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Abstract:
Galaxies  reside within dark matter halos; therefore, it is  essential to study the internal 
properties  of dark matter halos  to better understand galaxy formation and evolution. We 
examine the density profiles  of dark matter halos  by analyzing data from the LasDamas 
(LArge Suite of DArk MAtter Simulations)  project. We measure density profiles  for over 3.3 
million halos, and fit Navarro, Frenk & White (1996, 1997) profiles  (NFW) to our 
measurements. With such a large dataset, we are able to study the full  density profile 
distribution and its  dependence on mass, even in the regime of rare cluster-sized halos. We 
also consider the effects  of halo  shape and goodness-of-fit. Finally, we investigate the 
sensitivity of our results  to particle mass  resolution and choice of binning. We find that the 
relation between halo  mass  and NFW concentration found by Bullock et al. (2001), c ∝ M-0.13, 
holds  out to  halo masses  of 1015.5 M☉, a previously untested mass  region. However, this 
relation does  not hold in general for all subsets  of halos. We also find that most of our halos 
are not statistically well fit by the NFW profile.
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1   INTRODUCTION

Most of the matter in our universe is  dark, interacting gravitationally but not electromagnetically. 
Dark matter was  first theorized by Fritz Zwicky in the 1930s as a way of explaining the “missing 
mass” needed to support the orbital velocities of galaxies in the Coma cluster. Today, dark matter 
is  a widely accepted, although not so well understood, major component of the universe. Indirect 
evidence for dark matter is provided by observations of the rotational speeds  of galaxies, 
gravitational lensing of galaxy clusters, such as the Bullet Cluster, and other dynamical measures  
of  galaxy masses.

Early in the history of the universe the distribution of matter was mostly uniform. However, as 
time progressed, the universe expanded and cooled. Small fluctuations in the distribution of 
matter led to gravitational collapse, forming clumps  of dark matter called dark matter halos. 
Baryonic matter, because of gravitational forces, followed the dominant dark matter, and galaxies 
were formed inside these halos. Thus, dark matter halos  provide the foundation for galaxy 
formation, and it is  essential to study their internal properties  to better understand galaxy 
evolution. In particular, properties of halos are used to model galaxy clustering, which can be 
compared to, and used to interpret clustering measurements from galaxy surveys.

One important internal property of a dark matter halo is its  density profile. Knowledge of the 
distribution of matter within a halo is crucial to the understanding of the observed interactions  of 
galaxies  with their underlying dark matter halos. Also, experiments  are in place to detect  
theoretical dark matter particles  called WIMPs, Weakly Interacting Massive Particles. The 
expected rates  for both direct detection and indirect detection, by finding neutrinos from WIMP 
annihilation, depend on the density profile. Navarro, Frenk and White (1996,1997) found a 
universal profile to describe the density profile of dark matter halos which has only two 
parameters, concentration and halo mass, where concentration is a measure of much how mass is 
packed toward the center of a halo. This form is widely used to model halos  and is  referred to as 
the NFW profile. A correlation between mass and concentration was found by Bullock et al. 
(2001) in which higher mass  halos tend to have lower concentrations according to the relation: c 
∝ M -0.13 . This relation is  used in modeling; however, their sample of ~5,000 halos was fairly 
small and did not include halos with masses above 1014 M☉.

One of our primary goals is  to test the universality of the NFW profile and the relation found by 
Bullock et al. (2001). We seek to test relation for higher mass  halos, and also for subsets of halos. 
With access to a much larger dataset, we are able to measure and fit the profiles of more than 3.3 
million dark matter halos with masses up to 1015.5 M☉.
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2   DATA 

For this investigation of dark matter halos we consider data from cosmological N-body 
simulations. These simulations contain only particles which represent the total dark matter in a 
portion of the universe. The particles are collisionless  and interact solely through Newtonian 
gravity. All the data considered is for halos at redshift z=0.

2.1   LasDamas

Our halos come from the LasDamas (LArge Suite of DArk MAtter Simulations) project. The 
LasDamas project simulates the evolution of dark matter in the universe with a suite of 
cosmological N-body realizations to enable statistical studies of galaxies and halos. The 
advantage of LasDamas is  its  large size; in our study of dark matter halos  we consider 40 
realizations  with over 3.3 million halos. These halos range in mass from just under 1013 M☉ to 
1015.5 M☉. With such a large dataset we are able to study the full density profile distribution and 
its dependence on mass, even in the regime of  rare cluster-sized halos.

