrial 

pathway while a Type II phenotype depends on it. It thus suffices to compare the Bayesian 

evidence (expected values for indicators of apoptosis) for the complete network to that of 

the caspase only pathway when testing the effects of regulatory perturbation on cellular 

phenotype. Another regulatory axis thought to govern the Type I/II apoptotic phenotype of 

a cell is the DISC. A weak initial apoptotic signal from the DISC is thought to require 

amplification of that signal from the mitochondrial pathway leading to a Type II phenotype 

[93]. In this case the Bayesian evidence for the caspase and complete networks are com-

pared under changing concentrations of the DISC components with a particular focus on 

the concentration of the receptor [105]. The last regulatory axis we consider is at the mito-

chondria itself. Amplification of the apoptotic signal is effected by the export of proapop-

totic factors across the mitochondrial membrane. This process is governed by members of 

the Bcl-2 family of proteins. Here we vary pro- and antiapoptotic members of that family 



57 
 

and evaluate the changes in Bayesian evidence for achieving apoptosis using the complete 

network. In addition to the multimodel inference approach a pathway targeted approach 

was used to estimate the signal flux through the caspase and mitochondrial under varying 

conditions at the DISC regulatory axis, providing a complementary view of signal trans-

duction that incorporates cross-talk between pathways (see Section 2.1). 

 

4.3.1 XIAP/Caspase-3 Concentration Ratios and Type I/II Phenotype Outcome 

    The role of XIAP in determining the Type I/II apoptotic phenotype of a cell was exper-

imentally examined in the work of Jost et al. [71]. They studied the differences between 

Type II hepatocytes and Type I lymphocytes under various regulatory conditions and made 

several discoveries, such as opposing directions of XIAP levels in the two cell types after 

FasL treatment, that led to the conclusion that XIAP was the key regulator of apoptotic 

phenotype. In addition to the finding for XIAP alone, Jost et al. also found that XIAP was 

stabilized via association with active Caspase-3, but that the activation of Caspase-3 in wild 

type hepatocytes was substantially less than in wild type or Bid deficient thymocytes, and 

non-existent in Bid deficient hepatocytes. From these observations they suggested that the 

ratio of XIAP to effector caspases, both active and inactive, may govern the Type I/II 

choice of apoptotic phenotype. Aldridge et al. picked up on this suggestion with their Lya-

punov exponent and phase diagram analysis on the XIAP:Caspase-3 ratio and how it af-

fects type I/II phenotype determination [87]. They applied the method on a Bcl-2 overex-

pressed apoptosis model over a range of initial values for XIAP and Caspase-3 and defined 

a dividing line, called a separatrix, within the phase diagram that determined the boundary 

between the Type I and Type II phenotypes. They concluded that a high XIAP:Caspase-3 

ratio implied a preference for the Type II phenotype and low ratios implied a preference 

for Type I. They further supported this finding by showing that several cell lines, of Type 

I or II phenotype, had XIAP:Caspase-3 ratios that placed them correctly on the phase dia-

gram.  
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    To test this hypothesis using the Bayesian evidence methods laid out in Chapter 2 we 

applied the MultiNest nested sampling algorithm and our custom objective functions to the 

caspase pathway and the complete network models for extrinsic apoptosis over a range of 

concentrations for both XIAP and Caspase-3. The initial value for XIAP was varied from 

0 to 100,000 molecules per cell in increments of 4000 while the value for Caspase-3 was 

varied from 2500 to 400,000 in increments of 2500. The population of parameter sets was 

set to a size of 32,000.  

    Analyzing an extrinsic apoptosis model where Bcl-2 has been overexpressed to the point 

of entirely shutting down the mitochondrial pathway is equivalent to analyzing a model of 

the caspase cascade in isolation. The evidence landscape for PARP cleavage on this model 

is displayed in Figure 4.2A-B and the trends over increasing values of XIAP and Caspase-

3 are clear and expected. Increasing Caspase-3, the effector caspase for PARP cleavage, 

increases the evidence for achieving apoptosis, and increasing XIAP, the inhibitor of 

Caspase-3, decreases it. Thus, a lower XIAP:Caspase-3 ratio implies a higher probability 

that the isolated caspase pathway, representative of a Type I phenotype, will achieve apop-

tosis and a higher ratio implies a lower probability. If we assume that a lower probability 

of Type I effected apoptosis implies a higher probability for Type II, then the caspase path-

way evidence landscape is analogous to the phase diagram in Aldridge et al. [87].  

    Unfortunately, the complete network has a qualitatively identical evidence landscape 

where higher and lower XIAP:Caspase-3 ratios imply a lower and higher probability of 

achieving apoptosis respectively (Figure 4.3A-B). In other words, a network with a fully 

active mitochondrial pathway is affected in exactly the same manner as a network without 

it. This should not be surprising, as both pathways converge at Caspase-3 and will be in-

hibited by XIAP regardless of which apoptotic route is taken. 
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Figure 4.2. XIAP vs Caspase-3 (C3) evidence values for the caspase pathway over a range 

of XIAP and Caspase-3. XIAP was varied from 0 to 100,000 in increments of 4000 mole-

cules per cell and Caspase-3 was varied from 2500 to 400,000 in increments of 2500. (A) 

3D plot of the evidence values (B) 2D plot for the same values. 
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Figure 4.3. XIAP vs Caspase-3 (C3) evidence values for the complete network over a range 

of XIAP and Caspase-3. Again, XIAP was varied from 0 to 100,000 in increments of 4000 

molecules per cell and Caspase-3 was varied from 2500 to 400,000 in increments of 2500. 

(A) 3D plot of the evidence values (B) 2D plot for the same values. 
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    Nonetheless, there are additional regulatory elements in the complete network, such as 

Smac inhibition of XIAP, that lead to subtle differences in the shape of these evidence 

landscapes. At low levels of Caspase-3 we see the same pattern as in section 3.4.4 above; 

increased XIAP, from low levels, inhibits the caspase pathway more than the complete 

network, but this inhibition levels off more quickly. And like in that previous work this is 

reflected in the evidence ratio landscape as an initial spike, indicating an increasing chance 

of achieving apoptosis through the complete network, and an eventual reversal (Figure 

4.4A-B). As the Caspase-3 levels increase, the advantage to the complete network provided 

by XIAP is dampened and the pattern flattens out considerably. In general, increasing 

Caspase-3 levels appears to push the evidence ratio landscape toward parity (a Bayes factor 

level of zero) between the two networks for all XIAP levels above zero. At an XIAP level 

of zero the nested sampling algorithm quickly converges to parameter sets that result in 

full PARP cleavage and results in evidence ratios near zero for most levels of Caspase-3, 

an uninformative edge case. If the ratio between XIAP and Caspase-3 served as a major 

factor in determination of apoptotic phenotype we would expect to see resistance to apop-

totic inhibition from a high XIAP:Caspase-3 ratio in the complete network, with its fully 

active mitochondrial pathway, relative to the Caspase-3 only pathway. We do not see this 

under the conditions used here. There is no discernable shift in the evidence ratios that 

would indicate a role for the XIAP:Caspase-3 ratio in Type I/II determination (Figure 

4.4B). Note that cell types with high and low XIAP/Caspase-3 ratios would still give pref-

erence to Type II and I phenotypes respectively, despite appearing not to be a deciding 

factor. In all, these results suggest that low levels of Caspase-3 may leave the Type II path-

way as the only route to apoptosis and in such a case, XIAP acts to modulate the response 

with moderate levels of XIAP being ideal for a Type II phenotype. 
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Figure 4.4. Evidence ratios (complete/caspase) from the values in Figures 4.2 and 4.3 for 

XIAP vs Caspase-3 (C3). (A) 3D plot of the ratios (B) 2D plot for the same values. 
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4.3.2 Effect of Receptor Count and DISC Formation on Apoptosis Subnetworks 

    The discovery of the two-phenotype system for extrinsic apoptosis originated with Scaf-

fidi et al. when they made a number of observations regarding differences between cell 

types they deemed Type I and II (SKW6.4/H9 and CEM/Jurkat cells respectively) [93]. 

They found rapid activation of Caspase-8 and -3 in Type I cell lines compared to Type II, 

Bcl-2 mediated apoptotic protection in Type II cells but not in Type I, and relatively weak 

DISC formation in Type II cells. Their work ultimately led to the hypothesis that restricted 

activation of Caspase-8 at the DISC required amplification through the mitochondria for 

apoptosis to proceed. Meng et al. studied the components of the DISC in Type I and II cell 

lines and found comparable expression of Caspase-8, Fadd, and cFlip between the two 

phenotypes, but a lower expression of cell surface Fas in Type II cells [105]. They hypoth-

esized that this was the distinguishing characteristic between the two cell types. They eval-

uated this hypothesis by up- or downregulating the Fas receptor in Type II and I cells re-

spectively; attempting to convert them from one phenotype to the other. For Type II to I 

conversion they transfected Type II Jurkat cells with either nothing (an empty vector), Fas, 

Bcl-xl, or Fas and Bcl-xl; and then stimulated each variation with CH.11 (an anti-Fas anti-

body). Only the Bcl-xl only transfected cells were protected. All others, including the 

Fas/Bcl-xl overexpressed cells, showed similar levels of cell death, quantified via micro-

fluorimetry, indicating a Type I route to apoptosis. Conversely, they transfected Type I 

A498 cells with either an empty vector, Fas shRNA, Bcl-xl, or Fas shRNA and Bcl-xl and 

proceeded to show that the Fas shRNA transfected cells had gained protection from CH.11 

when also overexpressing Bcl-xl; indicating conversion to a Type II phenotype.  

    To evaluate the hypothesis that receptor count dictates the apoptotic phenotype of the 

cell, we ran the nested sampling algorithm at a relatively high resolution (number of initial 

values) with receptor counts from 100 to 100,000 molecules per cell, in increments of 100, 

on both the caspase only and complete networks. High resolution was used here to better 

capture the faster changes seen in low receptor count cases, as we will see below. This was 

repeated on four backgrounds representing various levels of DISC formation. To attain a 



64 
 

general representation of DISC formation efficacy, Fadd and Procaspase-8 (C8), the other 

two components of the DISC, were set, in tandem, to levels of 100, 1000, 10,000, and 

100,000 molecules per cell. We used a population size of 16,000 parameter sets to compute 

the evidence estimates. Note that computational resources will generally necessitate a bal-

ance, or trade-off, between precision, driven by population size, and resolution. Bcl-2 was 

absent here to allow for a fully active mitochondrial pathway and XIAP was set to 0 to 

accurately gauge the effect of lower receptor/DISC activity on shifting to a Type II pathway 

in isolation from other regulators that are purported to elicit the same effect. All log-evi-

dence values and associated standard deviations can be found in Figure 4.8 at the end of 

this section.  

    The progressive reduction in DISC formation has clearly divergent effects on the two 

networks. At high levels of Fadd/Procaspase-8, both networks attain high evidence scores, 

indicating a high aggregate level of PARP cleavage, across the range of receptor counts 

(Figure 4.5A). As Fadd/Procaspase-8 levels are decreased the evidence values for the 

caspase pathway fall at a much greater rate (Figures 4.5B-D). 
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Figure 4.5. Receptor and Fadd/Procaspase-8 level effects on the complete network and 

caspase pathway evidence for achieving apoptosis (expected values of PARP cleavage). 

