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Abstract

Recent work has highlighted the significance of long-distance particle motions in hillslope
sediment transport. Such motions imply that the flux at a given hillslope position is appro-
priately described as a weighted function of surrounding conditions that influence motions
reaching the given position. Although the idea of nonlocal sediment transport is well grounded
in theory, limited field evidence has been provided. We test local and nonlocal formulations
of the flux and compare their ability to reproduce land-surface profiles of steep moraines

in California. We show that nonlocal and nonlinear models better reproduce evolved land-
surface profiles, notably the amount of lowering and concavity near the moraine crest and
the lengthening and straightening of the depositional apron. The analysis provides the first
estimates of key parameters that set sediment entrainment rates and travel distances in non-
local formulations, and highlights the importance of correctly specifying the entrainment
rate when modeling land-surface evolution. Moraine evolution associated with nonlocal and
nonlinear transport formulations, when described in terms of the evolution of the Fourier
transform of the moraine surface, displays a distinct behavior involving growth of certain
wavenumbers, in contrast to the decay of all wavenumbers associated with linear transport.
Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear
relation between the flux and the land-surface slope.

1 Introduction

Recent work on hillslope sediment transport has highlighted the idea that sediment par-
ticle travel distance is an important component of the flux [Michaelides et al., 2010; Lamb
et al., 2011; Shelef and Hilley, 2016; Carretier et al., 2016]. In certain settings, transport
processes may redistribute sediment over length scales that are long relative to hillslope to-
pographic (e.g., slope) length scales. These situations require nonlocal formulations for the
hillslope sediment flux. That is, the flux at a position x [L] is a weighted function of the con-
ditions around x. This class of nonlocal models differs significantly from more common lo-
cal models that assume particle motions are much smaller than the length scales over which
hillslope properties change. Local models suggest that the flux may be described as a func-
tion of local conditions at x whereas nonlocal models stipulate that distal conditions con-
tribute to the flux at x. Previous research has focused on the theoretical development of non-
local descriptions of flux that explicitly include the effect of long-distance particle motions
[Foufoula-Georgiou et al., 2010; Tucker and Bradley, 2010; Furbish and Haff, 2010; Furbish
and Roering, 2013] and has highlighted the mathematical difference between local and non-
local models. Existing literature presents compelling reasons to use nonlocal formulations
for the hillslope sediment transport. It shows that nonlocal fomulations reproduce steady-
state topographic profiles [Foufoula-Georgiou et al., 2010; Furbish and Haff, 2010], are the-
oretically sound, and contain parameters that are physically based and potentially measurable
[Furbish and Roering, 2013]. We augment existing work by demonstrating nonlocal trans-
port and its consequences in a field setting at the hillslope scale. Demonstrating nonlocal
transport requires that we first distinguish between nonlocal and local formulations.

The mathematical distinction between nonlocal and local sediment transport is well-
defined. However, a physical distinction may be obscured by the presence of a suite of pro-
cesses that transport sediment over various length scales [Furbish and Roering, 2013]. For
example, the lengths of disturbance-driven particle motions due to shrink-swell, freeze-thaw
cycles and localized bioturbation are on the order of the pore diameters (or perhaps many
pore diameters) within the soil column. The lengths of particle motions on the soil surface
produced by rain splash are on the order of millimeters to decimeters. These quasi-random
motions in the soil column or on its surface result in a bulk downslope motion whose rate
is approximately proportional to the local land-surface slope [Culling, 1963; Carson and
Kirkby, 1972; Fernandes and Dietrich, 1997; Jyotsna and Haff, 1997; Furbish et al., 2009a].
In contrast, processes such as dry ravel, shallow landslides, tree throw, patchy surface flows
and the activity of fossorial animals may involve transport distances that are on the order of



meters if not much longer. This is particularly true in steepland settings where particle trans-
port distances increase [Gabet et al., 2003; Gabet and Mendoza, 2012]. On any given hill-
slope, a suite of individual transport mechanisms with different characteristic length scales
may compose the aggregate sediment transport. Length scales of particle motions for these
processes may blend smoothly or discretely from short (pore scale) to long (many meters),
complicating a physical distinction between local and nonlocal transport. Thus, identifying
behaviors and characteristics of transport formulations, and their veracity when applied to
field conditions, is clouded by the variability of length scales of natural transport processes.
In this paper, we overcome this difficulty by evaluating the long-term evolution of geomor-
phic features.

Directly observing natural sediment transport on hillslopes usually requires being
in the right place at the right time, and, except for field-based plot-scale experiments or at
instrument-deployed sites, direct measurements of transport are unusual if not impossible
over large areas and timescales. At climate-change and longer timescales, we have no choice
but to consider how the time-integrated effects of transport are reflected in land-surface ge-
ometry, possibly including additional soil constituents whose behaviors are coupled with sur-
face evolution [Furbish, 2003; Roering et al., 2004; Johnson et al., 2014; Anderson, 2015].
In certain situations, the hillslope form and land-surface evolution may reflect the time-
averaged characteristics of transport. We believe this to be the case for our descriptions be-
low of transport and the post-depositional evolution of lateral moraines that emerge from the
eastern front of the Sierra Nevada, California, USA. These moraines provide an ideal oppor-
tunity to evaluate different transport formulae because they have well-defined ages and initial
conditions.

Specifically, we use local linear [Fernandes and Dietrich, 1997; Mudd and Furbish,
2007], local nonlinear [Roering et al., 1999; Ouimet et al., 2009; DiBiase et al., 2010] and
nonlocal [Furbish and Haff, 2010; Furbish and Roering, 2013] formulations of hillslope sed-
iment transport to numerically simulate the evolution of these steep lateral moraines. The
analysis reveals two significant items. First, based on numerical analyses we show that non-
local models mimic moraine profile evolution with higher fidelity than local, linear diffusion.
To our knowledge, this is the first demonstration that documents nonlocal hillslope sediment
transport at the hillslope scale using the class of models described below. Nonlocal models
match the performance of nonlinear models and we argue that these models share low-order
mathematical form, and are therefore expected to perform similarly. We are able to make the
first estimates of the numeric values of parameters that are central to the nonlocal formula-
tion and reflect real physical and measurable components of sediment transport. The para-
metric values we extract are likely specific to the lateral moraines because glacial till con-
tains such a wide range of grain sizes and moraines are entirely composed of unconsolidated
sediment. However, so long as the landscape is transport-limited, similar values may apply
to the region due to regional climate and ecology. Second, we are able to identify a distinct
mathematical behavior of nonlocal and local nonlinear formulations for sediment transport.
In particular, we observe that the evolution of the Fourier transform of the land-surface ele-
vation shows amplification in certain wavenumbers k (k = 27/L where L is the wavelength)
for nonlocal and nonlinear models. This differs from the behavior associated with the linear
“diffusive” description of the flux normally adopted for convenience in landform/landscape
evolution models, which necessarily results in spectral decay of all wavenumbers. In addition
we show that simplified versions of nonlocal and nonlinear flux models share mathematical
similarities leading to similar behavior under certain conditions.

In section 2 we review the concepts of local linear, local nonlinear and nonlocal sedi-
ment transport and we present modifications to formulations suggested by previous authors.
Section 3 describes the setting, glacial history and characteristics of the lateral moraines used
in the study. In section 4 we focus on numerical methods. Results showing that nonlocal
transport effectively accounts for the evolution of the land surface are presented in section 5.
Here we also present a basic description of the time-evolution of the Fourier transform of the



land-surface elevation. A full treatment of this spectral behavior is beyond the scope of this
paper, but the results indicate value in using the evolution of Fourier transforms to clarify key
elements of land-surface evolution.