LasDamas will produce 200 simulations, 50 realizations in 4 different boxsizes. Each 
configuration is named, in order of increasing boxsize (and corresponding particle mass): 
Consuelo, Esmeralda, Carmen, and Oriana. Each realization has  the same initial power 
spectrum but a different random seed. Details about the different boxes are listed in Table 1. For 
this  investigation, data is taken from 40 Esmeralda boxes. We chose to use Esmeralda because it 
has the highest resolution, with the most completed realizations. Data is  also used from one 
Carmen realization as a resolution check. Every simulation uses the same cosmological 
parameters, which are consistent with WMAP5 (Komatsu et al. 2009). Details about the 
cosmological model are listed in Table 2.

Name Boxsize [Mpc/h] Number of Particles Particle Mass [M☉/h] softening [kpc/h]

Oriana 2400 1280 3 45.73 × 1010 53

Carmen 1000 1120 3 4.938 × 1010 25

Esmeralda 640 1250 3 0.931 × 1010 15

Consuelo 420 1400 3 0.187 × 1010 8

Ωm ΩL Ωb Ho/100 (h) σ8 ns

0.25 0.75 0.04 0.7 0.8 1.0

Table 1. Simulation details for the LasDamas boxes.

Table 2. Cosmological parameters used in the simulations. Ωm is the dark matter density. ΩL is 
the dark energy density. Ωb is the baryon density. Ho is the Hubble constant. σ8 is the fluctuation 
amplitude at 8 Mpc/h. ns is the scalar spectral index.
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2.2   Explanation of  softening

It is important to understand the role of softening in the simulations  and its  effect on resolution. 
According to gravity, when two point masses get very close together the force between them goes 
to infinity. Thus, it is  necessary to “soften” the potential so that forces  do not become 
unrealistically large. Additionally, even though each box contains  billions of particles, each 
individual particle is  quite massive. These massive point particles actually represent masses which 
are spread over a certain volume. Therefore, simulations with higher mass particles require a 
larger softening length in order to be physically realistic. Our primary data comes from the 
Esmeralda boxes which have a softening length of 15 kpc/h. See Table 1 for the softening lengths 
of each simulation. As a consequence of softening, information on scales  smaller than a few times 
the softening length is not necessarily reliable. 

2.3   Friends-of-friends halos

Bound groups  of dark matter particles were identified using a parallel friends-of-friends code. 
The implementation, ntropy-fofsv, was  built with the Ntropy framework (Gardner, Connolly, & 
McBride 2007). The friends-of-friends algorithm (Davis et al. 1985) links  together particles whose 
separation is less  than a specified linking length. In this study we consider friends-of-friends  halos 
with a linking length of 0.156 times  the mean interparticle separation. For the cosmology in the 
simulations, it is  expected that this value for the linking length will produce roughly virialized 
halos.

3   HALO DEFINITION

In order to establish a reasonable region for measuring the radial density profiles of the friends-
of-friends  halos, the following measurements are made: the position of the center, the radial 
extent, and the virial mass of  the halos.

3.1   Defining halo center

Given a collection of points  in space there are several ways of defining a center. We decided to 
use the location of the most bound particle (the particle with the lowest total energy) as  the 
position of the halo center since it seemed to be the most physically relevant. Other choices were 
also considered, such as  the position of the deepest potential particle (the particle with the lowest 
potential energy), and the location of the center of mass of the system. Fig. 1 illustrates  the 
different types of centers. Generally, there was not a large difference in the positions of the most 
bound particle and the deepest potential particle. The deepest potential particle was within one 
softening length of the most bound particle in 49% of all halos, and within 10 softening lengths 
(150 kpc/h) in 99% of  all halos.
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3.2   Defining halo extent and halo mass

Once the center is  defined, the extent of the halo can be determined by estimating the virial 
radius. Theoretically, the virial radius is  defined to be the radius within which the virial theorem 
holds, that is, within the virial radius the halo is  expected to be in virial equilibrium. We choose to 
find the virial radius in the following systematic way.

1. We define Rhalo by assuming the total friends-of-friends halo 
mass is enclosed in a volume of a sphere with a radius Rhalo 
and a density Δvir (377) times the mean density of the 
universe.

 
2. We then identify the mass that is  actually enclosed in a 

sphere with radius Rhalo as Mhalo.