(A-D) Caspase (orange) and Complete (blue) expected PARP cleavage over receptor levels 

from 100 to 100,000 in increments of 100 and at Fadd/Procaspase-8 levels of (A) 100,000, 

(B) 10,000, (C) 1000, and (D) 100. 
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    This is exemplified in the average difference in evidence values, across receptor counts, 

for sequential levels of DISC formation (Figure 4.6A). Reduction in receptor count has a 

similarly divergent effect with evidence values generally falling much faster for the caspase 

pathway. At high Fadd/Procaspase-8 levels receptor count reduction has little effect on the 

caspase pathway and no detectable effect on complete network. As Fadd/Procaspase-8 lev-

els decrease, receptor count reduction produces a pronounced decrease in evidence values 

for the caspase pathway but a much more muted decrease for the complete network. In 

general, the decrease in evidence values accelerates as receptor counts fall, particularly at 

very low levels of receptor, an effect that is amplified by lower levels of Fadd/Procaspase-

8. This results in a range of evidence values for the caspase pathway that broadens much 

faster than the complete network as Fadd/Procaspase-8 levels fall (Figure 4.6B).  

 

 

Figure 4.6. Statistics for the average evidence difference and the range of evidence values 

over increasing receptor concentrations for sequential/increasing Fadd/Caspase-8 levels. 

(A) The difference between evidence averages, over the receptor range, between succes-

sive levels of Fadd/Procaspase-8 for each pathway. (B) Evidence range over receptor levels 

for each pathway and at each level of Fadd/Procaspase-8. 
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    The combined effect from the decrease in Fadd/Procaspase-8 and receptor is apparent in 

the Evidence ratio values (Figure 4.7). There is a clear shift higher, favoring the complete 

network, as Fadd/Procaspase-8 are decreased and a trend higher with decreasing receptor 

that is also amplified as Fadd/Procaspase-8 levels drop. The complete network, with its 

active mitochondrial pathway, consistently exhibits far greater resistance to downgraded 

apoptotic signaling as components of the DISC are reduced in concentration and the re-

duced signal for the caspase network model clearly accelerates as those components fall. 

These observations support the hypotheses that a general reduction in DISC formation ef-

ficiency, and a specific reduction in receptor count, favor the Type II pathway. The hy-

pothesis put forward that the receptor is the deciding factor in the Type I/II phenotype 

decision is certainly plausible given these results. A further comparison of all three com-

ponents individually might also be instructive. In addition, there appears to be a synergistic 

effect between the DISC components as implied by the amplified affect that receptor re-

duction has at lower Fadd/Procaspase-8 levels. 
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Figure 4.7. Evidence ratio values over the range of receptor concentrations at each level of 

Fadd/Procaspase-8: 100,000 (red), 10,000 (green), 1000 (orange), and 100 (blue). A higher 

ratio implies a preference for the Type II pathway. 

 

 

 

Figure 4.8. Associated log-evidence values with standard error bars for the evidence values 

in Figure 4.5. 
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4.3.3 Effect of Receptor Count and DISC Formation on Apoptosis Signal Flux 

    An analysis of the signal flux over increasing DISC formation and receptor counts 

clearly indicates a shift toward mitochondrial pathway signal route dominance as DISC 

components decrease (Figure 4.9), similar to the results in section 3.4.3. At a 

FADD/Caspase-8 level of 100 the mitochondrial pathway carries nearly 80% of the signal 

for most levels of receptor. The caspase pathway becomes dominant at a FADD/Caspase-

8 level of 10,000 and receptor levels also around 10,000. Noteworthy is the symmetry be-

tween the two pathways and the nearly full signal throughput for all combinations of values 

tested. This further supports the hypothesis that the signal is equally effective for Type I 

and Type II cells.  
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Figure 4.9. Signal flux through the caspase and mitochondrial pathways over increasing 

receptor concentration and at increasing levels of Fadd/Procaspase-8: (A) 100,000 mole-

cules per cell of Fadd and Procaspase-8, (B) 10,000, (C) 1000, and (D) 100. 
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4.3.4 Incomplete Apoptosis Recovery from MOMP Sensitizers using Common Priors 

    The Type I and II pathways are respectively defined as independent and dependent of 

MOMP induced apoptosis [93]. As such, regulation of MOMP is paramount for proper 

apoptotic signaling in cells with a Type II phenotype. MOMP is regulated by a family of 

related proteins. The first of these, Bcl-2, was characterized by Vaux et al. to be involved 

in the proliferation/survival of certain cancer cell lines [106]. Further research on Bcl-2 

would unravel the role of Bcl-2 in apoptosis and lead to the discovery of the Bcl-2 family 

of proteins that all share some level of domain homology and which form the regulatory 

network for MOMP [68]. This family of proteins can be broken down into three categories 

based on the presence or absence of the four Bcl-2 homology (BH) domains [63]. The 

antiapoptotic members, such as the Bcl-2 protein, as well as Bcl-xl, Mcl-1, and others, 

contain all four BH3 domains. The BH1-BH3 domains are present in the effector proteins 

Bax and Bak which are responsible for export of proapoptotic factors from the mitochon-

dria and are activated by BH3-only proteins like Bid, Bim, Bad, Noxa, and Puma [107]. 

Work by Letai et al. revealed that BH3-only proteins can be further divided into activator 

and sensitizer proteins, completing the generally accepted view of Bcl-2 interactions [63]. 

Briefly, BH3-only activator proteins like Bid and Bim directly induce oligomerization of 

the effector proteins Bax and Bak, which subsequently form pores in the mitochondrial 

outer membrane [62, 63, 65, 66, 108]. The antiapoptotic proteins bind and inhibit the acti-

vator and effector proteins, disrupting the interaction between the two [63, 64, 65, 66, 109]. 

Finally, the sensitizers like Bad, Noxa, and Puma bind and sequester the antiapoptotic pro-

teins allowing the activators to work [66, 110].  

    The role of Bcl-2, and related proteins, in the evasion of apoptosis for many cancers, and 

the illumination of the MOMP regulatory network, have made the mitochondrial pathway 

an attractive therapeutic target. Development of antagonists of the antiapoptotic proteins 

Bcl-2, Bcl-xl, etc., is the focus of much of the research and the first small-molecule inhib-

itor of Bcl-2, Venclexta (AbbVie), was approved in June 2018 for certain cases of chronic 

lymphocytic leukemia (CLL) [66, 101, 111]. Such antagonists mimic the action of the 
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sensitizer proteins, inhibiting the inhibitors of apoptosis. Unfortunately, development is 

complicated by the heterogenous binding affinities between the various sensitizers and 

antiapoptotic proteins [66]. Bad, for example, has a strong affinity for Bcl-2 and Bcl-xl but 

not for Mcl-1. Noxa on the other hand binds strongly only to Mcl-1. To identify potentially 

apoptosis inducing agents, Certo et al. developed an assay to predict, for a given cell line, 

which antiapoptotic proteins mitochondrial permeabilization depends on [99]. In this 

method, mitochondria are isolated and exposed to various BH3 peptides, the binding frag-

ments of the BH3-only proteins. The amount of cytochrome c released from the mitochon-

dria is then quantified via ELISA. With the effective BH3-proteins identified, and a table 

of known binding partners for those proteins, the acting antiapoptotic proteins can be pre-

dicted. They demonstrated the method using several cell lines including IL-3 dependent 

murine FL5.12 cells that are protected by Bcl-2 upon IL-3 removal, and murine hybridoma 

2B4 cells that were overexpressed with either Bcl-2 or Mcl-1. They also found that isolated 

mitochondria from murine, Bcl-2 dependent, leukemia cells released much higher amounts 

of cytochrome c when exposed to BH3 peptides with high Bcl-2 affinity, suggesting that 

these cells are “primed for death”, i.e. the antiapoptotic proteins are largely bound to BH3-

only activators that can be displaced with the introduction of BH3-only sensitizers. The 

method has since had various improvements and has been tested against many more cell 

lines including acute lymphoblastic leukemia, diffuse large B cell lymphoma, CD4/CD8 

positive thymocytes, and more [100, 112, 113, 114, 115]. 

    To examine the regulation of the mitochondrial pathway and ascertain conditions under 

which it might make a worthwhile therapeutic target we estimated the evidence for this 

pathway over a range of regulatory conditions. For simplicity of analysis and computa-

tional austerity we initially limited the MOMP regulatory network to four proteins: the 

BH3-only activator Bid, the antiapoptotic Bcl-2, the BH3-only sensitizer Bad, and the ef-

fector Bax. In all runs Bcl-2 was varied from 0 to 200,000 molecules per cell, well within 

experimentally reported figures, at increments of 10,000, and Bad, the Bcl-2 antagonist, 

was varied from 0 to 400,000, much higher than reported levels, also in increments of 
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10,000. We sought to reflect conditions under which the Type II pathway is preferred over 

Type I, conditions for which MOMP regulation is most relevant. Thus, elements of the 

DISC, the receptor, Fadd, and Procaspase-8, were set to a low value of 100, and XIAP was 

set to a moderate value of 42,000. Note that the evidence score for the caspase only path-

way is constant when changing only those regulators specific to the mitochondrial path-

way. At these levels for the DISC components and XIAP, the caspase pathway evidence 

value was estimated to be 0.188. See Table 2.1 for a list of all other initial values. The 

evidence values resulting from this setup are displayed in figure 4.10.  

 

 

 

 

Figure 4.10. Bayesian evidence characteristics of Bcl-2 and Bad regulation of MOMP. 

Concentrations ranged from 0-200,000 molecules per cell for Bcl-2 and 0-400,000 for Bad 

in increments of 10,000 for both. Receptor, Fadd, and Procaspase-8 levels were all set to 

100. (A) The evidence (expected PARP cleavage) values over the given ranges for Bcl-2 

and Bad. (B) Flat representation of (A). The black line represents parity between Bcl-2 and 

Bad. 
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    The complete network evidence values exceed those for the caspase pathway for all val-

ues of Bcl-2 and Bad, putting all evidence ratios above 0 and indicating a preference for 

the Type II phenotype throughout. In the absence of Bad, increasing levels of Bcl-2 lowers 

the expected values for the proportion of PARP that’s cleaved from a high of 0.590 to a 

low of 0.388. This decrease in cleavage as Bcl-2 increases decelerates throughout. With 

Bcl-2 at a level of 200,000, increasing Bad, as expected, increases the PARP cleavage ex-

pected values. This increase initially accelerates until it reaches about 200,000, equal to 

Bcl-2, where it levels out. The evidence estimate reaches a high of around 0.500 at high 

levels of Bad for a recovery of only 55%. This reflects a general pattern in which apoptotic 

signal recovery induced by Bad is most efficacious up to parity between Bad and Bcl-2, 

after which additional increases in Bad effects diminishing returns and never fully recovers 

the signal (Figure 3.10B). Assuming a base evidence value of 0.58, the value estimated 

when Bcl-2 and Bad are 0, statistics for percent recovery at parity and at maximum levels 

of Bad, as well as the percentage of the total gain in evidence obtained at parity, are given 

in Figure 4.11.  
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Figure 4.11. Statistics for the recovery of apoptosis when inhibiting Bcl-2 with Bad. Grey: 

% recovery obtained at the maximum Bad value of 400,000 molecules per cell. Blue: % 

recovery when Bad is at parity with Bcl-2. Orange: % of recovery found at the maximum 

Bad level that can be obtained with Bad at parity with Bcl-2. 