2 Theory
2.1 Local Linear Transport

For disturbance-driven transport involving relatively short particle motions — whether
due to the continual creation and collapse of porosity within the active soil thickness or to
surface transport by rain splash — the volumetric flux ¢(x) [L?> T~'] often is described by
a linear, slope-dependent transport model, namely [Culling, 1963; Fernandes and Dietrich,
1997; Jyotsna and Haff, 1997; Carson and Kirkby, 1972; Tucker and Bras, 1998],

g(x) = - j—{ =-DS, 1
X

where { [L] is the land-surface elevation, D [L2T ']isa diffusivity-like rate constant, and

the land-surface slope S = d/dx. This is by definition a local formulation of transport. The
surface slope S is defined locally at a scale larger than the disturbance-driven motions, and it

is assumed that these motions (locally) are uninfluenced by variations in soil or land-surface
conditions over distances longer than the scale used to define the slope. The linear slope de-
pendency represents the lowest order effect of gravity in producing a downslope bias in mo-

tions of soil particles. Process oriented formulations have confirmed the slope dependency
[Furbish et al., 2009a,b; Anderson, R.S. , 2002; Dunne et al., 2010]

2.2 Local Nonlinear Transport

There is evidence that the volumetric sediment flux is nonlinearly related to the land-
surface slope [Ouimet et al., 2009; DiBiase et al., 2010]. For example, Roering et al. [1999]
developed a nonlinear model with the form,

5
L= (I81/Se)*”

where S, is a critical slope. As the magnitude of the land-surface slope approaches S, the
flux ¢ mathematically approaches infinity. The behavior of (2) at slopes below S, is consis-
tent with data of hillslope form [Roering et al., 1999, 2007] and erosion rates. To create a
nonlinearly slope-dependent flux, this model partially calls on increasing sediment transport
distances involved with small landslides and ravel. However, given that (2) is a local function
of x, the model does not explicitly include long-distance sediment motions.

g(x) = -D @

Nonetheless, in relation to our comparison below of the nonlinear model (2) with non-
local formulations of transport, we note that both are motivated by the same idea: on steep
slopes, long-distance motions become a significant component of the flux. As described in
the next section, the difference between these models is the treatment of particle motions. In
addition, whereas nonlocal models may in principle be adapted to short timescale problems,
for example, sediment and nutrient delivery to channels, local nonlinear models effectively
account for observed sediment fluxes and topographic configurations when averaged over
much longer timescales, and necessarily require spatial averaging of the land-surface slope
over scales of 7-10 meters [Roering et al., 2010]. We suggest in Section 6.3 that nonlocal and
nonlinear models share key mathematical attributes, namely, that they combine terms that are
nonlinear in slope and therefore behave similarly for long timescale applications.

2.3 Nonlocal Transport

Several formulations have been proposed to describe nonlocal sediment transport on
hillslopes. First, nonlocality can be introduced with a fractional calculus model where a



non-integer derivative of a quantity yields a nonlocal dependence [Foufoula-Georgiou et al.,
2010]. Second, rule-based models that follow particles or parcels of sediment downslope
and evaluate a probability of continuing motion based on the local slope conditions result
in long-distance motions [Tucker and Bradley, 2010]. A third model appeals to the sedi-
ment entrainment rate and the probability density function (pdf) of travel distance in or-

der to describe the flux [Furbish and Haff, 2010; Furbish and Roering, 2013]. The pdf of
travel distance describes the probability that particles move to within a distance r to r + dr
from the starting position. In this case the flux at x is a convolution integral-like [Gilad and
Von Hardenberg, 2006] expression of sediment entrained at all surrounding positions x’
weighted by the probability that it travels at least a distance x — x” = r, thereby contribut-
ing to the flux at x. Mathematically this is expressed as,

X
g = [ EGORG =) ax,
where E(x") [L3 L2 T~!]is a volumetric entrainment rate, R is a kernel related to the proba-
bility density function of f(r, x") of travel distances r = x — x’, and x” is an upslope position.
On a hillslope where slopes vary as a function x’, R(x — x’, x") should reflect the increasing
probability of long distance motions on steeper slopes [Gabet and Mendoza, 2012]. The flux
then is a unique result of the particular configuration of slopes around x. We use (3) as the
general formulation for the flux throughout this paper, because the volumetric entrainment
rate and a probability density function of particle travel distance are two physically inter-
pretable and potentially measurable components. This approach also complements research
that focuses on estimating the particle travel distance of various transport processes [Gabet,
2003; Furbish et al., 2009b; Michaelides et al., 2010; Gabet and Mendoza, 2012; DiBiase
etal.,2017].

Nonlocal hillslope sediment transport models have been primarily developed for transport-
limited conditions. However, a particularly appealing characteristic of a flux formulation
like (3) is that it may be applied to detachment limited conditions as well. In this case, the
entrainment rate, £, becomes the rate of detachment as opposed to the entrainment of un-
consolidated regolith. In this situation, the functional form of E(x") may be different from
what is presented below. Nonetheless the mathematical framework would be the same. Fur-
thermore, similar transport theories may apply to fluvial sediment transport [Parker et al.,
2000; Furbish et al., 2012; Martin et al., 2012; Fathel et al., 2015; Heyman et al., 2016].
Therefore, this type of description of the flux opens opportunities to examine commonalities
between transport on hillslopes and in rivers.

2.3.1 Entrainment Rate

The entrainment rate E [L3 L=2 T~!] represents a volume of sediment set in motion
per unit area during a time interval d¢. There are likely different and valid functional forms
for E(x’) that reflect natural entrainment processes. For example, entrainment by rainsplash
is uniform when averaged over long times relative to a shifting ground cover. In contrast,
the incidence of tree throw may increase with increasing slope [Hellmer et al., 2015], which
implies a slope dependency in the entrainment rate. A general functional description of the
entrainment rate is

E(x') = Eo + E1|S|°,

where Ej [L3 L™2 T™'] is a uniform background entrainment rate and E; [L3L 2T 'isa
slope-modulated term. For simplicity, Furbish and Haff [2010] set @ = 1. Here, we explore
the possibility that & # 1.

For the analyses presented below, we set £y = 0.001 m yr~! as a constant in order to
limit the fitting of parameters, and then appeal to previous work suggesting that £ is larger
[Furbish and Haff, 2010]. Setting Ey = 0.001 m yr~! is based on the amount of degradation
at the ridge top. Over the 40 ka of evolution, this value of E( suggests that 40 m of material
has been entrained. However, the bulk of that material remains at the ridge. We expect that

3)
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Figure 1. Image of shrub showing its behavior as a sediment capacitor with upslope sediment storage and

over-steepened downslope side. The black line represents a trace of the land-surface.

Eo may vary from 0.001 m yr~!, however, we think that we are within an order of magnitude
of the actual value because lowering due to the divergence of the flux at the ridge is necessar-
ily less than 40 m. If Ej is too low, then the value of E; can largely make up the difference
on sloped terrain. If the value of Ej is too large, then E; can not counteract the excess flux.
Therefore, we think a value of 0.001 m yr~! is a conservative estimate. Furthermore, insofar
as this paper is aimed at demonstrating nonlocal transport from land-surface form and Ej is
a constant regardless of profile form, fitting this quantity as a free parameter adds little or no
insight to the behavior of the moraine surface. That is, the value of Ey has little impact on
the form of the evolving moraine, although it does influence the magnitude of the flux, and
therefore will influence the magnitude of other parameters that we fit. We must interpret the
parametric values as being influenced by our choice of values for E.

The motivation for a nonlinear functional form for E(x”) comes from the observation
that obstacles on hillslopes both trap and route sediment downslope [Furbish et al., 2009b;
DiBiase and Lamb., 2013; Lamb et al., 2013] (Figure 1). These are essentially no-flux obsta-
cles where sediment accumulates on the upslope side and is eroded from the downslope side.
This has the important effect of over-steepening the land-surface immediately downslope of
the obstacle. We suggest that when the obstacles are removed, the trapped sediment is avail-
able for transport and ravels downslope [DiBiase and Lamb., 2013]. The volume of sediment
that is released depends on the volume of sediment that is trapped in a wedge upslope of the
over-steepened portion (Figure 2). Immediately below an obstacle we typically observe a mi-
nor depression that would act to locally disentrain sediment. However, the depressions are
often small in comparison to the mounds that form upslope. Furthermore, disentrainment
does not bear on the volume of entrained sediment. This is only one mechanism for produc-
ing a nonlinear relationship between entrained sediment volume and land-surface slope and
we expect that there are likely many processes (i.e. [Michaelides et al., 2012]) that share this
type of relationship.

To obtain a functional form of E for this process we approximate the volume of the
over-steepened wedge in relation to the land-surface slope. To do so, we approximate the flux
near a downslope no-flux obstacle with linear diffusion, which produces an over-steepened
surface. Linear diffusion is used here purely for illustration purposes to generate mounds that
resemble those observed in the field. We do not suggest that sediment transport is entirely
described by (1). We then define a three-dimensional wedge with a bottom surface that ex-
tends from the base of the over-steepened step up-slope to the land-surface and is inclined
at the angle of repose (Figure 2A). Results from this simulation show a nonlinear relation-
ship between the entrained volume and the land-surface slope (Figure 2B) [Putkonen et al.,
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Figure 2. Schematic diagram showing how the volume of entrained material increases nonlinearly with

slope. Contour lines (A) show the thickness of the wedge of sediment available for ravel, with calculations of

the volume entrained as a function of slope (B).