3. We iterate this  process  and define Rvir similarly by assuming 
that Mhalo is  enclosed in a volume of a sphere with a radius 
Rvir and a density Δvir times the mean density of  the universe.

4. We define Mvir as the mass  enclosed in a sphere with radius 
Rvir.

All further measurement and fitting is  done by considering only 
the particles within Rvir. Thus, halos have mass Mvir and radius 
Rvir.

For the given cosmology of the simulations, an overdensity of Δvir=377 is expected to correspond 
to a virialized volume. This iterative procedure defines  an acceptable region to measure the radial 
densities  of the halo, and sometimes  excludes  irregular clumps of particles  at the edges of a halo 
which have tagged along with the main halo. We found that, most of the time, the majority of 
the mass excluded in this procedure was excluded in the first radial cut. Thus, the second radial 
cut serves  to refine the radius and mass of the halo we wish to fit. Also note that if none of the 
halo’s mass is  excluded in the first cut then Rhalo and Rvir will be identical. The illustration to the 
right shows the steps  in finding Rvir and Mvir. Fig. 1 shows  the procedure applied to a halo from 
the Esmeralda simulation.
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4   MEASURING PROFILES AND SHAPES

To measure the radial density profiles  of the halos  we partition each halo into concentric shells 
and calculate the average density for each shell. Considerations  in measurement include: which 
halos to measure, the bounds on radius, and what type of binning scheme to apply across all 
halos. In addition, principle moments of inertia of each halo are determined in order to gain 
some indication of  halo shape.

4.1   Choices in profile measurement

•   Which halos to measure:
Every halo with at least 1,000 particles  inside Rvir is measured. We do not try to pick out 
“nice,” spherical halos.

Figure 1. An example friends-of-friends halo illustrating different centers  and the method for finding Rvir 
and Mvir. Black points  show particles  of the friends-of-friends  halo. The red square, orange triangle, and 
yellow asterisk respectively indicate the positions  of the most bound particle, the center of mass of the 
system, and the deepest potential particle. The red dashed arrow and outer circle show Rhalo. The blue 
dashed arrow and inner circle show Rvir. The volume within Rvir holds  the mass  Mvir. Note that the large 
distance between the most bound particle and the deepest potential particle is  not typical, but is 
convenient for illustrative purposes.
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•   Where to measure :
We measure the density profile from the radius equal to 10 times the softening length, Rcore, 
out to Rvir for every halo. Since the effects of gravity are most altered by softening on scales 
near the softening length we do not trust relative particle positions within Rcore. However, 
we do trust that these particles are located within Rcore, so we create an additional core bin 
that holds  all of the particles  between radius, r=0 and r=Rcore. This  bin is  particularly 
important for small halos where Rcore contains a significant fraction of  the halo’s mass.

•   What type of  binning:
Each halo is divided into 20 radial bins, equally spaced in log space. There is  also an 
additional core bin which holds all of  the particles between radius, r=0 and r=Rcore.

•   What radius is assigned to each bin:
When plotting the profiles we assign the radius  for each bin to be the middle of the bin in 
log(r). The core bin is assigned the radius r=0 and so it is not visible on a log-log plot.
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Figure 2. Measuring the density profile of a halo. The left-hand panel shows a two-dimensional 
projection of the halo to be measured. The blue circle shows  Rvir, and the green circle shows  Rcore. There 
are 20 equally spaced logarithmic bins  between Rcore and Rvir. The density profile measured between 
these two radii is shown on the right along with corresponding Poisson error bars. There is  also a core bin 
which measures the average density within Rcore, but this point does not appear on the density plot.
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4.2   Using principle moments of  inertia as shape indicators

We find each halo’s moment of inertia tensor and then diagonalize it to find the principle 
moments of inertia for that halo. Since the moment of inertia tensor is  real and symmetric it can 
be diagonalized, meaning it is  possible to reorient the Cartesian coordinate system such that the 
new inertia tensor is diagonal.
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We can then define the largest principle moment of inertia to be Imax, the smallest to be Imin, and 
the intermediate to be Imed. If we assume that our halos are roughly ellipsoidal in shape and have 
a uniform density, then we can use the principle moments of  inertia to calculate axis lengths:
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Here, a, b, and c are the lengths of the axes of the an ellipsoid with the given principle moments 
of inertia. The major axis has length a, intermediate axis has length b, and smallest axis has 
length c. Using these estimated axis  lengths, we can get a measure of symmetries, and 
oblateness/prolateness properties. We use an analytic formula (Smith, 1961) to find the 
eigenvalues of  the moment of  inertia tensor.