 

 

    Recovery at the maximum Bad level of 400,000 is 73.0% when Bcl-2 levels are at 10,000 

and generally decreases as Bcl-2 increases. Thus, for the given priors, even with low Bcl-

2 and high Bad levels, Bcl-2 is substantially retarding the Type II pathway’s ability to 

achieve apoptosis. Signal recovery at parity ranges from 21.5% to 41.5% and is consist-

ently just under the 40% mark for Bcl-2 levels of 70,000 and higher. The percent of total 

gain (recovery at the maximum level of Bad) found at parity ranges from 29.6% to 80.1% 

and generally increases with increasing Bcl-2. Thus, most of the observed apoptotic recov-

ery induced by Bad is obtained when Bad levels are equal to or less than Bcl-2. Increasing 

Bad beyond this point has a muted effect.  

    Although some cell lines have been shown to be dependent on only a single antiapoptotic 

protein, the general case is much more complicated with a network of regulators governing 

MOMP execution [31, 65]. Binding affinities between these regulators often dictate inhib-

itory targets. Bcl-2, for example, preferentially binds to the effector Bax while Mcl-1 pre-

fers Bak and Bcl-xl will inhibit both [65, 68, 115]. Sensitizers are likewise specific to their 

binding partners. Bad for example binds strongly to both Bcl-2 and Bcl-xl, while Noxa is 

specific to Mcl-1 [65, 66, 68, 115]. The limited and diminishing effect that sensitizers have 

on antiapoptotic proteins appears to hold for these more complex regulatory networks. To 

examine the effect of additional regulators on the likelihood of achieving apoptosis through 

the mitochondrial pathway, a MOMP specific model was used that included Bak, Bcl-xl, 

Mcl-1 and Noxa (Figure 4.12A). Because the run time is correlated to the size of the model, 

we focused on the MOMP portion of the network and eliminated Caspase-6 as well as any 

components downstream of Cytochrome c and Smac including APAF, Caspase-9, XIAP, 
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Caspase-3, and PARP. The objective function was then switched to export of Smac from 

the mitochondria. Values for exported Smac were evaluated for varying levels of the sen-

sitizers Bad and Noxa (Figures 4.12B). Note that Bid is also responsible for embedding 

Bax into the mitochondrial membrane in this model and that all three antiapoptotic proteins 

inhibit Bid. All non-sensitizer Bcl-2 family proteins were set to values in line with levels 

estimated from Type II Jurkat cells in Dai et al. (2017). They are as follows: Bid: 171,000, 

Bax: 5000, Bak: 35,000, Bcl-2: 157,000, Bcl-xl: 113,000, and Mcl-1: 57,000. The range 

for Bad was 0-600,000 at increments of 20,000 and for Noxa was 0-120,000 at increments 

of 6000. Low values for the DISC components and a moderate XIAP value were again 

used here. 

    In the absence of antiapoptotic and sensitizer proteins, the Type II model evidence under 

these conditions was estimated to be 0.702 (Figure 3.12B, gray plane). With the addition 

of the antiapoptotic proteins the evidence for Smac export drops to about 0.224. Addition 

of Noxa, alone, at 120,000 molecules per cell raises the evidence to roughly 0.276, a re-

covery of only 10.9%. With Noxa at 60,000 roughly in line with Mcl-1, the evidence is 

about 0.271, representing about 90.4% of the total gain found at 120,000. Addition of Bad 

alone has a greater effect with the evidence rising to about 0.346 at 600,000 molecules per 

cell, for a 25.5% recovery. At 280,000 molecules per cell, 10,000 more than the combined 

Bcl-2 and Bcl-xl values, the evidence was estimated to be 0.306, 67.2% of the total gain at 

600,000. The difference in effectiveness between Noxa and Bad may reflect the relative 

quantities of their respective targets but also the regulatory topology of the network. Addi-

tion of both sensitizers yields additional gains in apoptotic recovery. With Noxa at 120,000 

and Bad at 600,000 the evidence rises to 0.438, a recovery of 44.8%, and at 60,000 for 

Noxa and 280,000 for Bad the evidence is roughly 0.380, 72.9% of the maximum total 

gain. These results mirror those above, Noxa and Bad exert the majority of their effects by 

the time they reach parity with their targets and have only a partial apoptotic recovery for 

the given generic prior ranges. 
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Figure 4.12. Bayesian evidence characteristics of a complex MOMP regulatory network. 

(A) An expanded asymmetrical MOMP regulatory network. (B) Expected Smac export 

values for the Type II pathway over a range of 0-120,000 molecules per cell at increments 

of 6000 for Noxa and a range of 0-600,000 at increments of 20,000 for Bad. Bid, Bax, Bak, 

Bcl-2, Bcl-xl, and Mcl-1 were set to 171,000, 5000, 35,000, 157,000, 113,000, and 57,000 

respectively. The grey plane represents the evidence estimation when Bcl-2, Bcl-xl, Mcl-

1, Bad, and Noxa are set to 0. 

 

4.3.5 Near Full Apoptosis Recovery from MOMP Sensitizers using Adjusted Priors 

    Although the results of the previous analysis for MOMP regulation are directionally 

consistent with experimentation, the lack of full apoptotic recovery, even with sensitizer 

levels in excess of normal ranges, is not [66, 111]. This can be explained by the generic 

prior parameter ranges used in those experiments: log ranges of [-8.0, -4.0] for the forward 

binding rate and [-4.0, 0.0] for the reverse. To get a more accurate estimation of the extent 

of apoptotic inhibition by Bcl-2 and recovery via Bad we adjusted the reverse binding rates 

to more accurately reflect known dissociation constants (KD) for MOMP regulatory bind-

ing reactions Bcl-2:Bid, Bcl-2:Bax, and Bad:Bcl-2 [116]. We assumed a rough average KD 

estimate of 10 for all three interactions and thus, set the reverse binding rate to [-7.0, -3.0]. 

A B 
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The resulting estimates of PARP cleavage over the ranges of Bcl-2 and Bad are displayed 

in Figure 4.13B, with the original results displayed in 4.13A on the same scale as a refer-

ence. 

 

 

 

Figure 4.13. Bayesian evidence characteristics of MOMP regulation with binding rate pa-

rameters adjusted to more accurately reflect experimentally derived binding affinities for 

the interactions Bcl-2:Bid, Bcl-2:Bax, and Bad:Bcl-2. Bcl-2 was ranged from 0 to 200,000 

molecules per cell and Bad was ranged from 0 to 400,000. Both were increased in incre-

ments of 10,000. (A) The original evidence (expected PARP cleavage) values over the 

given ranges for Bcl-2 and Bad. (B) The evidence values given the adjusted rate parame-

ters. 
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    Statistics for apoptosis recovery from the sensitizer Bad are below in Figure 4.14. The 

higher binding affinity of Bcl-2 with its targets clearly drives a stronger antiapoptotic effect 

with the expected PARP cleavage falling to 0.274 in the absence of Bad. Recovery upon 

addition of Bad also sees a stronger reaction. Recovery at maximum Bad is greater than 

90% for all values of Bcl-2 and the percent recovery at parity with Bcl-2 is consistently in 

the mid 70’s. As with the previous case, the percentage of the total PARP cleavage recov-

ered at parity with Bcl-2 hovers around 80%.  

 

 

 

Figure 4.14. Statistics for the recovery of apoptosis when binding affinities are closer to 

experimentally defined KD values. Grey: % recovery obtained at the maximum Bad value 

of 400,000 molecules per cell. Blue: % recovery when Bad is at parity with Bcl-2. Orange: 

% of recovery found at the maximum Bad level that can be obtained with Bad at parity 

with Bcl-2.  
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Chapter 5 

 

HypBuilder: Automatic Generation of Ensembles of Physicochemical Models 

 

5.1 Summary 

HypBuilder is designed to quickly construct ensembles of mechanistic models for use in 

model selection or in silico experiment sweeps and to alleviate the arduous task of manual 

model construction. The use and features of the software with many small examples are 

detailed. Two larger examples are also described. The first is the recapitulation of an ex-

isting manually constructed model of extrinsic apoptosis. The second is the mass construc-

tion of 1450 variants of the mitochondrial outer membrane permeabilization. The Hyp-

Builder software can be found at https://github.com/LoLab-VU/HypBuilder. 

 

5.2. Introduction 

Quantitative computational modeling of biological systems has become a valuable tool for 

explaining biological phenomena when used in conjunction with experimental methods. 

The modeling process starts with the construction of a reaction topology that is thought to 

reasonably represent the system in question and calibration of model parameters to fit sim-

ulation outcomes to experimental data. Hypotheses are then made based on changes in 

simulated outcomes upon perturbation of the model. A number of platforms for the con-

struction of quantitative executable models have been developed. These range from graph-

ical network designers such as CellDesigner and Vcell to rule-based modeling systems like 

Kappa and BioNetGen [27-30, 117, 118]. However, the growth in development and utili-

zation of modeling tools has led to problems regarding the reuse, sharing, and modification 

of these models.  

    Addressing these issues has been the focus of several recent projects. The systems biol-

ogy markup language (SBML), for example, is an XML-based modeling format designed 

https://github.com/LoLab-VU/HypBuilder
https://github.com/LoLab-VU/HypBuilder
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for interoperability between disparate modeling ecosystems, enabling the easy exchange 

and reuse of models [119]. Model exchange and reuse are further promoted with the exist-

ence of an accessible storehouse of previously constructed models. That is the purpose of 

the BioModels database, a publicly available repository for storing curated and annotated 

biological models [120]. It’s often the case that models are not reused as is but are modified 

to address particular scientific inquiries. Modifying models, particularly those defined at 

the top level by systems of differential equations, can be arduous and error prone. Rule-

based modeling systems like BioNetGen and Kappa mitigate much of the issue by defining 

models based on the interactions between various components of the system which are then 

automatically translated into the equations necessary for simulation [26]. PySB takes this 

a step further and allows more complicated patterns of interactions to be defined in a hier-

archical manner which further allows for various components of models to be broken out 

and recombined in new ways [31]. Yet, despite these advances, construction of large mod-

els can still be time-consuming and error prone, and the construction of large numbers of 

models necessary for the purposes of model selection or in silico experimental sweeps are 

impractical. In such cases a method for the large-scale production of automatically gener-

ated executable mechanistic models is necessary. 

    In this work we introduce HypBuilder, software for the automatic generation of mecha-

nistic rule-based models. HypBuilder is a Python based tool that generates models in the 

PySB format from a user provided list of components and reactions, and an expandable 

library of rule sets defined on those reactions. This both simplifies the input needed to 

create a model and permits large numbers of models to be generated from a single input 

file via combinations of select reactions. This approach has the potential to expedite the 

large-scale production of mechanistic models. 
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5.3. Software and Usage 

5.3.1 General Workflow 

    Figures 5.1A and 5.1B display the steps taken by HypBuilder to generate models and 

the components necessary to carry them out. Input is a simple CSV file containing all nec-

essary information for the construction of one or many kinetic models in the PySB format. 

HypBuilder then takes the reactions designated in that file and references a molecular in-

teraction library for corresponding sets of reaction rules. These rules are combined, in a 

way that is also designated in the input file, and each combination serves as a basis for a 

model. HypBuilder then calls the relevant PySB classes for model construction and export. 

The result is a collection of automatically generated executable PySB model files.  

 

 

Figure 5.1. HypBuilder workflow and processing. 
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5.3.2 Input File 

    The input file takes the form of simple CSV-based list of model components, reactions, 

and special instructions. At its simplest, it is a list of monomers with initial values, and a 

list of reactions (Figure 5.2A). The list of monomers is headed by the term “model compo-

nents” while the list of required reactions is simply headed by “required reactions”. A re-

action consists of a reaction name and a list of all participants along with their roles in the 

reaction in brackets. For example, the catalysis reaction in Figure 5.2A has three compo-

nents, A(), B() and C(), with the roles of catalyzer, substrate, and product respectively. 