2012]. The volume-slope relationship represents an idealized case whereas in reality mound
geometry varies, and we expect some deviation from the relationship presented in Figure 2B.
Nonetheless we suggest that this analysis captures the nonlinearity of the relationship, which
is central in determining the functional form of E(x). For slopes between 0.1 and 0.7, the en-
trained volume appears to be well-approximated by a power relationship somewhere between
§? and S°. For simplicity, we use a squared relationship,

E(x") = Ey + E1|S(x)|?,

where E| represents effects of obstacle density and removal rate. E represents the rate of
entrainment due to slope independent processes such as rain-splash or lofting due to freeze-
thaw. Here we assume that obstacles are uniformly distributed and their mean duration is
constant. Therefore, obstacle removal rate in E; sets the time-scale and gives it the dimen-
sions [L T'].

Building sediment capacitors requires a sufficient amount of time for the obstacle to
accumulate sediment. The early evolution of the moraine in this case, then, had some spin-
up time during which the initial capacitors were constructed. The timescale for capacitor
construction is much shorter than that for the moraine evolution and is insignificant in terms
of land-surface morphology. The spin-up time may become significant for small landforms
where capacitors are relatively large.

The capacitors at our field site are Sage brush. We note that the argument above is spe-
cific to the idea of storage and release of sediment by shrubs, while acknowledging the pos-
sibility of a changing ecology and climate during the period of moraine evolution [Mensing,
2001]. Nonetheless, we speculate that this period, except immediately following glacier re-
cession, likely involved the continuing occurrence of vegetation with similar effects on trans-
port. Furthermore, we suggest that vegetative sediment capacitors is one mechanism for a
nonlinear formulation of E with slope, although there may be other processes with nonlin-
early slope-dependent entrainment rates. With this uncertainty, we must view the fitting of
moraine profiles in relation to the nonlocal formulation of transport as an hypothesis, and
we note that the model testing described below includes a linearly and nonlinearly slope-
dependent form for E.

&)



2.3.2 Travel Distance

The kernel-like term in (3), R(x — x’, x’), is the survival function of the pdf f(r, x’),
where R = 1 — /Or f(r, x")dr. Previous research [Furbish and Haff, 2010; Furbish and Roer-
ing, 2013] has used an exponential pdf for several reasons. First, comprehensive empirical
data that reflects travel distances of the suite of processes that might occur on hillslopes is
limited. However, we heuristically imagine that most particles move short distances while
a few will travel far — a general behavior captured by exponential functions. We note that
power-law functions share this behavior and we address this below. Second, exponential dis-
tributions have simple expressions for their statistical moments, which has proven useful in
approximating nonlocal behavior in advection-diffusion form [Furbish and Haff, 2010]. In
contrast, power-law distributions often have undefined statistical moments. Third, an expo-
nential distribution reflects the notion that arresting a particle in motion is a Poisson process
where over any interval of space, particles in motion have constant probability of stopping.
Rock-drop experiments show that travel distances are distributed exponentially and that a
friction model performs well in simplified conditions [Kirkby and Statham, 1975; Gabet and
Mendoza, 2012; DiBiase et al., 2017]. This idea leads to the conceptualization of a decay
constant (e.g., the mean of an exponential distribution) which we recast as a spatial disen-
trainment rate that describes the proportion of sediment that stops over a given distance. This
allows us to begin with a physically based although simple conceptualization of the bulk mo-
tion of sediment.

Previous authors have suggested that kernels with exponential forms result in land-
scape evolution that is consistent with local linear diffusion [Foufoula-Georgiou et al., 2010].
Whereas this analysis is correct for uniform kernels, the flexibility offered in (3) can result in
unique nonlocal behaviors while using exponential distributions of travel distance. Including
the function E(x’) in (3) also leads to unique behavior. That is, the volumetric entrainment
rate and the mean particle travel distance can vary as a function of land-surface conditions,
which leads to unique behaviors using an exponential pdf for travel distance. The flux in this
case becomes a linear combination (exponential weighting by R(x — x’, x")) of surround-
ing values for the volumetric entrainment rate (E(x”)). We also suggest that although under
certain conditions exponential kernels lead to behaviors described by local transport, (3) ex-
plicitly relates sediment contributions from different locations on a hillslope and is inherently
nonlocal.

The concept of disentrainment is treated in previous research [Furbish and Roering,
2013]; however, we briefly outline the physical interpretation here. Generally, disentrainment
describes the probability that a particle or portion of sediment set in motion at x” at time ¢
moves to an interval r = x — x" tor + dr = x — x” + dx at time ¢ + dt. This rate does not de-
fine the particular path taken by each particle or proportion of the entrained volume. Rather,
particles may take any number of motions to get to x = x” + r at ¢ + d¢. This concept reflects
the notion that there may be a suite of processes transporting particles downslope and that a
single particle may experience motion due to any number of processes several times during
the interval d¢. This simplifies the problem into a purely probabilistic one in which the pdf
of travel distance simply represents the distribution of particle positions after a given time dt.
By allowing for the possibility of particle travel distance to be a result of multiple hops we
are in effect considering a discrete process. However the mathematics that we use are con-
tinuous in time and space. For this reason the entrainment rate and pdf of particle travel dis-
tance must be time-averaged quantities [Furbish and Haff, 2010; Furbish et al., 2012], such
that the pdf of travel distances represents a distribution of transition probabilities associated
with the interval dr.

The development of a disentrainment rate is based on two ideas common in hillslope
sediment transport. First, empirical data suggest that particle transport distances increase on
steeper slopes for a host of processes [Gabet et al., 2003; Furbish et al., 2009b; Dunne et al.,
2010; Gabet and Mendoza, 2012]. Second, hillslope sediment flux nonlinearly increases as
land-surface slopes approach a critical slope, S; [Roering et al., 1999; Ouimet et al., 2009;



DiBiase et al., 2010]. This implies that the sediment particle travel distance nonlinearly in-
creases with slope, or the spatial disentrainment rate nonlinearly approaches zero. Com-
bining these constraints we can describe a disentrainment rate, P(x’) [L™'], that is slope-
dependent and goes to zero when |S| — 5,

P(x')z%o[sl%;x,)—l] _5,<S§<0,
where Ay is a characteristic length scale and S(x”) is the local land-surface slope which car-
ries sign. In this case, S; represents the slope at which particle motions continue indefinitely,
and differs from the definition of the critical slope S. which is the slope at which the flux be-
comes unbounded. When § — 5, the flux is simply the entirety of what is entrained, and
therefore the flux does not approach infinity. So long as § << §;, the actual value of S; has
little impact on the flux values calculated. The mean travel distance is 1/P(x”), which has a
nonlinear relationship with slope and is consistent with experimental results of particle travel
distances [Gabet and Mendoza, 2012]. For an exponential pdf of travel distances,

1 25; _xex! [&—1]
)= — |2 g T |5
flx—=x",x") " [SI—S(x’) ]e

Using the relationship between f and R we get
X _x;x/[ 28 ]
R(x—-x",x")=1- / flx—x',x)dx’ = e P IS=SN1
0

which describes the probability of sediment traveling at least a distance x — x’ such that it
contributes to the flux at x. Inserting (8) for E(x’) into (3), we obtain the flux in the positive

x direction
28

X _x=x! L
qp(x) = / [Eo + E1|S(xD)]|*Te % [ss6e) dx’,
This expression represents the downslope component of the flux; however, there is a possibil-
ity that the net flux will involve an upslope component.

2.3.3 Bi-directional motions

Processes such as rainsplash [Furbish et al., 2009b; Dunne et al., 2010] and transport
due to fossorial animals [Gabet et al., 2000, 2003] distribute sediment both downslope and
upslope. The proportion, p, of downslope transport and the proportion, n, of upslope trans-
port may be specified by

p(x’)=%[l—%’] -5, <S5 <5,
p(x) =1 -§>5,
p(x’)=0 =S <=5,

n(x’) =1 - p(x’),

where S, is a threshold slope magnitude above which all sediment moves in the same direc-
tion. The flux in the negative direction involves convolving the negative-bound portion of
entrained sediment with the survival function,

X _X';X[&_l]
q,,(x)=/ n(xE(x")e o 1S+ Tl dx’.

The total flux is the sum of positive and negative contributions

q(x) = /_x p(x’)E(x’)e_%[Sl%?“')_l] dx’ + /°° n(x)E(x")e 1
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x/—x
0
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The net flux according to (12) on a flat surface is zero as positive and negative motions can-
cel each other. As slopes steepen, downslope motions make up a larger component of the
entrained volume and travel distances increase (Figure 3).
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Figure 3. Schematic diagram of a hillslope profile £(x) showing the partitioning of positive and negative
motions starting from a position x” and how the probability density function of particle travel distances r

changes as a function of local slope.