1)          2)          3)

It should be noted that assuming halos have constant densities  is a rather poor assumption. 
However, converting moments of inertia in to axis  lengths for ellipsoids with non-constant density 
is mathematically non-trivial. Thus, our measures  of shape are not the absolute halo dimensions, 
but rather a looser indication of halo shape. In the future, we may try using an isothermal profile 
instead. Additionally, while the actual values  of the axis lengths  may not be accurate, we have 

Figure 3. Several representative shapes. Shape (1) is  a sphere with axis  ratios  1:1:1. Shape (2) is  a prolate 
ellipsoid, a “stretched sphere,” with axis  ratios  5:2:2. Shape (3) is a oblate ellipsoid,  a “squashed 
sphere,”with axis ratios 5:5:3.
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reason to think that the axis ratios  will still preserve information about halo shape, and will not be 
altered significantly by assuming constant density. In the end, we only consider the axis ratios  and 
not the individual axis lengths.

5   FITTING PROFILES 

We choose to fit the measured radial density profiles of all of our halos  to the NFW two-
parameter functional form (Navarro, Frenk & White 2006/2007), which is widely used to model 
halos. Fitting to the NFW form is  a useful way of analyzing the profiles, but alternative forms 
could also have been used. Our choice of NFW was motivated by its  widespread use and so that 
our results  could be compared to those in Bullock et al. (2001). In this section we will introduce 
the NFW form, its parameters, and how these parameters affect the halo density profile. 

5.1   Profile characteristics

In the NFW profile, the density of  dark matter within a halo as a function of  radius is given by:

€ 

ρNFW (r) =
ρs

(r rs)(1+ r rs)
2 (1)

Where rs, the inner scale radius, and ρs, a corresponding inner density, vary from halo to halo.

The NFW form represents a smooth transition between two power law functions. The scale 
radius, rs, is the radius at which the effective logarithmic slope of the profile is  -2. For much 
smaller radii, ρNFW ∝ r -1, and for much greater radii, ρNFW ∝ r -3. The inner density is related to rs 
by: ρs=4 ρNFW(rs). One can also define concentration, cvir, which relates  the inner parameters back 
to virial parameters such as the viral mass, and the virial radius. The concentration of a halo with 
an NFW profile is  defined by: cvir = Rvir/rs. Since rs indicates where the density function begins to 
drop off more steeply, for a given halo mass, a lower concentration indicates  a more diffuse halo, 
and a higher concentration indicates that more mass is packed toward the center of  the halo.

5.2   Changing parameters

One can re-write Eq. 1 in a form with parameters  cvir and Mvir. Although this  form is not as 
elegant as  Eq. 1, these parameters are more tangible and will give an intuitive understanding for 
the profile. Also, we have determined what Mvir is for our halos, but we do not know what rs or ρs 
is  for any particular halo, so this allows us to vary only one parameter instead of two when we fit 
to NFW profiles.

First, we have definitions for Mvir and cvir:
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Mvir ≡
4
3 πRvir

3 Δ virρu (2)
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cvir ≡ Rvir rs (3)
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Mvir is also equal to the mass enclosed within Rvir, which can be found by integrating the density 
over the volume of  the halo,
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Now we can replace rs by Rvir/cvir:
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Combining Eq. 2 and Eq. 4 we can find ρs in terms of  cvir:
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By combining Eq. 1 and Eq. 2 we can get rs in terms of  Mvir and cvir:
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Finally, substituting Eq. 3 and Eq. 4 back into Eq. 1, and after some simplification, we obtain:
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(7)

Thus, a halo with a given virial mass  can have a range of NFW profiles for different values  of 
concentration. Fig. 4 illustrates the how changing concentration affects the density profiles of a 
1013 M☉ halo and 1014 M☉ halo.
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5.3   Fitting procedure

The measured density profiles  are fit to NFW profiles by performing a χ2 minimization. We 
choose to vary the concentration parameter only, and assume that the measured virial mass of a 
halo is  equal to the Mvir in Eq 7. The average density found for each radial bin described in 
Section 4.1 is compared with the average NFW density found by integrating Eq. 7 over the radial 
bin. For every halo we try 100 concentrations between 0.01 and 40.01 in steps of 0.4 and choose 
the concentration which gives the smallest value of χ2 to be the concentration of the best-fit 
NFW profile.