HypBuilder takes the information from the input file, references the molecular reaction 

library, and constructs the corresponding PySB model (Figure 5.2B).  

 

 

5.3.3 Run File 

    The run file simply calls the ModelAssembler class from HypBuilder and passes in a 

Molecular Interaction Library (Section 5.3.5) and a model input file. An option for listing 

monomer-based or species-based observables can also be input here and is detailed below. 

Other global model formatting options could be added here in the future.  

 

 

 

 

 

model components 
A, 1 

B, 1 

C, 1 

 

required reactions 

 

catalysis, A()[catalyzer], B()[substrate], C()[product] 

from HypBuilder import ModelAssembler 

 

ModelAssembler('library.txt', 'input.csv') 
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5.3.4 Output 

    HypBuilder output consists of one or more executable PySB models with the follow 

basic components. Please reference [31] and http://pysb.org/ for information on the PySB 

ecosystem and documentation. Below is the model generated from the input file from Sec-

tion 5.3.2. 

 

 

5.3.4.1 Monomers 

    HypBuilder cross references the list of monomers with the list of reactions, and the as-

sociated rule templates from the reaction library, to correctly write the PySB monomer 

objects. For example, because the catalyzer A() in the input file (Figure 5.2A) must first 

bind the substrate B(), both the A and B monomers have binding sites corresponding to the 

Model() 

Monomer('A', ['B']) 

Monomer('C') 

Monomer('B', ['A']) 

 

Parameter('catalysis_0_A_catalyzer_B_substrate_C_product_2kf', 

1.0) 

Parameter('catalysis_0_A_catalyzer_B_substrate_C_product_1kr', 

1.0) 

Parameter('catalysis_1_A_catalyzer_B_substrate_C_product_1kc', 

1.0) 

Parameter('A_0', 1.0) 

Parameter('C_0', 1.0) 

Parameter('B_0', 1.0) 

 

Observable('A_obs', A()) 

Observable('C_obs', C()) 

Observable('B_obs', B()) 

 

Rule('catalysis_0_A_catalyzer_B_substrate_C_product',  

 A(B=None) + B(A=None) | A(B=1) % B(A=1),                    

 catalysis_0_A_catalyzer_B_substrate_C_product_2kf,        

 catalysis_0_A_catalyzer_B_substrate_C_product_1kr) 

Rule('catalysis_1_A_catalyzer_B_substrate_C_product',  

 A(B=1) % B(A=1) >> A(B=None) + C(),                       

 catalysis_1_A_catalyzer_B_substrate_C_product_1kc) 

 

Initial(A(B=None), A_0) 

Initial(C(), C_0) 

Initial(B(A=None), B_0) 

http://pysb.org/
http://pysb.org/
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other. In the absence of explicitly naming the binding sites (Section 5.3.6) the sites are 

automatically named for the binding partner they are intended for. An important departure 

from standard rule-based modeling in PySB and BioNetGen is the lack of support for state 

sites in HypBuilder. Although the use of state sites, such as designating a protein as phos-

phorylated or unphosphorylated, can make models more compact and manual model build-

ing more efficient for the experienced builder, they greatly complicate the automatic gen-

eration of models. In HypBuilder a separate state is simply represented by a distinct mon-

omer. Whether state sites are used, or each state is represented by a monomer, the resulting 

system of equations is mathematically equivalent. The only downside is the need to list a 

monomer for every state of every component in the model, a simple task in HypBuilder. 

 

5.3.4.2 Parameters 

    The parameters representing initial values are generated from the values listed after each 

model component. Ranges of initial values can also be defined (Section 5.3.6.1). Reaction 

rate parameters can be defined by listing them after the reaction participants. In example 

5.2A there are no such parameters listed, in which case the parameter value will be given 

a placeholder value of 1.0. This is done when the parameters are expected to be sampled 

as in the case of Bayesian evidence-based model selection. Note that if parameters are 

listed they must be in the same order designated in the Molecular Interaction Library. Pa-

rameter names for reactions are descriptive of the reaction and reaction components as can 

be seen in Figure 5.2B. Parameters are numbered by the corresponding rules in the reaction. 

In Figure 5.2, for example, the single rule for catalytic binding is bidirectional, so the pa-

rameters for the forward and reverse binding rates are labeled 0. The rule representing 

catalysis is then labeled 1. The postfix of the parameter is representative of the type, direc-

tion, degree, and variability of the reaction. ‘2kf’ for example represents a second-degree 

forward reaction, while ‘1kr’ represents a first-degree reverse reaction and first-degree cat-

alytic reactions are represented as ‘1kc’ Initial values, and any other parameter that is ex-

plicitly defined, are simply represented with an appended ‘_0’. 
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5.3.4.3 Observables 

    There are two settings for observables in HypBuilder. In the default setting HypBuilder 

writes down an observable for every monomer. If we want observables for every combi-

nation of monomers, such as individual and various bound species, we add ‘species’ to the 

argument list. 

 

 

    The example input file above creates one bound species, monomer A bound to B, in 

addition to the unbound monomers. Thus, there are four observables defined when the 

‘species’ argument is specified. The names for these observables mirror the species they 

designate and include each monomer involved, the binding sites, and binding status’ of 

each monomer in the species. 

 

 

5.3.4.4 Rules 

    After the monomers are cross referenced with the list of reactions to correctly fill out the 

monomer binding sites, HypBuilder uses those monomers in the construction of the model 

rules. HypBuilder reads in the reactions from the input file and finds the corresponding 

template rules from the molecular interaction library. Monomers are then substituted into 

those templates based on their designated roles in the reaction. Multiple rules can be con-

tained in a single reaction template, as is the case for the catalyze reaction in section 5.3.5. 

In that case two rules are created, a rule governing the reversible binding of the catalyzer 

(monomer A) to the substrate (monomer B), and a rule for the catalysis step, converting 

substrate to product (monomer C). The names of the rules are descriptive, mirroring the 

from HypBuilder import ModelAssembler 

 

ModelAssembler('library.txt', 'input.csv', 'species') 

Observable('A_B_None_obs', A(B=None)) 

Observable('C__obs', C()) 

Observable('B_A_None_obs', B(A=None)) 

Observable('A_B_1__B_A_1_obs', A(B=1) % B(A=1)) 
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names of the corresponding parameters. They contain the name of the reaction and each 

participant along with its role in the reaction They are numbered based on the order of rules 

in the reaction. By default, any binding sites not involved in a reaction are assumed to be 

unbound. Strategies to build more complex rules can be found in Section 5.3.6 below.  

 

5.3.4.5 Initials  

    By default, model initials are constructed for each unbound monomer with the parameter 

values defined in the input file. However, initials for bound species can also be designated 

(Section 5.3.6.8). 

 

5.3.5 Molecular Interaction Library 

    PySB uses several levels of increasing complexity to build up a model [31]. At the base 

level is a system of ordinary differential equations (ODEs) representing the mass action 

kinetics of the system. These ODEs are generated by rules that define interactions between 

various molecules in the model. Combinations of rules can then be combined into macros 

that represent simple biological processes. For example, PySB’s catalyze macro is made 

up of rules for the reversible binding of enzyme to substrate and for the catalysis step in 

the reaction. There exists a library of macros within PySB to aid in manual model con-

struction. Macros can then be further built up into larger groups of molecular components 

and pathway structures that can be assembled into models. A rule/macro library is ideal for 

the task of automatic model generation but the macro library in PySB is designed to aid in 

manual model construction and is not suited for model generation in a combinatorial man-

ner. Thus, we have designed a stand-alone easily extensible rule/macro library format for 

use with HypBuilder.  

    The molecular interaction library is a list of molecule types (substrate, product, etc.), the 

reactions they participate in (catalysis, phosphorylation, etc.), and the associated rule tem-

plate(s) for those reactions. The ‘+++’ lines signify the end of a molecule while the ‘$$$’ 

lines signify the end of a reaction within a molecule. Note that while every molecule type 
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designated in a reaction from the input file must be represented in the library, only one 

must list the reaction and contain the reaction template(s). For the catalysis reaction the 

product entry holds this information. The catalyzer and product are tied to the reaction via 

the template(s) contained in the product’s library entry. Also note the flexibility afforded 

in putting together groups of rules. An alternative to the product entry holding both rule 

templates is to split it up and associate rules with those specific monomers that participate 

in them. In such a scenario the substrate molecule holds the substrate binding reaction and 

associated binding template between it and the catalyzer, and the product holds the catalytic 

step and its associated template. The templates are generic rules with molecule types in 

place of specific monomers that HypBuilder substitutes with the appropriate monomer. 

The placement of each monomer in the rule is governed by the designated role given to 

them in the input file reactions. Molecule types can be associated with any number of re-

actions and monomers can be labeled as any number of molecules types within various 

reactions. 

 

 

molecule: catalyzer 

+++ 

 

molecule: substrate 

reaction: substrate_binding 

template: catalyzer(substrate=None) + substrate(catalyzer=None)  

<> catalyzer(substrate=1) % substrate(catalyzer=1) 

$$$ 

+++ 

 

molecule: product 

reaction: catalytic_step 

template: catalyzer(substrate=1) % substrate(catalyzer=1)  

>> catalyzer(substrate=None) + product() 

$$$ 

reaction: catalysis 

template: catalyzer(substrate=None) + substrate(catalyzer=None)  

<> catalyzer(substrate=1) % substrate(catalyzer=1) 

template: catalyzer(substrate=1) % substrate(catalyzer=1)  

>> catalyzer(substrate=None) + product() 

$$$ 

+++ 
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    A more complicated example from the molecular interaction library is displayed below. 

This reaction describes the rules for pore formation, a sequence of binding reactions be-

tween like molecules up to the status of tetramer. There are three rules here one for each 

increase in the molecules complexity. Note the binding sites in these rules. Although one 

can specify the site names for a given reaction in the input file, it is also possible to do so 

globally from the library. This method is less flexible in that the site names are simply 

numbered to reflect multiple binding sites for the same molecule type. A single call to the 

pore() reaction will automatically include four identical molecule types in the rule set. Also 

note that this reaction is self-contained in that it requires no named interacting partners. 

 

 

5.3.6 Features 

    A number of features have been built into HypBuilder both for the large-scale construc-

tion of executable models and the construction of more complex rule sets that may be 

needed. These features are described here. 

 

molecule: pore 

reaction: pore_formation 

direction: self 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=None, pore_2=None)  

<> pore(pore_1=None, pore_2=1)  

% pore(pore_1=1, pore_2=None) 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=None, pore_2=1)  

% pore(pore_1=1, pore_2=None)  

<> pore(pore_1=3, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3) 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=3, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3)  

<> pore(pore_1=4, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3)  

% pore(pore_1=3, pore_2=4) 

$$$ 

+++ 
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5.3.6.1 Initial Value Ranges 

    One of the more likely reasons for the construction of many variations of a model is to 

simply vary the initial conditions and observe how that affects the outcome of a simulated 

experiment. HypBuilder has three ways to create variations of a model with different initial 

values as displayed in the following ‘model components’ section of a HypBuilder input 

file. 

 

 

    The first way is to simply list the desired initial values, as with component A above, 

which can be either 1 or 2. The other two ways involve providing ranges of initial values 

to HypBuilder. For component B the number of desired initial values is followed by an 

(inclusive) range for which that number of values will be evenly spaced. 3:3-4 designates 

3, 3.5 and 4 as valid values. The third option, demonstrated for component C, is to list an 

inclusive range followed by an increment length. For example, 5-6:0.5 will designate 5, 

5.5 and 6 as values. All of these methods can be combined as was done for component D 

above where 1,2,2:3-4,5-6:1 designates 1, 2, 3, 4, 5, and 6 as valid initial values. Hyp-

Builder will construct a complete executable model for every combination of initial values. 