Although the downslope component of the flux is expected to dominate at our field
site, the presence of an upslope component changes the slope-dependency. That is, the slope
dependency of n and p, which contain S(x”), adds another slope-dependent term. Therefore,
the impact of the upslope flux, although small, may be observed in hillslope form. We ex-
pect this to be particularly true on low-angle slopes, or at ridge-tops where the magnitude of
concavity is large.

3 Moraine Evolution

Moraines can be useful landforms for testing sediment transport formulations because
they have a well-constrained initial condition [Putkonen et al., 2008] and their depositional
ages are estimated from exposure-age dating techniques. This allows us to use a specified
model, starting from the initial condition, to simulate the evolution of the moraine over its
age. The outputs of these numerical models can be compared with the observed condition to
evaluate the performance of sediment transport formulations.

We focus on the evolution of the interior of lateral moraines because they are better
preserved than terminal moraines which are often degraded by fluvial processes. Although
there is some uncertainty with regard to the depositional age of moraines, typical age ranges
of thousands of years [Rood et al., 2011] do not significantly affect the results and implica-
tions presented below. The general evolution of a lateral moraine is as follows. While the
associated glacier is active, the lateral moraine is buttressed by the ice that it contains, which
allows for the interior side to oversteepen. Following the retreat of the glacier, the moraine
quickly relaxes to the angle of repose, which for glacial till is ~ 0.67 [Putkonen et al., 2008].
We assign the exposure-age of the moraine to this condition and numerically simulate the
subsequent evolution of the moraine by the proposed sediment transport formula.

The moraines on the east side of the Sierra Nevada, California, are particularly well-
suited for this type of study for several reasons. First, they often emerge from the mountain
front and are deposited in the adjacent basins. This configuration allows for moraines to be
completely unconfined and the form is not conditioned by the geometry of valley walls or
floors. Therefore, the form of the moraine is only a result of the initial condition, its age, and
sediment transport. Second, the glacial chronology of this region is well studied [Schaefer
et al., 2006; Phillips et al., 2009; Rood et al., 2011], which provides estimates for the ages
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Figure 4. Hillshade image of Bloody Canyon, California with traces of Tahoe (40 ka, dashed line [Schaefer
et al., 2006; Kaufman et al., 2003]), Tioga 1 (25 ka, dotted line [Kaufinan et al., 2003]), and Tioga 3 (18 ka,
solid line [Morgan and Putkonen, 2012; Rood et al., 2011]). Locations and orientations of profiles A, B, C

and D are shown.

of deposition. Third, these moraines have large side-slope lengths of ~120 m, which we may
assume is much larger than typical sediment particle displacements. A great number of parti-
cle displacements are responsible for the observed moraine form; thus large moraines repre-
sent a greater “sampling” of particle motions than smaller landforms.

The moraines on the eastern side of the Sierra Nevada record a suite of glacial ad-
vances and retreats. Last Glacial Maximum advances are represented by the Tioga (14-
25 ka) [Kaufman et al., 2003] moraines and penultimate glaciations are represented by the
Mono Basin (92-119 ka [Phillips et al., 1990] or 60-80 ka [Kaufman et al., 2003]) moraines.
Between these two major glaciations is the Tahoe glaciation (42-50 ka) [Kaufman et al.,
2003]. For the purpose of this paper we specify an age for the Tahoe glaciation as 40 ka. For
simplicity, we present the results from the youngest age estimate. We recognize that many
authors suggest older ages for the Tahoe glaciation. Modeling results using 40 ka and 50 ka
for initial conditions do not change the fit of models nor do parameters change significantly.
Here we look at the post-glacial evolution of Tioga 3 and Tahoe lateral moraines that emerge
from Bloody Canyon. Both are well preserved (Figure 4). The late Pleistocene glaciers in
Bloody Canyon sourced granites and metasedimentary rocks in the Sierra Nevada to the
west. The glacial till composed of these materials, particularly the granite clasts, weather
into residual sand and gravel (Figure 1). Such coarse materials have high infiltration rates
and concentrated overland flow and ponding of water on the surface is likely rare. Further-
more, because the moraines are composed entirely of porous unconsolidated sediment, there
is no perched water table. These characteristics suggest that any localized surface flows
are stochastic in space and time, thereby reducing the opportunity for concentrated rilling
or incision. As such, the surfaces have remained relatively planar, which justifies a one-
dimensional application of the numerical simulations. Planar surfaces are observed on all
moraines, including those dated as Mono Basin (92-119 ka), which suggests that the moraines
remain well-drained as they evolve.

A simple but significant observation is that the concentration of boulders changes as
a function of position. Boulder concentration is high near the crest and approaches zero in
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zontal position for profile C (A) and profile D (B). The depositional apron begins where the rate of boulder

accumulation decreases.

the depositional apron of the moraine (Figure 5). In the apron we note that the surface is
composed almost entirely of grusified gravels and sand that were presumably transported

to the depositional apron. The boulders represent a coarse lag left behind as more mobile,
finer-grained material moved downslope, such that with time the exposed boulder density in-
creases at the crest and decreases near the toe [Putkonen et al., 2008]. The presence of this
lag and accompanying apron provides evidence that sediment transport occurs primarily over
the surface of the moraine. Particles at the surface move when a disturbance occurs with suf-
ficient energy to displace them. Disturbances with energy sufficient to move grains of sand
and gravel occur far more frequently than those capable of moving boulders, and as such,
finer material is moved downslope quickly, leaving behind a boulder lag. Although surface
motions do not imply a certain transport formula, such motions are a requirement for nonlo-
cal transport, as long-distance motions only occur on the surface. Consequently, we would
expect to see a signature of nonlocal transport in this setting. We note that this may suggest
an armoring effect during the evolution of the moraine, and we address this in the discussion
in the context of nonlocal transport.

4 Methods
4.1 Field Methods

Using a self-leveling transit, we collected a high-resolution (2-3 m) topographic pro-
file along the path of steepest descent down the interior flanks of the lateral moraines. At
two to three meter intervals, we sampled at or above the typical spacing of sagebrush which
dominates the ecology of the area. As described above, the shrubs act as sediment capacitors
[Furbish et al., 2009b; Lamb et al., 2011, 2013] and locally add roughness elements to the
land surface. Because our study is focused on the large-scale form of the moraine, we limited
our sampling interval to the spacing of shrubs to avoid resolving roughness elements with
greater detail. For each survey, we extended the profile from several meters down the exterior
side of the crestline to several meters along the flat interior valley. In addition to collecting
topographic data we also collected a count of boulders exposed on the surface as a function
of downslope position. We conducted a high resolution count of boulders that were 25 cm or
greater in diameter within 2 X 4 meter areas positioned along the profile. The boulder sur-
veys were conducted along profile C (Tahoe) and D (Tioga 3). Profile C was collected for the
purpose of a boulder survey so the resolution is coarser and the toe of the moraine is incom-
pletely sampled. Nonetheless we include this profile in our analysis.
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4.2 Numerical Methods

To evaluate local and nonlocal models of hillslope sediment transport, we have written
three numerical procedures that simulate the evolution of moraines from their initial condi-
tion (slope at 0.67 [Putkonen et al., 2012]) according to (1), (2), or (3). The models simulate
the evolution of moraines over their specified ages and outputs are compared with observed
moraine forms. Due to the mathematical distinction between local and nonlocal models, the
numerical procedures differ significantly.

4.2.1 Surface evolution according to local linear transport
To evaluate the changing surface elevation, we substitute (1) into the Exner equation to

obtain

o _ 0%

ot ox2’
which is the familiar diffusion equation. Systems that evolve according to (13) are common
in nature and the mathematical treatment of this problem is extensive [Carslaw and Jaeger,
1959; Fernandes and Dietrich, 1997; Mudd and Furbish, 2007; Hornberger and Wiberg,
2004]. The evolution of a moraine is a transient problem with a no-flux boundary at the
crest and a long flat run-out in the interior valley floor. This problem may be simulated in
two ways. The evolution may be modeled by iteratively calculating the change in elevation
according to (13) through finite-differencing with proper treatment at the boundaries. Alter-
natively, we may analytically solve the evolution of the land-surface in the wave number do-
main through time using a Fourier transform. The evolution of the Fourier transform of a lin-
early diffusing land-surface has an analytical solution [Carslaw and Jaeger, 1959; Schumer
et al., 2009],

Z(k,1) = Z(k, 0)e Pt

where Z(k) is the Fourier transform of the land-surface elevation, k is the wave number
(2n/L where L is wavelength), and ¢ is time. Using this analytic expression allows us to
compare modeled profiles and observed profiles directly with the specified moraine age with-
out iterating through time steps. In order to satisfy the boundary conditions, we reflect the
interior side of the moraine such that the slope at the crest remains zero.