We perform this fit for all 3,327,464 halos in the 40 Esmeralda realizations, and find that the 
NFW profile produces a good statistical fit in 12% of these halos. Here we designate a good fit to 
be one where χ2 ≤ 1.878 which corresponds to a p value of  1%.

Figure 4. Effects  of varying concentration for two ideal NFW halos. In both plots the x axis  shows 
distance from the center of an NFW halo, and the y axis  shows density in units  of the mean density of the 
universe. The plot on the left is  for a Mvir = 1013 M☉ halo, and the plot on the right is  for a Mvir = 1014 
M☉ halo. The solid curves  show the halo’s  NFW profiles  for several different concentrations. The curves 
in blue, purple, and red represent, respectively, the concentration values  of 2, 4, and 16. The dashed lines 
show the location of  the scale radius, rs, for each of  the values of  concentration. 
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5.4   Representative fits

The next four pages show plots of representative dark matter halos along with their measured 
density profiles and their best-fit NFW profiles. Some interesting things  to look for in theses plots 
include:
• substructure / subhalos, which can create bumps in the measured density profile
• non-spherical symmetry
• subhalos outside the determined virial radius, which have not been included as part of the 

fitted halo
• which parts of  the measured density profile differ the most from the best-fit profile

Notice that, in most halos, we find that the our data is  located outside rs, the radius where the 
NFW profile changes slope. This may bring into question our ability to constrain a fit; however, 
this  is not an issue because we are fixing the Mvir parameter for each halo. As  can be seen in Fig. 
4, at a fixed mass, the amplitude of the profile outside of rs is  determined uniquely by the 
concentration. This is because mass, or the density integrated over the halo’s volume, is 
conserved. Moreover, the core bin, discussed in Section 4.1, provides additional constraint to the 
fit inside of  rs.
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Figure 5a. Several 1013 M☉ halos  with their corresponding density profiles. The left-hand boxes  show 
two dimensional projections of friends-of-friends  halos with particles  shown as  black dots. The right-hand 
boxes  show radial density profiles  for the corresponding halo as  black points. Each of these points 
represents  the average density within each radial shell and has an associated Poisson errorbar. The green 
circle on the halo and the green dotted line on the profile indicate ten times  the softening length, Rcore, for 
the simulation. The blue circle on the halo and the blue dotted line on the profile indicate the virial radius, 
Rvir, of the halo. The profile is  measured between these two radii. The solid magenta curve behind the 
profile is  the best-fit NFW profile for the measured density profile. The red circle on the halo and the red 
dotted line on the profile indicate the scale radius  of the halo, rs, for the fit. The concentration value is 
quoted for each fit.
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Figure 5b. Several 1013.5 M☉ halos  with their corresponding density profiles. All symbols  are the same as 
Fig. 5a.
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Figure 5c. Several 1014 M☉ halos  with their corresponding density profiles. All symbols  are the same as 
Fig. 5a,b.
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Figure 5d. Several 1014.5 M☉ halos with their corresponding density profiles. All symbols  are the same as 
Fig. 5a,b,c.



6   RESULTS

In this  section we highlight our main result, the correlation between concentration and halo 
mass, along with results in our study of shapes. We also explore how the concentration-mass 
relationship behaves for subsets of halos. Particularly, we compare the subsets  of worst-fit halos 
vs. best-fit halos, and prolate halos  vs. oblate halos vs. spherical halos. Lastly, we consider the 
effects related to binning and resolution.

6.1   Concentration-mass relationship

To observe the concentration-mass relationship, our halos  are binned according the mass. For 
each bin we consider the average value, the median value, and the 68 percentiles  of cvir. Each of 
the following concentration-mass plots contains  the data from 40 Esmeralda realizations taken at 
redshift z=0.