For the component list above 108 models will be constructed. In the future we will include 

the option to define a function that enumerates initial values over a predefined range. 

 

5.3.6.2 Optional Reactions 

    The primary reason for the development of HypBuilder is the large-scale production of 

executable kinetic models with various reaction topologies for the purposes of model se-

lection and exploration of network dynamics under various regulatory conditions and in 

silico experiments. To accomplish this task HypBuilder constructs combinations of 

model components 

 

A, 1,2    # simple list of initial values 

B, 3:3-4   # number:start-stop 

C, 5-6:0.5   # start-stop:increment 

D, 1,2,2:3-4,5-6:1 # combinations 
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reaction sets base on a list of reactions designated ‘optional reactions’ in the input file. In 

the following reaction list is one required reaction that must exist in every model and three 

optional reactions that do not. 

 

 

    There are eight possible combinations of optional reactions and HypBuilder will thus 

create eight models to account for them. Caution must be taken when designating reactions 

as optional. The 2n models for the n optional reactions can quickly blow up. And although 

creation of models with HypBuilder is relatively fast, analysis of 2n models may be infea-

sible. It should also be noted that monomers, observables, and initials for components that 

are not used in a particular model will not be include in the model. The resulting model for 

the required reaction-only case is shown below. 

 

required reactions 

 

inhibition, D()[inhibitor], E()[inh_target] 

 

optional reactions 

 

inhibition, C()[inhibitor], D()[inh_target] 

inhibition, A()[inhibitor], C()[inh_target] 

inhibition, B()[inhibitor], C()[inh_target] 

Model() 

 

Monomer('E', ['D']) 

Monomer('D', ['E']) 

 

Parameter('inhibition_0_D_inhibitor_E_inh_target_2kf', 1.0) 

Parameter('inhibition_0_D_inhibitor_E_inh_target_1kr', 1.0) 

Parameter('E_0', 1.0) 

Parameter('D_0', 1.0) 

 

Observable('E_obs', E()) 

Observable('D_obs', D()) 

 

Rule('inhibition_0_D_inhibitor_E_inh_target',  

D(E=None) + E(D=None) | D(E=1) % E(D=1),  

inhibition_0_D_inhibitor_E_inh_target_2kf,  

inhibition_0_D_inhibitor_E_inh_target_1kr) 

 

Initial(E(D=None), E_0) 

Initial(D(E=None), D_0) 
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5.3.6.3 Grouped Reactions 

    One way to limit the number of models is through reaction grouping. There are currently 

two grouping methods in HypBuilder. Any reactions grouped together in the input file must 

be included together in any model they appear in. Below are the ‘reactions’ sections of an 

input file including both methods. 

 

 

    Grouped reactions are labeled as such and numbered within curly brackets after the re-

action definition. The first two optional reactions are grouped together via the ‘disjoint:1’ 

label. In HypBuilder, a disjoint group is one in which no other optional reactions can be 

included. Thus, there is only one model that includes those two reactions (The required 

reaction is, of course, also included). The second two reactions are grouped together via 

the ‘group:2’ label. These two reactions must be grouped together in any model but can 

also be grouped with other, non-disjoint reactions. They can thus be included with, or with-

out, the fifth optional reaction providing two additional models. That leaves the required 

reaction alone and the required reaction plus the fifth optional reaction as the last two pos-

sible models for a total of five, in contrast to the 32 models that would have been generated 

without grouping. 

 

 

 

 

required reactions 

 

inhibition, A()[inhibitor], B()[inh_target] 

 

optional reactions 

 

inhibition, B()[inhibitor], C()[inh_target], {disjoint:1} 

inhibition, D()[inhibitor], E()[inh_target], {disjoint:1} 

inhibition, A()[inhibitor], C()[inh_target], {group:2}  

inhibition, B()[inhibitor], D()[inh_target], {group:2}  

inhibition, A()[inhibitor], D()[inh_target] 
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5.3.6.4 Data Nodes 

    One of the targeted applications for the large-scale production of mechanistic models is 

model selection which, in some fashion, requires fitting the models to data. The combina-

torial methodology of model construction in HypBuilder can potentially create discon-

nected models with subnetworks that do not reach the component for which data is availa-

ble. Such models are useless and should be eliminated In HypBuilder this is done by des-

ignating components as data targets. Consider the following input file. 

 

 

    Component E has been labeled a data target with the lowercase ‘d’ in curly brackets. 

HypBuilder will take this information and eliminate any model with components that can-

not reach this node. The eight possible networks for this input file are displayed in Figure 

5.2. Note that the bottom four are all missing the reaction from component C to component 

D and are thus redundant with respect to explaining the data for component E. Three of 

those networks, those in the red box, have subnetworks that fail to reach the data node and 

will thus be eliminated from consideration by HypBuilder. 

 

 

 

model components 

 

A, 1 

B, 1 

C, 1 

D, 1 

E, 1, {d} 

 

required reactions 

 

inhibition, D()[inhibitor], E()[inh_target] 

 

optional reactions 

 

inhibition, C()[inhibitor], D()[inh_target] 

inhibition, A()[inhibitor], C()[inh_target] 

inhibition, B()[inhibitor], C()[inh_target] 
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Figure 5.2. All possible networks created for the Data node example. Those in the red box 

have a data node (E) that cannot be reached by every other node in the network and will 

thus be eliminated from consideration. 

 

5.3.6.5 Don’t Write Don’t Care 

    When manually writing rules for a PySB model there exists the concept of ‘don’t write 

don’t care’. This comes about when existing sites on monomers that participate in the rule 

are left absent, rendering the state of that site irrelevant within that rule. In HypBuilder, 

any (binding) sites not defined in a rule template are, by default, assumed to be unbound 

(set to ‘None’). Although this simplifies the information needed to write the input file 

and/or entries in the library, it eliminates the ‘don’t write don’t care’ approach and the 

flexibility it provides. Thus, we have implemented a means to include the concept in Hyp-

Builder constructed models. Consider the following input file. 
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    Note the two ‘dwdc’ labels in curly brackets after the second reaction. These are decla-

rations that a binding site on a model component should be left blank within this reaction. 

Thus, the binding site for A on component B, and the binding site for D on component C 

will be absent in the rules generated for this reaction, as is displayed below. 

 

 

5.3.6.6 Binding Sites 

    The default behavior of HypBuilder with regard to binding site designations is to simply 

name the site after the binding partner that targets it. To override this behavior, the new 

site names are listed in parentheses after the appropriate model component and in the ap-

propriate reaction as displayed in the example here.  

model components 

 

A, 1 

B, 1 

C, 1 

D, 1 

 

required reactions 

 

inhibition, A()[inhibitor], B()[inh_target] 

inhibition, B()[inhibitor], C()[inh_target], {dwdc:B(A)|dwdc:C(D)} 

inhibition, C()[inhibitor], D()[inh_target] 

Rule('inhibition_0_A_inhibitor_B_inh_target',  

A(B=None) + B(A=None, C=None)  

| A(B=1) % B(A=1, C=None),  

inhibition_0_A_inhibitor_B_inh_target_2kf,  

inhibition_0_A_inhibitor_B_inh_target_1kr) 

Rule('inhibition_0_B_inhibitor_C_inh_target',  

B(C=None) + C(B=None)  

| B(C=1) % C(B=1),  

inhibition_0_B_inhibitor_C_inh_target_2kf,  

inhibition_0_B_inhibitor_C_inh_target_1kr) 

Rule('inhibition_0_C_inhibitor_D_inh_target',  

C(B=None, D=None) + D(C=None)  

| C(B=None, D=1) % D(C=1),  

inhibition_0_C_inhibitor_D_inh_target_2kf,  

inhibition_0_C_inhibitor_D_inh_target_1kr) 
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    The resulting monomers and rules for these reactions are given below. Overriding the 

automatic naming allows for much more flexibility in model construction. For example, 

monomers A and B now competitively bind to the same site on monomer C (‘comp_site’), 

and monomer C now has two distinct binding sites (‘C_1’ and ‘C_2’) on monomer D. The 

two binding sites used in the pore formation reaction for monomer C have also been over-

written. When multiple sites are given new names, they must be listed in order with a colon 

in between them. The nth name in the list will always overwrite the nth binding site for a 

reaction. 

 

 

 

 

 

required reactions 

 

bind, A()[binder], C(comp_site)[binder_target] 

bind, B()[binder], C(comp_site)[binder_target] 

bind, C()[binder], D(C_1)[binder_target] 

bind, C()[binder], D(C_2)[binder_target] 

pore_formation, C(s1:s2)[pore] 

Monomer('A', ['C']) 

Monomer('C', ['comp_site', 'D', 's1', 's2']) 

Monomer('B', ['C']) 

Monomer('D', ['C_1', 'C_2']) 
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Rule('bind_0_A_binder_C_binder_target_comp_site',  

    A(C=None) + C(comp_site=None, D=None, s1=None, s2=None)  

    | A(C=1) % C(comp_site=1, D=None, s1=None, s2=None),  

    bind_0_A_binder_C_binder_target_comp_site_2kf,  

    bind_0_A_binder_C_binder_target_comp_site_1kr) 

Rule('bind_0_B_binder_C_binder_target_comp_site',  

    B(C=None) + C(comp_site=None, D=None, s1=None, s2=None)  

    | B(C=1) % C(comp_site=1, D=None, s1=None, s2=None),  

    bind_0_B_binder_C_binder_target_comp_site_2kf,  

    bind_0_B_binder_C_binder_target_comp_site_1kr) 

Rule('bind_0_C_binder_D_binder_target_C_1',  

    C(comp_site=None, D=None, s1=None, s2=None)  

    + D(C_1=None, C_2=None)  

    | C(comp_site=None, D=1, s1=None, s2=None)  

    % D(C_1=1, C_2=None),  

    bind_0_C_binder_D_binder_target_C_1_2kf,  

    bind_0_C_binder_D_binder_target_C_1_1kr) 

Rule('bind_0_C_binder_D_binder_target_C_2',  

    C(comp_site=None, D=None, s1=None, s2=None)  

    + D(C_1=None, C_2=None)  

    | C(comp_site=None, D=1, s1=None, s2=None)  

    % D(C_1=None, C_2=1),  

    bind_0_C_binder_D_binder_target_C_2_2kf,  

    bind_0_C_binder_D_binder_target_C_2_1kr) 

Rule('pore_formation_0_C_pore_s1_s2',  

    C(comp_site=None, D=None, s1=None, s2=None)  

    + C(comp_site=None, D=None, s1=None, s2=None)  

    | C(comp_site=None, D=None, s1=None, s2=1)  

    % C(comp_site=None, D=None, s1=1, s2=None), 

    pore_formation_0_C_pore_s1_s2_2kf,  

    pore_formation_0_C_pore_s1_s2_1kr) 

Rule('pore_formation_1_C_pore_s1_s2',  

    C(comp_site=None, D=None, s1=None, s2=None)  

    + C(comp_site=None, D=None, s1=None, s2=1)  

    % C(comp_site=None, D=None, s1=1, s2=None)  

    | C(comp_site=None, D=None, s1=3, s2=1)  

    % C(comp_site=None, D=None, s1=1, s2=2)  

    % C(comp_site=None, D=None, s1=2, s2=3), 

    pore_formation_1_C_pore_s1_s2_2kf, 

    pore_formation_1_C_pore_s1_s2_1kr) 

Rule('pore_formation_2_C_pore_s1_s2',  

    C(comp_site=None, D=None, s1=None, s2=None)  

    + C(comp_site=None, D=None, s1=3, s2=1)  

    % C(comp_site=None, D=None, s1=1, s2=2)  

    % C(comp_site=None, D=None, s1=2, s2=3)  

    | C(comp_site=None, D=None, s1=4, s2=1)  

    % C(comp_site=None, D=None, s1=1, s2=2)  

    % C(comp_site=None, D=None, s1=2, s2=3)  

    % C(comp_site=None, D=None, s1=3, s2=4), 

    pore_formation_2_C_pore_s1_s2_2kf, 

    pore_formation_2_C_pore_s1_s2_1kr) 
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5.3.6.7 Reaction Sequences 

    HypBuilder currently supports a method to quickly string together sequences of reac-

tions. By designating an order to a sequence of reactions the result of reaction n will be 

forced onto reaction n+1. For example, consider the following set of input reactions. 