We use (14) to find the value of D that produces the best fit between modeled and ob-
served moraine forms. To quantify the fit, we define a cost function as the sum of squared
differences between modeled and observed Fourier transforms of the moraine surface,

N
Cr(D) = Y [Zm(K) = Zo(K)P,
i=1

where Z,,, and Z, are the Fourier transforms of the modeled and observed land surfaces re-
spectively. We then use a Gauss-Newton iteration scheme to find the value of D that mini-
mizes (15). Because (15) is a function of one variable and it is a quadratic, the solution that
we iteratively determine is a global minimum and is necessarily the best-fit solution.

We note that over timescales of 10 ka or more, values of D are likely to vary as cli-
mate changes [Hughes et al., 2009; McGuire et al., 2014; Madoff and Putkonen, 2016]. At
this time, however, we do not have information to justify choices of D through time. Further-
more, we demonstrate in Appendix A that, in the absence of external boundary forcing, the
form of the land surface only reflects the time-averaged diffusivity. In this sense, the form of
a moraine undergoing linear diffusion expresses no memory of changes in climate as might
be reflected in changing diffusivity values.

4.2.2 Surface evolution according to local nonlinear transport

To numerically simulate the evolution of the moraine profiles according to a nonlinear
flux formulation requires an iterative, finite-difference approach. To do so, we use Equation 9
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in Roering et al. (1999), which places (2) into continuity. To identify the best-fit parameter,
D, for this model, we simulate the evolution of the moraine profile over the specified age. We
compare the modeled profile to the observed to obtain a misfit, which is used by a Gauss-
Newton iteration scheme to pick a new value for D that minimizes the misfit. We note that S,
is also a tunable parameter, however, to avoid fitting too many parameters, we test S. = 0.8
and S, = 1.2, which represent two extreme possibilities.

4.2.3 Surface evolution according to nonlocal transport

The mathematical form of (3) is more complex than a local expression and we are un-
aware of an analytical solution such as (14). Therefore, modeling the evolution of a feature
as a consequence of a convolution-like flux description is an iterative procedure. Note that
the kernel in (3) varies with position so that the integral form of the flux is not a true con-
volution. This characteristic precludes us from making use of the convolution theorem for
Fourier transforms which would significantly reduce the computational complexity. To find
the best-fit parameters for a nonlocal formulation we numerically simulate the complete evo-
lution of the moraine many times until the solution approaches a minimum of a cost surface,
C(E1, Ap). To make this process reasonable in terms of computational time, we developed
a rapid algorithm to calculate the flux. To numerically encode (3) can require integrating
over the entire 2N domain if there are positive and negative components to the flux. This re-
sults in an algorithm whose complexity is O[2N?] and is an inherently slow computational
process. For large domains, this makes the brute-force method for calculating the flux slow.
However, we follow a procedure [Gilad and Von Hardenberg, 2006] that can turn (3) into a
true convolution by approximating the kernel.

The basic premise of the method is that the kernel function R(x — x’, x") is approxi-
mated by the sum of a series of N; functions of the same form as R(x — x’, x"), each weighted
uniquely. The weights change as a function of position, thereby placing the spatial depen-
dency of R(x — x’, x”) on the weighting functions w(x”). This allows us to write

Ny x
a0 =Y, [ =i gmER)
=170

where wy(¢, x”) is a function that weights the approximating kernel x(x — x’; ¢;), ¢ is the
actual value of the parameter in the kernel, and ¢; is the value of the parameter in the approx-
imating kernels. We can then divide (16) up into A;(x”) = wi(x")E(x") and g; = «(x — x’; ¢1)
so that

N;
ax)~ Y hisgr
=1

The convolution theorem for Fourier transforms can be applied to (17), as this is now in

the form of a proper convolution. Upon inspection, the approximation of the flux produces
nearly identical results as when (3) is encoded directly. The computational complexity of this
process is O[N;Nlog(N)], which for large domains is much smaller than the direct method.

An efficient algorithm that determines the surface evolution makes an iterative cost
function minimization procedure possible. To find the set of parameters that minimizes
Cn(E1, Ag) = Y(& — zi)?, we use a Levenberg-Marquadt descent procedure which marches
down the cost-function surface until it reaches a minimum (Figure 6). In this case, the cost
function is a nonlinear function of two variables, E and A, which could create local minima
that would incorrectly identify the best-fit set of parameters. However, from observation we
see that, for a variety of initial values of parameters, the Levenberg-Marquadt algorithm con-
sistently leads to a similar minimum, which suggests that it is a global minimum (Figure 6)
and that the results represent the best-fit parameters. The Levenberg-Marquardt algorithm fit
only values for E; and Ay and kept the choice of Ey = 0.001 constant.

We also did not parameterize S;, although it is a tunable parameter in P. For slopes
significantly less than Sj, Ay is the dominant variable determining the mean particle travel
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Figure 6. Two-dimensional plot showing the trajectory of parameters chosen by the Levenberg-Marquardt
algorithm. All model runs started with initial parameteric values at the edge of the plot and iteratively march
along the lines shown until the minimum is approached as denoted by the gray region. The common stopping
place shared by all model runs suggests that the parameters presented here are the best-fit parameters and not

a local minima.

distance, and therefore the flux. The presence of soil or regolith in transport-limited regimes
suggests that the land-surface slope is well below the limiting slope, on which particles con-
tinue to travel indefinitely. Therefore, we may assume that S; is significantly larger than
slopes on the moraine surface such that errors associated with variations in the choice of .S;
are relatively small.

We test three different nonlocal formulations against the surface evolution of lateral
moraines. Case I is a nonlocal formulation with linearly slope-dependent entrainment and a
downslope flux only. Case II has a linearly slope-dependent entrainment rate but with both
upslope and downslope fluxes. Case III has a slope-squared dependency for entrainment and
only downslope flux.

5 Results
5.1 Model Performance

We have tested six different transport models here, three of which are members of the
nonlocal class but have either different functional forms for E1(x”) or contain upslope and
downslope contributions to the flux. Each of these models has two adjustable parameters,
E; and Ay, which are determined by the Levenberg-Marquadt procedure outlined above. In
contrast, linear and nonlinear diffusion have only one free parameter, D (recall we test two
separate values for S, for nonlinear models).

Results from numerical experiments are summarized in Table 1. Nonlocal models
more accurately predict profile forms than local linear diffusion as measured by the cost
function. In general, nonlocal transport results in a cost, Cy, that is at least half of that gen-
erated by local linear models; however there is quite a bit of variation within the perfor-
mance of nonlocal models themselves. Nonlocal models that contain positive and negative
components of the hillslope sediment flux (Case II) are the worst-performing of the three
tested here. A nonlocal flux model with linearly slope-dependent entrainment rate but only a
downslope flux performs slightly better with a cost C that is about 40-60 points lower (Case
I). Finally, a nonlocal formulation with nonlinear, slope-dependent entrainment rate and posi-
tive flux only (Case III) provides the best fit for all models. The cost Cy for this class of mod-
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Table 1. Table of best-fit parameters and sum of squared differences for each profile as a result of nonlocal,

local linear diffusion, and local nonlinear diffusion.

Profile A B C D Profile A B C
Age (ka) ~ 40 ~ 40 ~ 40 18 Age (ka) ~40 ~40 ~40
Nonlocal Positive Flux Only Linear diffusion
S(z-¢)? 12900 6499 12733 8322 N(z—-¢)* 385.80 32044 329.00
E; 0.005 0.0038 0.0042 0.0036 D 0.015 0.013  0.012
Ao 0.65 0.75 0.57 0.61
Nonlocal Positive and Negative Flux Nonlinear diffusion with S, = 1.2
S(z-¢)* 18481 11563 199.16 121.50 S(z—¢)*> 17927 119.70 157.27
E; 0.0037 0.0028 0.0025 0.0022 D 0.01 0.0096 0.0081
Ao 0.70 0.78 0.68 0.76
Nonlocal Positive Flux with E = E, + E; S> Nonlinear diffusion with S. = 0.8
S(z-¢)* 3944 10.64 5280 6392 Y(z-0)* 41.63 15.69  48.68
E, 0.014  0.011 0.01 0.01 D 0.0061 0.0055 0.0046 0.0041
Ao 0.32 0.37 0.30 0.40

els is about an order of magnitude lower than local linear models on profiles A-C. In particu-
lar, consider profile B where case III results in C ~ 10 m?, more than an order of magnitude
lower than linear diffusion (Figure 7). Note that C is a measure of the disagreement between
the modeled topography, which is smooth and represents a time-averaged surface, and the
observed topography which contains roughness elements and represents a moment in time.
Because these roughness elements are not resolved in the numerical model, the cost C can
never approach zero. Instead, the most successful model will approach some finite value of C
that reflects the magnitude and spatial concentration of the roughness elements. Considering
this, we suggest that these models are approaching the limit of C when the observed forms
resolve the roughness elements and models do not. All models were run on a domain that
represents 250 meters of horizontal distance. The side-slopes of the moraines are all different
lengths; therefore, direct comparison between Cy for different profiles can not be done.