10
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Mvir [M!]
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Figure 6. NFW concentration versus  halo mass  at z=0. The inner solid curve is  the median at a given 
Mvir. The red points  show the mean with error bars. The error bars, which are very small for most bins, 
represent the uncertainty in the mean calculated from the standard deviation of the concentration values 
in the bin. The outer solid curves  encompass  68 percent of the concentration values. An unweighted 
power-law fit to the mean yields the relation: cvir(Mvir)=11(Mvir/M✴) -0.13.
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We find that there is  a correlation between cvir and Mvir, and that this relationship extends out to 
the high mass regime, even for cluster-sized dark matter halos. The average points follow the 
median curve for high masses, but then diverge above slightly for lower masses. It also appears 
that there is some curvature for the smallest masses.

Bullock et al. (2001) found the relation: cvir(Mvir) = 9(Mvir/M✴) -0.13. By applying an unweighted 
power-law fit to the mean, we obtain the relation: cvir(Mvir) = 11(Mvir/M✴) -0.13, which agrees with 
Bullock et al. (2001) in slope, but differs somewhat in intercept.

6.2   Halo shapes

In this  section we consider halo shapes and categorize our halos  as either spherical, prolate, 
oblate, or triaxial. We use ratios of moments of inertia, and axis ratios to see the distribution of 
halo shapes. Fig. 7 shows the distribution of halo shapes  for one Esmeralda realization. Halos  are 
called prolate if the ratio of their shortest axis to their intermediate length axis is  close to 1 ( > 
0.9). Halos are called oblate if the ratio of their intermediate axis  to their major axis is close to 1 
( > 0.9). Halos  which are classified as  both prolate and oblate are called spherical as well.  Fig. 8 
shows the concentration-mass relation for 3 subsets of  halo shapes: spherical, oblate, prolate.
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Figure 7. Distribution of halo shapes. In both plots  the black points  indicate the halos  from one 
Esmeralda realization. On the left, shapes  are inferred from ratios  of moments  of inertia. On the right, 
shapes  are inferred from axis  ratios (which are calculated from the moments  of inertia). In both plots, 
spherical halos  should be close to the point (1,1). Oblate halos  lie along the lines  indicated as  oblate. 
Prolate halos  lie along the lines  indicated as  prolate. Most halos  occupy the interior regions  and are 
triaxial.
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Here, we see that the relationship for each of the subsets  looks similar in slope but differs  in 
amplitude. In general, at a given mass, halos categorized as spherical have higher concentration 
values than prolate halos, which have higher concentration values  than oblate halos. We see that 
there are no spherical halos in the highest mass  bins. Additionally, the main result, using all halos, 
most closely follows the oblate data. By applying an unweighted power-law fit to the mean, we 
obtain the relation: cvir(Mvir) = 14(Mvir/M✴)  -0.17 for spherical halos, cvir(Mvir) = 12(Mvir/M✴) -0.13 for 
oblate halos, and cvir(Mvir) = 11(Mvir/M✴) -0.14 for prolate halos. 

Figure 8. Comparison of NFW concentration versus  halo mass  for spherical, oblate, and prolate halos. 
Results  for the halos  indicated as  being nearly spherical are shown in black (c/b and b/a > 0.9) . Results 
for the halos  indicated as being nearly oblate are shown in orange (b/a > 0.9). Results  for the halos 
indicated as  being nearly prolate are shown in purple (c/b > 0.9). For each data set, the points  show the 
mean with errorbars, and the outer curves encompass 68 percent of  the concentration values.
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6.3   Goodness-of-fit

The majority of halos fitted to NFW profile did not find fits  that were statistically “good.” In 
particular, the average χ2 value for the best fit profile increased exponentially with halo mass, as 
can be seen in the plot directly below. This is  understandable since the large halos have many 
more points, and therefore have much smaller percent errors. For this reason we do not compare 
statistically good fits with statistically bad ones, but instead we divided our sample  evenly 
according to χ2. Halos with lower χ2 values  are put into the best fits subgroup, and halos  with 
higher χ2 values are put into the worst fits subgroup. The results of  this are shown in Fig. 9. 

we measure profiles
navarro gives us bad fits

c-m still holds up
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In this plot we see significant curvature for both the good fits  subgroup, and for the bad fits 
subgroup. The halos with lower values  of χ2, the good fits, generally have lower values of 
concentration than the halos with higher values of χ2, the bad fits. Also, the spread in 
concentrations  is  higher for the bad fits  subgroup compared to the good fits  subgroup. We find 
that there are no large mass halos with values of χ2 in the good fits category, indicating that large 
halos are really poorly fit by the NFW profile. 