 

 

    Designating these reactions s1:1, s1:2, s1:3 forces these binding reactions to be ordered 

as is displayed in the associated rule set. 

 

 

    Note that in the second rule the binding site for A on component B is labeled ‘ANY’. 

‘ANY’, in the language of PySB, means that that site must be bound for that rule to be 

executed. Because that binding site is specific to component A we have enforced a specific 

order on these reactions. In the third rule we have that B must be bound to C before C can 

bind to D. But because B must also be bound to A before it can bind to C we have a se-

quence of binding reactions that result in a complex of all four components. Multiple over-

lapping sequences of reactions can also be defined. Because state sites are not supported in 

required reactions 

 

bind, A()[binder], B()[binder_target], {s1:1} 

bind, B()[binder], C()[binder_target], {s1:2} 

bind, C()[binder], D()[binder_target], {s1:3} 

Rule('bind_0_A_binder_B_binder_target',  

A(B=None) + B(A=None, C=None)  

| A(B=1) % B(A=1, C=None),  

bind_0_A_binder_B_binder_target_2kf,  

bind_0_A_binder_B_binder_target_1kr) 

Rule('bind_0_B_binder_C_binder_target',  

B(A=ANY, C=None) + C(B=None, D=None)  

| B(A=ANY, C=1) % C(B=1, D=None),  

bind_0_B_binder_C_binder_target_2kf,  

bind_0_B_binder_C_binder_target_1kr) 

Rule('bind_0_C_binder_D_binder_target',  

C(B=ANY, D=None) + D(C=None)  

| C(B=ANY, D=1) % D(C=1),  

bind_0_C_binder_D_binder_target_2kf,  

bind_0_C_binder_D_binder_target_1kr) 
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HypBuilder, only binding sites are affected. Designating such reaction sequences will not 

work in competitive binding cases and thus should only be used on a limited basis. A more 

proper way to construct sequences of reactions is to write it into the molecular reaction 

library. Reaction sequencing will likely be removed in the future. 

 

5.3.6.8 Initial Binding 

    A situation that may come up is the need to begin a simulation with monomers that are 

already bound, so initial values for these bound species must therefore be defined in the 

model. HypBuilder supports the construction of such models. Consider the following input 

file. 

 

 

    Here, f:5 in the first reaction indicates that an initial value for the bound species consist-

ing of the monomers A and B should be five, leaving 5 each of A and B. The second and 

third binding reactions are both followed by the f:all tag in curly brackets, indicating the 

maximum possible binding. Both reactions have a binder (C and D) with the same target 

(E) and there is more combined C and D than E, thus we expect E to be completely con-

sumed while C and D compete for it. HypBuilder handles this iteratively. At each iteration 

it will first enumerate the total number of possible binding pairs for each species, 5000 for 

C % E and 10000 for D % E. It then randomly chooses one of these species based on the 

percentage of the total number of pairs. Thus, at the first iteration C % E has a 5000/(5000 

model components 

 

A, 10 

B, 10 

C, 50 

D, 100 

E, 100 

 

required reactions 

 

bind, A()[binder], B()[binder_target], {f:5} 

bind, C()[binder], E()[binder_target], {f:all} 

bind, D()[binder], E()[binder_target], {f:all} 
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+ 10000) = 33% chance of getting chosen. Once one is chosen the number of possible 

binding pairs is updated and the next iteration is executed. This continues until there are no 

possible binding pairs left. The initial values and their parameters for the above input file 

are displayed below. 

 

 

5.3.6.9 Text 

    Any additional information required to be in every model can be include by simply add-

ing to the input file under the header of ‘text’, like so. 

 

 

 

 

 

 

 

Parameter('C_E_0', 39.0) 

Parameter('D_E_0', 61.0) 

Parameter('A_B_0', 5.0) 

Parameter('A_0', 5.0) 

Parameter('C_0', 11.0) 

Parameter('B_0', 5.0) 

Parameter('E_0', 0.0) 

Parameter('D_0', 39.0) 

 

Initial(C(E=1) % E(C=1, D=None), C_E_0) 

Initial(D(E=1) % E(C=None, D=1), D_E_0) 

Initial(A(B=1) % B(A=1), A_B_0) 

Initial(A(B=None), A_0) 

Initial(C(E=None), C_0) 

Initial(B(A=None), B_0) 

Initial(E(C=None, D=None), E_0) 

Initial(D(E=None), D_0) 

Text 

 

“add text here” 

“add more text” 

“and so on.” 
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5.4 Examples 

5.4.1 Extrinsic Apoptosis Reaction Model 

    A family of Extrinsic Apoptosis Reaction Models (EARM), is described in [31] and can 

be found at https://earm.readthedocs.io/en/latest/index.html. The models are a test bed for 

hypothesis exploration of the extrinsic apoptosis system. Here we demonstrate the recapit-

ulation of one of those models, EARM 2.0 Embedded, with HypBuilder. We consider the 

comparative ease of automatic model construction versus manual construction, and the ex-

tent of the library needed to build the model. The entire HypBuilder input file for EARM 

2.0 Embedded is in appendix X.  

    The number of monomers in the HypBuilder model is 39 versus 23 for the manually 

constructed model. This reflects the fact that each monomer state in the manually con-

structed model is a separate monomer for the automatically constructed one, as we will 

shortly demonstrate. The number of rules is identical between the manual and automati-

cally generated models and the structure of each, as well as the underlying mass-action 

ODEs, is effectively identical. Examples of the catalytic reaction for Caspase-8 induced 

cleavage of Bid from the HypBuilder input file, the associated automatically constructed 

model, and the manually constructed model are given below. Note that the input file for 

this reaction, and it’s associated parameters is far shorter, and less complicated to write, 

than the associated rules and parameters it generates, or those for the manually constructed 

case. Overall the character count for the EARM input file is ~4900, while the automatic 

and manually generated models have character counts of ~39,400 and 23,500 respectively. 

Thus, writing this single model in HypBuilder results in more than a 5x reduction in re-

quired coding if the necessary library entries already exist. The absence of state sites in the 

HypBuilder version is apparent in the cleaved Bid protein. In the second automatically 

generated rule the monomer representing the un-cleaved protein (BidU) is destroyed and 

the monomer for the cleaved protein (BidT) is created. For the analogous manually created 

rule the single Bid monomer simply changes state from “state=U” to “state=T”. Mathemat-

ically these two rules are equivalent. When both full models are constructed with the same 

https://github.com/LoLab-VU/BIND
https://github.com/LoLab-VU/BIND
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parameters they are undistinguishable (Figure 5.3). The molecular reaction library needed 

to automatically construct this model via HypBuilder requires only 18 molecule types and 

10 reaction types (Appendix I). 

 

 

 

HypBuilder input file 
 
catalysis, C8A()[catalyzer], BidU()[substrate], BidT()[product], 

7.8693418477379699e-06, 1.3478527255190856e-05, 0.20070834648071373 

 
Automatically constructed rules 
 
Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product',

 C8A(BidU=None, BAR=None, C3pro=None) + BidU(C8A=None)  

 | C8A(BidU=1, BAR=None, C3pro=None) % BidU(C8A=1),   

 catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf_0, 

 catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr_0) 

 

Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product',  

 C8A(BidU=1, BAR=None, C3pro=None) % BidU(C8A=1)   

 >> C8A(BidU=None, BAR=None, C3pro=None) + BidT(),   

 catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc_0) 

 

Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_prod-

uct_2kf_0', 7.86934184773797e-06) 

Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_prod-

uct_1kr_0', 1.3478527255190856e-05) 

Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_prod-

uct_1kc_0', 0.20070834648071373) 

 
Manually constructed rules 
 
Rule('bind_C8A_BidU_to_C8ABidU',       

 C8(bf=None, state='A') + Bid(bf=None, state='U')   

 <> C8(bf=1, state='A') % Bid(bf=1, state='U'),    

 bind_C8A_BidU_to_C8ABidU_kf,       

 bind_C8A_BidU_to_C8ABidU_kr) 

 

Rule('catalyze_C8ABidU_to_C8A_BidT',      

 C8(bf=1, state='A') % Bid(bf=1, state='U')    

 | C8(bf=None, state='A') + Bid(bf=None, state='T'),   

 catalyze_C8ABidU_to_C8A_BidT_kc) 

 

Parameter('bind_C8A_BidU_to_C8ABidU_kf', 7.8693418477379699e-06) 

Parameter('bind_C8A_BidU_to_C8ABidU_kr', 1.3478527255190856e-05) 

Parameter('catalyze_C8ABidU_to_C8A_BidT_kc', 0.20070834648071373) 
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Figure 5.3. Comparison of manually and automatically constructed EARM models. (A) 

the automatically constructed model. (B) the manually constructed model. 

 

 

 

A 

B 
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5.4.2 Direct, Indirect, and Embedded MOMP Models 

    Mitochondrial Outer Membrane permeabilization is the key step in mitochondrial acti-

vation of apoptosis and three distinct models have been proposed for its execution (Figure 

5.4). In the ‘direct’ model BH3-only activators, like Bid, act on and activate the effector 

pore-forming proteins like Bax and Bak. The anti-apoptosis regulators such as Bcl-2 then 

inhibit the activators. In the displacement (indirect) model the antiapoptotic regulators bind 

and inhibit the effectors rendering them inactive until an activator displaces the antiapop-

totic protein by binding the antiapoptotic proteins. Finally, the embedded model combines 

properties of both the direct and indirect models. In this model the activators directly acti-

vate the effectors and the antiapoptotic proteins inhibit both the activators and the effector 

proteins.  

    For model selection and multimodel inference purposes one may want to compare dif-

ferent regulatory networks and for that, a separate model is required for each. Here we have 

used HypBuilder to automatically construct 805 Direct/Embedded models and 645 Indirect 

models using two HypBuilder input files (Appendix II). In each case all combinations of 

the inhibitory interactions (orange connections in Figure 5.4) were produced. The Di-

rect/Embedded models contain direct interactions for activators and effector proteins (blue 

connections) while the Indirect models do not. Both cases take advantage of the ‘data node’ 

feature in HypBuilder to eliminate models with subnetworks that are disconnected from a 

node for which we have data, in this case SmacC. Both also make use of the ‘text’ feature 

in order to add increasing amounts of the activator Bid, roughly in line with data on that 

protein. In addition, the Indirect models must start out in a state in which the antiapoptotic 

proteins are bound to the effectors. Here we use the ‘initial binding’ feature in HypBuilder 

to randomly fill out the binding partners. In all, 1450 executable PySB models were gen-

erated with a minimal input effort. The molecular interaction library used here is the same 

as that for the EARM case above. All 1450 models can be found at 

https://github.com/LoLab-VU/BIND. 