Local nonlinear models are capable of matching the abilities of nonlocal models to
reproduce the observed profile form (Table 1). However, these nonlinear models require
that the critical slope be around 0.8, which is significantly lower than values for the Oregon
Coast Range [Roering et al., 2007]. This value is not unreasonable, as S, is thought to vary
by a factor of 1.5. The sparse vegetation supported by the semi-arid climate of the Mono
Basin lacks the vegetative anchors that are present in wetter areas which may contribute to
lower critical slopes. Whereas these factors suggest that low S, values may be expected, it
is important to recognize that S, is the slope at which the flux asymptotically becomes un-
bounded. Although critical slopes of 0.8 are possible, they are the lower limit of expected
values. Furthermore, note that Figure 8A shows slopes that locally exceed 0.8, suggesting
this location would have an unrealistically large flux in the absence of averaging over some
spatial (or temporal) interval. This concept is addressed in the discussion.

The difference in model ability is highlighted by the residuals between modeled and
observed profiles (Figure 9). At most locations on the moraine, the residual resulting from a
nonlocal model is smaller than that of the linear model. In particular, nonlocal models per-
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Figure 8. Plots of observed (crosses) and modeled (lines) land-surface slopes versus horizontal position for

raw slope values (A) and smoothed values (B) using a 5-point moving average.

form better at the ridge and toes of the moraines. For example, in every model run, linear dif-
fusion over-predicts erosion at the crest and extends the depositional toe further out. In some
cases, linear diffusion over-predicts over 2.5 meters of erosion where nonlocal models fit
quite well with residuals on the order of decimeters or less. The numerical fits are also high-
lighted in plots of land-surface slope from modeled and observed forms (Figure 8). These
represent a more demanding fit than elevation residuals, and show that, relative to the local
linear model, the nonlocal and local nonlinear models more closely fit the raw and smoothed
values of slope, particularly near the crest (0 — 50 m), the mid-slope (70-80 m) and over the
sediment apron (120 — 170 m).

The Levenberg-Marquardt algorithm that converges to a set of parameters that produce
the best-fit topographic profile yields reasonable parametric values for nonlocal transport for-
mulations. The most consistent estimates of parameters across profiles are generated by a
slope-squared entrainment relationship (Case III). These values suggest that a slice of sedi-
ment from zero to one cm thick, depending on the slope, is entrained annually in this setting.
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Figure 9. Plots of residuals between observed z and modeled ¢ elevations versus horizontal distance x for

moraine profiles A, B, C and D.

This is a time-averaged value, and at short timescales, we may observe isolated events that
stochastically entrain far more (or less). Values for A are also consistent across profiles and
suggest that mean travel distances uy ~ 0.35/[28;/(S; — S) — 1], or for § = 0.6, yy = 1.2 m.

5.2 Fourier Transforms

The application of Fourier transforms and their time evolution highlights distinct char-
acteristics of nonlocal and linear processes. On inspection of (14) we note that there is only
one possibility for the time evolution of the Fourier transform of a linearly diffusing medium.
That is, the amplitude, Z(k), of all wavenumbers can only decrease at a rate proportional to
k and Z(k). The amplitude at larger k decays faster than for smaller k, or in terms of wave-
length, longer wavelength features persist for longer time. Whereas we see this behavior in
the Fourier transform of the observed land surface for some wavenumbers, there are others
that either grow or do not decay (Figure 10). Furthermore, linear diffusion predicts a much
larger decrease in spectral amplitude in many wavenumbers, most notably, larger wavenum-
bers. Taken together, these observations simply and definitively illustrate that linear diffusion
does not accurately account for the evolution of the moraine.

Whereas linear diffusion overestimates decay and is incapable of increasing spec-
tral amplitude, nonlocal models can actually add spectral amplitude (Figure 10) in certain
wavenumbers. That nonlocal models are capable of growing wavenumbers is consistent with
the observed behavior. Furthermore, nonlocal models lead to growth in the same wavenum-
bers that have grown during the evolution of the moraine. Namely, the initial spectrum (gray)
is shifted towards lower wavenumbers in both the observed and nonlocal spectra (black).
To be clear, whereas we observe an increase in spectral amplitude in certain wavenumbers,
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this is not to say that the system has added variance. Indeed, the variance of the land surface
has decreased, but it is distributed differently among wavenumbers which results in select
wavenumbers increasing in spectral amplitude. Spectra for profiles B — D show a similar
behavior, we have shown only one here for simplicity.
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Figure 10. Fourier transforms of the observed (black line), modeled (circles and stars) and initial condition
(gray line) of moraine profile A. Note that the wavenumber k has been divided by 27. The inset is a semilog

plot of the transform that highlights the transform at higher wavenumbers.

We emphasize that the finite spectral amplitudes over wavenumbers 0.007 < k <
0.02 and 0.015 < k < 0.02 in Figure 10 are part of the evolving basic structure of the
moraine form. These local maxima represent the spectral amplitude that accounts for the
large concavities at the ridge and toe of the moraine. The Fourier transform of a triangle con-
tains local maxima and minima at wavenumbers that are related to the width of the triangle
[Poularikas, 1998]. Therefore, local maxima not simply attributable to “noise” in the trans-
form, and they are not at the high wavenumbers associated with localized roughness on the
moraine surface (e.g., due to the roughness created by shrub mounds). As the spectrum of
the land surface is shifted to lower wavenumber, it is like a triangle that is laterally stretched
and vertically diminished. As such, the local maxima that remain in the spectrum represent
an important, but relatively small portion of the variance that maintains a quasi-triangular
form.

We pursue a full treatment of this spectral behavior separately; here we provide a sum-
mary of key elements relevant to our treatment of moraine evolution. The time-evolution
of the growth rates of the Fourier spectrum is of particular interest as it may provide a tool
to decipher the roles of nonlocal/nonlinear versus local, linear transport. Figure 11 shows
how positive growth rates of the spectrum change as the simulated moraine evolves accord-
ing to nonlocal transport. Early evolution is marked by fast growth rates in high wavenum-
bers (short wavelength) for short periods of time that give way to more persistent but slower
growth in lower wavenumbers (longer wavelength). This is not surprising as low wavenum-
ber (long wavelength) features simply represent more mass. This type of transfer of spectral
amplitude is known of as an inverse spectral cascade [Domaradzki and Rogallo, 1990]. With
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continued evolution, the positive growth rates asymptotically approach zero, and the tempo-
ral evolution of the Fourier spectrum then is close to what is expected for linear diffusion.
Note that spectral growth rates co-evolve with the land-surface slope and concavity, and in
particular as slopes and concavities are reduced, positive growth rates are reduced. There-
fore, certain topographic configurations (e.g., those with steep slopes and sharp concavities),
nonlocal and local, nonlinear formulations lead to fundamentally different Fourier evolution,
but for others (e.g., those with low slopes and small concavities), their Fourier behaviors may
be similar. We hypothesize that the temporal evolution of the Fourier transform might be a
useful tool to decipher the roles of nonlocal versus local, linear transport in other settings.

The reader will note that we have not offered a comparison between nonlinear diffusion
and nonlocal transport. The nonlinearities in a nonlinear and nonlocal formulation result
in similar behavior in wavenumber domain. There are some subtle differences in behavior;
however, a discussion of these is beyond the scope of this paper. Insofar as the modeled land-
surface profiles for nonlinear and nonlocal formulations are similar, so too are their spectral
evolution. We address these similarities in the following section.
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Figure 11. Plot of time versus spectral wavenumber k showing the temporal evolution of the growth rates

of wavenumbers. Note that only positive growth rates are shown here for simplicity.