 

https://github.com/LoLab-VU/BIND
https://github.com/LoLab-VU/BIND
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Figure 5.4. MOMP regulatory networks for the Direct, Indirect, and Embedded models. 
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Chapter 6  

 

Discussion and Future Directions 

 

6.1 Discussion  

6.1.1 Bayesian Evidence-Based Exploration of Network Dynamics 

Characterization of information flow through biological networks, the interactions between 

various pathways or network components, and shifts in phenotype upon regulatory pertur-

bations is an exceedingly difficult task. Although comparative analysis of signal flow 

within a network is possible with current computational methods, the dependence of phys-

icochemical models on unknown parameters makes the computational examination of each 

network component highly dependent on costly experimentation.  

    To take advantage of the enormous amount of existing knowledge encoded in these 

physicochemical reaction networks without the dependence on explicit parameter values 

we take a probabilistic approach to the inference of changes in network dynamics. By in-

tegrating an objective function that represents a simulated outcome over parameter distri-

butions that represent the current knowledge of the parameters, we obtain the likelihood of 

attaining that outcome given all available information. Qualitative inference of network 

behavior for various in silico experimental setups and regulatory conditions are then attain-

able without explicit knowledge of every parameter value. The utility of the method was 

evident when applied to the regulation of extrinsic apoptosis. Networks that incorporate an 

active mitochondrial pathway displayed a higher resistance to apoptotic inhibition from 

increasing levels of XIAP, consistent with experimental evidence that XIAP induces a 

Type II phenotype [71]. Also in line with experimental evidence [93] are the results that 

suggest low/high signal initiation is consistent with Type II/I phenotype respectively and 

that both phenotypes achieve apoptosis equally well. 
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    A limitation of the method is the computational cost. A number of factors affect the run 

time of the algorithm including size of the model, the objective function, and the desired 

precision. For example, the average estimated clock time of 76,981 seconds for the com-

plete network under the PARP cleavage objective function and at a population size of 

16,000 equates to nearly 714 CPU days for that entire run. Although the run time for the 

evidence calculation can vary greatly, it is highly correlated to the size of the model as was 

seen with the equivalent caspase pathway run at an average of 11,964 seconds. Fortunately, 

reducing the resolution (the number of sets of initial values for which an evidence value is 

estimated) and the precision (the population size) can drastically reduce the cost and in 

many cases the method will still be viable. One aspect of the method that is severely re-

strictive is the number of model components that can be varied in the same run since the 

computational cost increases exponentially with each additional variable. Reasonable pa-

rameter ranges must also be chosen. Information regarding the parameters can be incorpo-

rated into the evidence calculations by adjusting the range and shape of the priors. Here we 

used generic but biologically plausible ranges with uniform distributions in log space and 

produced results that were qualitatively consistent with previous experimental results.  

    In this work we have demonstrated a probabilistic approach to the qualitative analysis 

of the network dynamics of physicochemical models. It is designed to incorporate all avail-

able knowledge of the reaction topology, and the parameters on that topology, and calculate 

the likelihood of achieving an outcome of interest. Inferences on network dynamics are 

then made by repeating this calculation under changing regulatory conditions and various 

in silico experiments. We tested the method against a model of the extrinsic apoptosis sys-

tem and produced results that were consistent with several lines of experimental research. 

To our knowledge this is the first attempt at such a probabilistic analysis of network dy-

namics for physicochemical models. We believe this method will prove valuable for the 

large-scale exploration of those dynamics, particularly when parameter knowledge and 

data are scarce. 
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6.1.2 Bayesian Evidence-Based Analysis of Extrinsic Apoptosis Regulatory Axes 

Extrinsic apoptosis is a critical cellular process, important therapeutic target, and has been 

the focus of much study. Nonetheless, its regulation is not completely understood. In Chap-

ter 4 we extended our characterization of the regulation of extrinsic apoptosis at three major 

regulatory axes: DISC driven activation of Caspase-8, XIAP induced inhibition of 

Caspase-3 activation, and the network of Bcl-2 family proteins that regulate MOMP.  

    We first considered the ratio of XIAP to its target of inhibition Caspase-3. We found that 

the effect of XIAP on the choice of phenotype (low XIAP being consistent with Type I 

while high levels are consistent with Type II) is considerably more pronounced at low lev-

els of Caspase-3. The variation of Caspase-3 has its own effect on the dynamics of the 

system. As levels of Caspase-3 fall, the likelihood of achieving apoptosis through either 

the caspase pathway or the complete model drops, but this effect, particularly with moder-

ate levels of XIAP, is less pronounced for the complete model. Thus, low levels of Caspase-

3 favor a Type II pathway. Although differences in the topology of the models, and the 

resulting expected values for PARP cleavage, could result in a XIAP:Caspase-3 ratio de-

pendent bias in pathway dominance, as predicted in Aldridge et al. [22], we observed no 

evidence of that under the conditions tested here. Overall, the general effect of both XIAP 

and Caspase-3 is the same for both models, but subtle differences create a more complex 

composite response to changes in the quantities of these two proteins. The combined effect 

dictates that the Type II pathway is favored under conditions with low Caspase-3 and mod-

erate XIAP levels. Although both XIAP and Caspase-3 affect both the caspase pathway 

and the complete model in qualitatively the same way, it appears that the inclusion of mi-

tochondrial involvement can help the system overcome impediments to apoptosis, which 

supports the hypothesis that MOMP is an apoptotic signal amplification mechanism [93]. 

    Analysis of the effect of receptor count on the choice of pathway appears to support the 

hypothesis from Meng et al. [105] that a low receptor count favors the Type II pathway 

and could potentially be the determining factor. As with XIAP and Caspase-3, receptor 

count affects both networks in the same qualitative manner but to different degrees. A low 
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receptor count generally makes achieving apoptosis more difficult in both cases but affects 

the caspase pathway to a greater extent. The effect of receptor count is also synergistic with 

lower levels of the other DISC components Fadd and Procaspase-8, supporting the original 

hypothesis from Scaffidi et al. [93] that weak Caspase-8 activation at the DISC is charac-

teristic of a Type II phenotype. The analysis of signal flux for the DISC components ap-

pears to indicate that lower DISC formation shifts the signal flux from the caspase to the 

mitochondrial pathway. This is in line with the analysis in Chapter 3 and supports a number 

of conclusions in Scaffidi et al. such as the order of activation of the various components 

and the equal effectiveness of both phenotypes for effecting apoptosis.  

    Analysis of MOMP regulation indicated that inhibition of antiapoptotic proteins with 

sensitizers, sensitizer peptides, or their mimetics would be incomplete using generic bind-

ing rate constants. The initial sampling run assumed the same range of parameter values 

for all binding reactions. Assignment of stronger binding affinities for the Bcl-2 protein 

regulators of MOMP, affinities more in line with experimentally derived KD values, elic-

ited both stronger antiapoptotic effects and a stronger recovery of apoptosis. Thus, existing 

knowledge can be used to shape and shift the prior distributions in order to obtain results 

that are more in line with experimental outcomes. The composition of the MOMP regula-

tory network and the quantities of its components will also greatly affect how much an 

inhibitor will increase the likelihood of apoptosis. Side effects, like the thrombocytopenia 

that results from Bcl-xl inhibition, must also be considered [121]. Such side effects could 

potentially be encoded into a computational model. Given quantitative information on all 

relevant MOMP regulatory proteins and the correct regulatory topology, the therapeutic 

targets that are most likely to result in the desired outcome could be hypothesized using 

the methods developed here. Follow up modeling with traditional methods along with ex-

perimentation could then be used for confirmation. A similar strategy could be used to 

target other extrinsic apoptotic signal regulators like XIAP and cFlip, or regulators of any 

other computationally modeled system. 
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    Overall, the results produced by calculating expected values for cleaved PARP and path-

way flux over changing conditions at the regulatory axes explored in this chapter proved 

to be consistent with experimental evidence, further solidifying our belief that this method 

will be a useful tool for the analysis of biological networks when rate parameters and the 

data to calibrate them are sparse.  

 

6.1.3 Large Scale Construction of Physicochemical Models with HypBuilder 

    In Chapter 5 we presented HypBuilder, software for the large-scale production of exe-

cutable mechanistic models in the PySB format. The capability to quickly and easily con-

struct ensembles of models and model variants will enable model selection and in silico 

experiment sweeps at scales that were previously infeasible. 

 

6.2 Future Directions 

6.2.1 Expansion of Use Cases for the Probabilistic Analysis of Network Dynamics 

    In this work we have applied Bayesian-based estimation of expected values for quanti-

ties of interest to the extrinsic apoptosis network in the absence of time-series data. The 

method allowed us to explore network behavior, in a qualitative fashion, using generic 

parameter ranges instead of an explicit ‘best fit’ parameter set. However, we feel this ap-

proach may prove to be a more statistically rigorous analytical method than those currently 

in use. The general workflow would be to first use a Markov chain Monte Carlo method to 

fit posterior parameter distributions to available data, which can be done with readily avail-

able software like PyDREAM [37]. Those posteriors would then become priors for the 

subsequent evidence calculation. Follow up studies using this approach could explore a 

number of questions. For example, how much of the prior parameter space must we con-

sider in order to make realistic predictions. Is a single best fit parameter set enough? Or an 

average of an ensemble of parameters sets consistent with experimental data [122, 123]? 

Or are there cases in which it would be prudent to consider the entirety of the prior distri-

bution? How much data is necessary to foster accurate quantitative predictions is another 
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question. Less data means more parameter uncertainty in any calibration. In this work 

we’ve used our method without experimental data, relying only on generic ranges for our 

parameters. Although we view this as a ‘first-pass’ analysis, we saw very good qualitative 

consistency with experimental evidence. Additional data would narrow and shape the pri-

ors and further strengthen the predictive power. With more data our qualitative results 

would become more quantitative in nature. In general, the placement of data in the model 

affects which parameters become more constrained which, in turn, affects the questions 

one can confidently answer. A comparison, incorporating all these factors, with single pa-

rameter or ensemble methods would be instructive. Computation time would also need to 

be factored in. Rigor and accuracy must be weighed against the available resources and 

time constraints. 

 

6.2.2 Exploration of Generated Biological Hypotheses 

    In addition to the consistency with existing experimental evidence, the analysis in Chap-

ters 3 and 4 provided several novel hypotheses that could be explored further with addi-

tional experimentation. For example, the mechanism by which XIAP exerts phenotypic 

control over the apoptotic phenotype appears to simply be differential inhibition between 

the caspase pathway and the complete network. Another potential avenue of study is the 

potential mechanism by which the mitochondria effects amplification of the apoptosis sig-

nal. Under some conditions it appears to primarily work through inhibition of XIAP, sub-

sequently allowing the signal through the direct caspase pathway. This mechanism appears 

to describe well the MCF-7 cell line and potentially represents a third extrinsic apoptosis 

phenotype where Type I is characterized by the complete independence of the mitochon-

dria and Type II by full routing of the signal through the mitochondrial pathway. Control 

of the signal route by the DISC, and specifically the receptor, is another potential subject 

of study, as is the potential relationship between signal strength, XIAP, and the specific 

mechanism of apoptosis signal transduction. Lastly, our hypothesis that BH3 memetic 

compounds exert the majority of their effects up to doses in line with the concentration of 
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their targets could be experimentally tested, with potential significance with regard to the 

dosage of such drugs.  

 

6.2.3 HypBuilder Development 

    HypBuilder development will be ongoing. The goal is to provide an interface for PySB 

that simplifies model construction and allows for large-scale model building while retain-

ing all functionality that PySB provides. Full PySB functionality currently requires addi-

tions to the software such as support for Expressions, a means to add non-mass-action-

based rate laws to a model. 
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APPENDICES 

 

Appendix I: HypBuilder version of the Extrinsic Apoptosis Reaction Model 2.0 Embed-

ded and the molecular reaction library needed to construct it. 

 

 

EARM 2.0 Embedded for construction with HypBuilder 
 

model components 

 

L, 3000 

R, 200 

DISC, 0 

C8A, 0 

C8pro, 20000 

C6A, 0 

C6pro, 10000 

BidU, 40000 

BidT, 0 

BidM, 0 

flip, 100 

BAR, 1000 

SmacM, 100000 

SmacC, 0 

SmacA, 0 

CytoCM, 500000 

CytoCC, 0 

CytoCA, 0 

ApafI, 100000 

ApafA, 0 

C9, 100000 

Apop, 0 

C3A, 0 

C3pro, 10000 

C3ub, 0 

XIAP, 100000 

PARPU, 1000000 

PARPC, 0 

BaxC, 80000 

BaxM, 0 

BaxA, 0 

BclxLC, 20000 

BclxLM, 0 

BakM, 20000 

BakA, 0 

Bcl2, 20000 

Mcl1, 20000 

Bad, 1000 

Noxa, 0 
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Molecular interaction library required for automatic EARM model construction 
 

molecule: pore 

reaction: pore_formation 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=None, pore_2=None)  

<> pore(pore_1=None, pore_2=1)  

% pore(pore_1=1, pore_2=None) 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=None, pore_2=1)  

% pore(pore_1=1, pore_2=None)  

<> pore(pore_1=3, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3) 

template: pore(pore_1=None, pore_2=None)  

+ pore(pore_1=3, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3)  

<> pore(pore_1=4, pore_2=1)  

% pore(pore_1=1, pore_2=2)  

% pore(pore_1=2, pore_2=3)  

% pore(pore_1=3, pore_2=4) 

$$$ 

+++ 

 

molecule: cargo_M 

+++ 

 

molecule: cargo_C 

reaction: transport 

template: pore(pore_1=4, pore_2=1, cargo_M=None)  

% pore(pore_1=1, pore_2=2, cargo_M=None)  

% pore(pore_1=2, pore_2=3, cargo_M=None)  

% pore(pore_1=3, pore_2=4, cargo_M=None)  

+ cargo_M(pore=None)  

<> pore(pore_1=4, pore_2=1, cargo_M=None)  

% pore(pore_1=1, pore_2=2, cargo_M=None)  

% pore(pore_1=2, pore_2=3, cargo_M=None)  

% pore(pore_1=3, pore_2=4, cargo_M=5)  

% cargo_M(pore=5) 

template: pore(pore_1=4, pore_2=1, cargo_M=None)  

% pore(pore_1=1, pore_2=2, cargo_M=None)  

% pore(pore_1=2, pore_2=3, cargo_M=None)  

% pore(pore_1=3, pore_2=4, cargo_M=5)  

% cargo_M(pore=5)  

>> pore(pore_1=4, pore_2=1, cargo_M=None)  

% pore(pore_1=1, pore_2=2, cargo_M=None)  

% pore(pore_1=2, pore_2=3, cargo_M=None)  

% pore(pore_1=3, pore_2=4, cargo_M=None)  

+ cargo_C() 

$$$ 

+++ 
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molecule: inhibitor 

+++ 

 

molecule: inh_target 

reaction: inhibition 

template: inhibitor(inh_target=None)  

+ inh_target(inhibitor=None)  

<> inhibitor(inh_target=1)  

% inh_target(inhibitor=1) 

$$$ 

+++ 

 

molecule: subunit_a 

+++ 

 

molecule: subunit_b 

+++ 

 

molecule: dimer 

reaction: dimerization 

template: subunit_a(subunit_b=None)  

+ subunit_b(subunit_a=None)  

<> subunit_a(subunit_b=1)  

% subunit_b(subunit_a=1) 

template: subunit_a(subunit_b=1)  

% subunit_b(subunit_a=1)  

>> dimer() 

$$$ 

+++ 

 

molecule: subunit_c 

+++ 

 

molecule: subunit_d 

+++ 

 

molecule: complex 

reaction: conversion 

template: subunit_c()  

+ subunit_d()  

<> complex() 

$$$ 

+++ 
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molecule: self_substrate 

reaction: self_catalyze 

template: self_catalyzer(self_substrate=None)  

+ self_substrate(self_catalyzer=None)  

<> self_catalyzer(self_substrate=1)  

% self_substrate(self_catalyzer=1) 

template: self_catalyzer(self_substrate=1)  

% self_substrate(self_catalyzer=1)  

>> self_catalyzer(self_substrate=None)  

+ self_catalyzer(self_substrate=None) 

$$$ 

+++ 

 

molecule: self_catalyzer 

+++ 

 

molecule: catalyzer 

+++ 

 

molecule: substrate 

+++ 

 

molecule: product 

reaction: catalysis 

template: catalyzer(substrate=None)  

+ substrate(catalyzer=None)  

<> catalyzer(substrate=1)  

% substrate(catalyzer=1) 

template: catalyzer(substrate=1)  

% substrate(catalyzer=1)  

>> catalyzer(substrate=None)  

+ product() 

$$$ 

+++ 

 

molecule: equil_a 

+++ 

 

molecule: equil_b 

reaction: equilibration 

template: equil_a()  

<> equil_b() 

$$$ 

+++ 
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Appendix II: HypBuilder version of Indirect and Direct/Embedded models. 

 

 

Indirect Models 
 

model components 

 

Bid, 0.000001 

SmacM, 100000 

SmacC, 0, {d} 

CytoCM, 500000 

CytoCC, 0 

BaxA, 5000 

BclxL, 113000 

BakA, 35000 

Bcl2, 157000 

Mcl1, 57000 

Bad, 39000 

Noxa, 6000 

 

 

required reactions 

 

pore_formation, BaxA()[pore] 

pore_formation, BakA()[pore] 

transport, BaxA()[pore], SmacM()[cargo_M], SmacC()[cargo_C] 

transport, BakA()[pore], SmacM()[cargo_M], SmacC()[cargo_C] 

transport, BaxA()[pore], CytoCM()[cargo_M], CytoCC()[cargo_C] 

transport, BakA()[pore], CytoCM()[cargo_M], CytoCC()[cargo_C] 

 

optional reactions 

 

inhibition, Bcl2()[inhibitor], Bid()[inh_target] 

inhibition, BclxL()[inhibitor], Bid()[inh_target] 

inhibition, Mcl1()[inhibitor], Bid()[inh_target] 

inhibition, Bcl2()[inhibitor], BaxA()[inh_target], {f:all} 

inhibition, BclxL()[inhibitor], BaxA()[inh_target], {f:all} 

inhibition, BclxL()[inhibitor], BakA()[inh_target], {f:all} 

inhibition, Mcl1()[inhibitor], BakA()[inh_target], {f:all} 

inhibition, Bad()[inhibitor], Bcl2()[inh_target] 

inhibition, Bad()[inhibitor], BclxL()[inh_target] 

inhibition, Noxa()[inhibitor], Mcl1()[inh_target] 

 

 

text 

"from sympy import Piecewise" 

"Monomer('Timer')" 

"Parameter('Timer_rate_0', 1.0)" 

"Parameter('Timer_0', 0.0)" 

"Observable('Timer_obs', Timer())" 

"Rule('Timer_increment', None >> Timer(), Timer_rate_0)" 

"Parameter('a_0', 47080.3299)" 

"Parameter('b_0', 6.44553438)" 

"Parameter('c_0', 20235.8565)" 

"Parameter('UB_0', 171000)" 

"Expression('bid_rate', Piece-

wise(((UB_0*b_0*c_0*((Timer_obs/a_0)**b_0)*(((Timer_obs/a_0)**b_0) + 1)**(-

(c_0+1)))/Timer_obs, Timer_obs > 0.0), (0.0, True)))" 

"Rule('Bid_increment', None >> Bid(BaxM=None, BaxC=None, Mcl1=None, Bcl2=None, 

BclxL=None, BakM=None), bid_rate)" 

"Initial(Timer(), Timer_0)" 
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MOMP Direct/Embedded models 
 

model components 

 

Bid, 0.000001 

SmacM, 100000 

SmacC, 0, {d} 

CytoCM, 500000 

CytoCC, 0 

BaxC, 5000 

BaxM, 0 

BaxA, 0 

BclxL, 113000 

BakM, 35000 

BakA, 0 

Bcl2, 157000 

Mcl1, 57000 

Bad, 39000 

Noxa, 6000 

 

required reactions 

 

catalysis, Bid()[catalyzer], BaxC()[substrate], BaxM()[product] 

catalysis, Bid()[catalyzer], BaxM()[substrate], BaxA()[product] 

catalysis, Bid()[catalyzer], BakM()[substrate], BakA()[product] 

self_catalyze, BaxA()[self_catalyzer], BaxM()[self_substrate] 

self_catalyze, BakA()[self_catalyzer], BakM()[self_substrate] 

pore_formation, BaxA()[pore] 

pore_formation, BakA()[pore] 

transport, BaxA()[pore], SmacM()[cargo_M], SmacC()[cargo_C] 

transport, BakA()[pore], SmacM()[cargo_M], SmacC()[cargo_C] 

transport, BaxA()[pore], CytoCM()[cargo_M], CytoCC()[cargo_C] 

transport, BakA()[pore], CytoCM()[cargo_M], CytoCC()[cargo_C] 

 

optional reactions 

 

inhibition, Bcl2()[inhibitor], Bid()[inh_target] 

inhibition, BclxL()[inhibitor], Bid()[inh_target] 

inhibition, Mcl1()[inhibitor], Bid()[inh_target] 

inhibition, Bcl2()[inhibitor], BaxA()[inh_target] 

inhibition, BclxL()[inhibitor], BaxA()[inh_target] 

inhibition, BclxL()[inhibitor], BakA()[inh_target] 

inhibition, Mcl1()[inhibitor], BakA()[inh_target] 

inhibition, Bad()[inhibitor], Bcl2()[inh_target] 

inhibition, Bad()[inhibitor], BclxL()[inh_target] 

inhibition, Noxa()[inhibitor], Mcl1()[inh_target] 

 

 

text 

"from sympy import Piecewise" 

"Monomer('Timer')" 

"Parameter('Timer_rate_0', 1.0)" 

"Parameter('Timer_0', 0.0)" 

"Observable('Timer_obs', Timer())" 

"Rule('Timer_increment', None >> Timer(), Timer_rate_0)" 

"Parameter('a_0', 47080.3299)" 

"Parameter('b_0', 6.44553438)" 

"Parameter('c_0', 20235.8565)" 

"Parameter('UB_0', 171000)" 

"Expression('bid_rate', Piece-

wise(((UB_0*b_0*c_0*((Timer_obs/a_0)**b_0)*(((Timer_obs/a_0)**b_0) + 1)** 

(-(c_0+1)))/Timer_obs, Timer_obs > 0.0), (0.0, True)))" 

"Rule('Bid_increment', None >> Bid(BaxM=None, BaxC=None, Mcl1=None, Bcl2=None, 

BclxL=None, BakM=None), bid_rate)" 

"Initial(Timer(), Timer_0)" 