6 Discussion
6.1 Performance of nonlocal models

The results summarized in Table 1 show that the nonlocal flux formulation with only
a positive, or downslope, component mimics the topographic evolution of the moraine bet-
ter than other nonlocal models. Such models are consistent with the notion that a majority
of transport is accomplished by dry ravel, which only mobilizes sediment in the downslope
direction. That downslope-only flux models (nonlocal Case III) perform better may reflect
that we use similar mathematics to describe upslope and downslope flux components in bi-
directional flux models. It is likely, however, that the bulk downslope and upslope processes
differ and may be better represented by different mathematics or parameters. For example,
on these moraines most downslope motion may be due to dry ravel, whereas a smaller, but
persistent upslope contribution may come from rainsplash. We expect that both entrainment
rates and travel distance for rainsplash are functionally different from dry ravel. To test this
scenario would require adding another set of parameters for the negative flux. To avoid be-
ing unnecessarily heuristic, we instead suggest that the downslope flux is much larger than
the upslope component. This assumption may have an impact on the flux at locations with
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low slopes, where the positive and negative flux contributions can be similar in magnitude.
As such, this may partly explain the deviations we observe between observed and modeled
profile forms for nonlocal transport at the crests and toes of moraines.

The spatial variation in grain size illustrated in Figure 5 could affect transport param-
eters in nonlocal and local formulations of transport. Recognizing that entrainment of par-
ticles requires a disturbance of sufficient energy to dislodge them, we suggest that smaller
particles will be entrained by smaller disturbances which occur more frequently than the
large ones required to move large particles. Therefore, a higher density of boulders might
reduce entrainment E. However, we have somewhat arbitrarily determined boulders to be
those greater than 25 cm in diameter whereas the impact on entrainment may be more accu-
rately addressed by the distribution of grain sizes as opposed to the concentration of a single
grain-size fraction. In addition, although the density of boulders is greater near the ridge, it
may not be great enough to significantly alter the values for E. Further work might address
the impact of grain size on either the entrainment rate or the pdf of travel distances [DiBiase
etal.,2017].

6.2 Comparison with local nonlinear flux description

The nonlinear transport model, (2), is a physically based model and is capable of cap-
turing the essential behaviors of hillslope evolution and flux values. The success of (2) serves
as motivation for the class of nonlocal models discussed here. That is, recognition of nonlin-
ear dynamics brought attention to the idea that long-distance motions can contribute signif-
icantly to the hillslope sediment flux. Both classes of models are based on the notion that
sediment particle travel distance is a key component of the flux yet they differ in their treat-
ment of it. Given this similarity, nonlocal models ought to subsume nonlinear ones. There
are, however, noteworthy differences between nonlocal and nonlinear models.

Recall that a nonlinear model is capable of nearly matching the result of a nonlocal
model (Table 1), but to do so, S, = 0.8. We have noted that locally, slopes exceed 0.8, mean-
ing that the sediment flux at this location would be unrealistically large for a nonlinear model
such as (2). However, a nonlinear model is not intended to be applied at scales smaller than
the biogeomorphic scale of roughness present on hillslopes [Roering et al., 2010]. Local
formulations such as (2) and (13) require a spatial average of slope (window of 7-10 m ac-
cording to Roering et al. [2010]), or alternatively, a time-averaged value at a location such
that land-surface slope used in the models smoothly varies downslope. In contrast, nonlo-
cal models remove this scale-dependence of slope [Ganti et al., 2012] and do not explicitly
require averaging. In this contribution we do use time-averaged values for slope; however,
the mathematical development of the entrainment rate, E(x”) is based on the presence of bio-
geomorphic roughness creating locally over-steepened faces. In this sense, the formulation is
acknowledging the presence of roughness in an implicit manner. Whereas a nonlocal model
can in principle incorporate the biogeomorphic roughness present on hillslopes, we have not
advanced the application at the relevant timescales or spatial resolution. However, now that
we have demonstrated nonlocal transport at geomorphic timescales, future work might be
well-suited to address shorter timescales and applying a nonlocal theory that explicitly in-
cludes the biogeomorphic roughness. Last, although we use a time-averaged slope here, the
local slopes that we calculated do not exceed the limiting slope S;, as they do in the nonlinear
case.

In the case where |S| > S;, a nonlocal formulation does not imply that the flux becomes
infinite. The critical slope S, in (2) represents a limiting situation where the flux nominally
becomes very large, assuming sediment is available to be transported (in a time-averaged
sense). In contrast, the critical slope S, in the nonlocal formulation is to be interpreted as
the slope at which sediment, once mobilized, does not become disentrained. In this situa-
tion where particle motions are not arrested, the flux is set by the upslope convolution of the
entrainment volume, as in detachment-limited conditions [Lamb et al., 2011].
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Figure 12. Plot of flux versus slope S/S. based on the simplified versions of the nonlocal and nonlinear

flux models together with the linear flux model. The flux values (y-axis) are only relative quantities depending

on the choice of parameters. The nonlinear model here is approximated out to five terms.

6.3 Mapping Nonlocal to Nonlinear Flux Models

The different mathematics of nonlocal and nonlinear flux models prevent a straightfor-
ward comparison of the two. However, approximations of these models lead to identification
of the essential behaviors which may be shared. To do so, we simplify both nonlinear and
nonlocal flux models. For the simplification of nonlocal transport, we follow the steps of Fur-
bish and Haff (2010) and approximate (3) with an advection-diffusion equation,

4(ad = E0pa ~ 2= [ECITal,

where p, and 0'3 are the first and second moments of f(r; x). Furthermore, Furbish and Haff
(2010) show that the first term of (18) dominates, such that we can neglect the diffusive term.
The expression for u, is determined from a binomial expansion of R(x — x’, x"). For a nega-
tive slope and with only downslope motions, the mean travel distance is

S 2
= A (1-2) .
pa=ao(1-5 ]

Using a nonlinear form for E(x”), the advective term of (18) is

28
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In comparison, the binomial expansion of the local nonlinear formulation leads to,

$ s g
qaz—D(S+—2+—4+—+...).
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Note that (21) contains only odd powers of S, whereas (20) contains consecutive integer
powers of S. However, (20) and (21) do share a fundamental property in that they are both
linear combinations of local nonlinear slope terms. Furthermore, we note that EAg [L? T~']
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carries dimensions consistent with a hillslope diffusivity D, which suggests then that (20)
can be mapped to a term of the same power in (21). Although there is a mismatch between
approximated flux values (Figure 12), the basic form is the same. That these curves are ap-
proximations based on expansions, yet share the same form, provides an explanation for why
nonlinear and nonlocal formulations lead to similar behaviors. Both the entrainment rate, E,
and the disentrainment rate, P, are nonlinear functions of slope and both contribute to the
nonlinear behavior of the sediment flux. However, we suggest that the key part of the nonlin-
earity appears to come from E. The shared behavior holds for § < S, and § <« §;. When
S — Sc and S — §; higher order terms in (21) become significant and (20) and (21) diverge.

6.4 Sensitivity to E and Ay

The two central parameters for the nonlocal convolution integral flux formulation, E
and Ao, set the magnitude of sediment transport. These parameters hold real physical mean-
ing that can be measured or modeled. This provides an opportunity to hypothesize about the
impact of changing ecological or climatological conditions. For example, imagine a substan-
tial shift in climate which drives an ecologic change from a grassland to a shrubland [Pel-
letier et al., 2016]. Under these new conditions, long-distance transport events may become
more common as there are fewer vegetative anchors for the soil which reflects an increase in
E. Furthermore, this may increase the travel distance if patchy surface flows become a more
prominent process, and which is represented by an increase in 1g. Whereas the result of both
changes is an increase in the flux, the response of the flux to each is not necessarily equal.
Therefore, we question which parameters hold the most weight for a flux formulation as writ-
ten in (3).

To investigate this we perform a sensitivity analysis. We make use of the Leibniz in-
tegral rule and take the derivative of the flux (9) with respect to E; and 4. To make this
problem tractable, we must simplify the topography and imagine a hillslope with uniform
slope, S, such that the spatial dependency of E(x”) and R(x — x’; x”) on x is removed. Fur-
thermore, we conduct this analysis at a position beyond the saturation length of sediment
transport. This represents a sensitivity analysis of the sediment flux some finite distance from
the crest of a hillslope. We note that this is inherently a transient condition; however, it pro-
vides a simple and first-order estimate on the impact of key parametric values. We also point
out that many slopes like the interior of a moraine are highly linear, thereby lending merit to
this approach. Making these assumptions, the derivatives of (9) are

—x’ (S;+S
dg(x) _ X o |35 ’
aE, _/O Se o ( 1 )dx
_x' [ S7+S
dg(x) _ _ [x EiS (Si+S o 5= ) g,
o =~ 2 53 (x=x")e " ( 1 )dx

We can integrate (22) and (23) and neglect exponential terms that involve exp(—x/4p) =
0, because we are sufficiently far downslope. This results in two, nearly identical nonlinear
functional forms,

da) _ gi1s| (SI*S) §<0

dE, Si+S
d —
40 = gls|($55) s <0

The flux is nonlinearly sensitive to both variables as slopes approach S;. However, sensi-
tivities differ based on the magnitude of the other variable in question. We should note the
different units of (24) [L] and (25) [L T"!], although a timescale is tied to (24), as Ay is the
characteristic travel distance after a given time dz. Insofar as lateral displacements, A, are
greater than the depth of entrained sediment per year, we see that the flux is more sensitive
to E| than Ay. For systems with higher E1, the distribution of sediment becomes more sig-
nificant in calculations of the flux. That is, if there is a lot of sediment in motion, emphasis
should be placed on keeping track of it spatially; and if it travels far, then emphasis is placed
on how much is in motion.
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High sensitivity of the flux to E| is supported by the result presented in Figure 6, where
surface of the cost function C(E}, Ag) can be inferred from the paths taken by iterative choices
of parameters. In particular, we emphasize that all paths converge to the same orientation
before approaching the minimum of C(E}, Ap). Furthermore, the orientation of that path is
close to parallel with the A4y axis. These paths suggest that the cost surface contains a trough
oriented along the Ay axis (denoted in Figure 6). This trough suggests that so long as the
value of E| is correct, changes in Ay over up to an order of magnitude do little to change the
form of the moraine. Although this indicates that the modeled hillslope form (not the flux) is
more sensitive to changes in E7, in order to correctly model the evolution of the land surface,
one must first correctly describe the flux. Therefore, we interpret the geometry of C(E, o)
as a reflection of the sensitivity of flux formulations to various transport parameters.

Consider a system with relatively small E| and a numerically larger 1yp. Now consider
a significant but not large change in climate, namely, a shift that does not result in dramatic
ecological changes. According to (24), depending on the value of 1y and on steep slopes, a
slight shift in E; can lead to quite large increases in the flux. More specifically, the changes
in the flux can be many times greater than the change in E;. This type of analysis is simi-
lar to efforts that explore what values of the diffusivity-like rate constant D might take on in
different settings. It is largely suggested that it varies as a function of climate and ecology
[Tucker and Bras, 1998; Istanbulluoglu and Bras, 2005; Hughes et al., 2009; Pelletier et al.,
2016]. However, this problem is a complex one that involves the specifics of ecology, geol-
ogy, and climatology. The convolution integral forms of the nonlocal flux deconstruct rate
constants like D into two physically interpretable parameters which are capable of addressing
some of these specifics. This may provide an opportunity to theoretically address the impact
of climate on hillslope sediment transport and erosion rates.

Through estimating a value of D for local linear diffusion, we show that, in this set-
ting, the form of a moraine reflects only the time-averaged value of D (Appendix A). Previ-
ous work has demonstrated this concept [Figure 6, Madoff and Putkonen, 2016], although
it has not addressed the mathematical basis. This is easily proven when the diffusion equa-
tion is examined in the wavenumber domain and is a point that may be significant in efforts
to unfold the record of climate in hillslope form. To be clear, this concept only applies to to-
pographic configurations that lack a boundary condition that reflects tectonic conditions (i.e.
channel). There are numerous landforms for which there is no external forcing other than cli-
mate. For example, river terraces, faults scarps, and paleo-shorelines are all topographic fea-
tures that lack externally forced boundary conditions, and therefore their evolution is driven
only by climate. In such settings, under linear diffusion, their form would be expected to re-
flect a single value for D and contain no information about changing conditions. It remains
unclear if a nonlinear formulation for sediment transport shares this property or not.

7 Conclusions

We have provided field-based evidence that demonstrates nonlocal sediment transport
operating at the hillslope scale. By a measure of sum-of-squared differences, nonlocal hills-
lope sediment transport formulations reproduce observed profile forms with greater fidelity
than local, linear diffusion. In particular we note that nonlocal formulations better describe
the evolution of locations with large concavity. Nonlocal, convolution integral-based formu-
lations match the performance of local nonlinear ones. We have shown that nonlinear and
nonlocal formulations are expected to perform similarly as they are both motivated by the
same theory, and mathematical simplifications highlight that the formulations share an under-
lying mathematical form.

In demonstrating the presence nonlocal sediment transport, we have obtained the first
estimates of the parameters in the convolution integral-like flux formulation for sediment
transport. Throughout this paper we have attempted to highlight that nonlocal formulations
offer physically clear parameters that can potentially be measured in the field. Here we have

24—



estimated the values for the time-averaged volumetric entrainment rate and a characteristic
length-scale of particle travel distance. We find that time-averaged values for £ ~ 0.01 m/yr
and 1o ~ 0.35 m. This implies that, on average, the thickness of the slice of sediment that

is entrained annually in this setting goes from zero to one cm as slopes go from zero to one.
The interpretation of Ay is that this nominally represents the average total (uni-directional)
displacement of particles entrained (perhaps multiple times) on a flat surface during one year.

We have questioned which parameter is most influential for the volumetric sediment
flux. A sensitivity analysis reveals that the flux depends most heavily on the slope-dependent
term of the entrainment rate. That the entrainment dominates the flux is consistent with re-
search on bedload sediment transport where changes in particle activity primarily control
changes in the sediment flux, not hop distance lengths [Ancey et al., 2008; Radice et al.,
2009; Ancey, 2010; Roseberry et al., 2012]. Insofar as the entrainment rate, E, dominates
the flux at our field site, we expect that future efforts aimed at empirically or theoretically
determining values for £ would be worthwhile.

We have identified behaviors in wavenumber domain that distinguish between local lin-
ear diffusion and nonlocal/nonlinear formulations. Whereas all transport models result in an
overall decay of topographic variance, the way in which this decay occurs differs. Linear dif-
fusion shows that spectral amplitude contained in every wave-number must decrease. Non-
linear and nonlocal models destroy topographic variance by concentrating spectral amplitude
to low wavenumbers. In doing so, spectral amplitude in certain wavenumbers can temporar-
ily grow, thereby providing a unique signature. These signatures have some potential as be-
ing tools to identify the style of sediment transport that has occurred during a landform or
landscape’s history.

Notation

x position (L)
x" up or downslope position (L)
¢ land-surface elevation (L)
t time (T)
q volumetric sediment flux LT
D hillslope diffusivity (linear and nonlinear) LT
S land-surface slope
S critical slope (nonlinear)
E volumetric entrainment rate (L3 L=2 T~1)
Ey background entrainment rate (L3 L™ T™1)
E; slope-modulating entrainment rate (L3 L2 T~1)
a slope-dependency of the entrainment rate
R survival function
P disentrainment rate [L~!]
r travel distance (L)
f probability density function of travel distance (L")
Ao characteristic particle travel distance (L)
S; limiting slope on which particles do not stop (nonlocal)
gp volumetric sediment flux in positive x direction (L> T™")
gn volumetric sediment flux in negative x direction (L> T~")
p probability of moving in positive x direction
n probability of moving in negative x direction
Sp threshold slope above which all particles move in one direction
Z Fourier transform of the land-surface elevation (L?)
k wavenumber (L)
Cy cost function, sum-of-squared deviations (L?)
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k approximating kernel
¢; decay constant for approximating kernel (L")
w;  weighting function associated with approximating kernel x(¢;)
gaa approximated nonlocal flux in advection-diffusion form (L* T!)
pa mean travel distance [L]
o, variance of travel distance [L?]

A: Why moraine form reflects time-averaged value of D

The Fourier transform of a one-dimensional signal (e.g., land surface) undergoing lin-
ear diffusion has the solution ,
Z(k,Ty) = Z(k,0)e™* P00,

where Z(k, 0) is the initial transform and Dy is the diffusivity over the time interval Ty ending
at the start of the next interval 7;. The Fourier transform after successive time intervals with
different values of D are

Z(k,T5) = Z(k, T))e K DiTi
Z(k,Ts) = Z(k, To)e P22 et

Using these definitions, we can recursively substitute expressions for Z(k, T;,) to give, for
example,

Z(k,T3) = Z(k, O)e‘kzDOToe—ksz kDT

— Z(k, O)E_kz(DOTO"'DlTI +D2T2) .
In general we may choose AT = Ty = T} = T» = ...so that the total time 7 = nAT ar£1
DoTy + D1Ty + DT + ... = (D0+D2+D3+...)AT = (D0+D2+D3+...)T/n = DT,

where D = (Do + Dy + D3 +...)/n is the time-averaged diffusivity. Then,
Z(k,T) = Z(k,0)e %' PT .

Note that because (A.4) is additive, the order in which the values of D appear is unimportant.
In the limit of AT — 0, the formulation represents the outcome of a smooth (rather than
discrete) variation in D (e.g., Box and Jenkins, 1976 p.355-362).
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