6.4   Robustness: binning and resolution

Binning
As a test of robustness, we compare how changing the binning scheme when measuring the 
density profiles of our halos  affects   the concentration-mass relationship. Instead of a fixed 
number of bins for every halo, we chose our bins  sizes such that every bin contained 50 particles. 

Figure 9. Comparison of NFW concentration versus halo mass  for the best fit halos  and the worst fit 
halos. Results  for the best-fitting halos  (with goodness-of-fit in the upper 50 percentile) are shown in blue. 
Results  for the worst-fitting halos (with goodness-of-fit in the lower 50 percentile) are shown in red. For 
each data set, the inner curve is  the median, the points  show the mean with error bars, and the outer 
curves encompass 68 percent of  the concentration values.
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Thus, a halo with 1,000 particles  between Rcore and Rvir would have 20 bins, and a halo with 
10,000 particles between Rcore and Rvir would have 200 bins. In both cases, the core bin contains 
all the particles within Rcore.
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50 particles/bin

We see that binning had almost no effect over the majority of higher halo masses. However, the 
smaller masses are affected. The median, average, and upper percentile for concentration all 
decrease for smaller masses. The difference for smaller masses implies that the slight curvature 
seen for small mass halos is not necessarily robust.

Figure 10. Comparison of NFW concentration versus  halo mass  for different binning schemes. Primary 
results  from using 20 fixed-width, equally spaced, radial bins  for each halo are shown in black. The results 
from an alternative binning scheme, in which each non-fixed-width bin holds 50 particles, is  shown in red. 
For each data set, the inner curve is  the median, the points  show the mean with error bars, and the outer 
curves encompass 68 percent of  the concentration values.
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Resolution
In order to test the possible effects of particle resolution, we compare the concentration-mass 
relationship for the halos in 40 Esmeralda realizations to the halos  in one Carmen realization. 
The halos from both boxes were treated in the same way with regard to measuring the profiles 
and fitting these profiles to NFW. The Carmen box has  a lower resolution and, thus, larger 
particles and a larger softening length.
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In general the Carmen data are a small amount lower than the Esmeralda data, but overall they 
are very similar. We can see a small upturn in the Carmen data as we approach the 1,000 particle 
lower limit which is  similar to the upturn we see in the Esmeralda data. This  implies  that 1,000 
particles may be too few obtain a realistic measure of  the profile.

Figure 11. Comparison of NFW concentration versus  halo mass for different resolutions. Primary results 
from the Esmeralda simulation are shown in black. Lower resolution results  from the Carmen simulation 
are shown in red. One Carmen particle has nearly five times  the mass  of one Esmeralda particle. For each 
data set, the inner curve is  the median, the points  show the mean with error bars, and the outer curves 
encompass  68 percent of the concentration values. The top axis indicates  the number of particles  in a 
Carmen halo with the given mass. Because Carmen particles are more massive, a Carmen halo of a 
certain mass will have fewer particles than an Esmeralda halo of  that same mass.
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7   CONCLUSIONS

We find a concentration-mass relationship which agrees  with the one found by Bullock et al. 
(2001) in slope, but not in amplitude. We also found that this  power law-like relationship holds 
out to higher mass  halos, in the previously untested mass regions. However, this  relationship is 
dependent on which halos are considered; we found significant differences in amplitude, slope, 
and apparent curvature when considering various  subgroups. Also, we find that most halos  are 
not statistically we fit by the NFW profile, particularly the largest cluster-sized ones. Both binning 
and resolution, though to a lesser extent, have some effect on the results and indicate that 1,000 
particles is too few to measure the profile accurately.

Future work
There is still work to be done on this project, and future plans may include:
•   further resolution tests against Consuelo data, which will span the lower masses of  Esmeralda
•   further investigation of  the effects of  binning
•   fitting profiles out to a radius  less than Rvir since most fits appear to be failing in outer parts of 

the profile
•   testing for substructure within halos
•   measuring and fitting profiles at other redshifts
•   determining shapes without assuming a constant density
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APPENDIX

Code used in measuring density profiles and fitting to NFW. Written in C.

Program for determining centers:

// This program makes a data file containing all the centers of halos.
// Centers are positions of mbp (most bound particle) and dpp (deepest potential 

particle).
// Halos included have >= 1000 particles.
// updated 3/22 to include softening (redshift isn't quite included yet)

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <string.h>

#define VERBOSE 0
#include "/home/robbinke/code/util/binary_output.h"
#include "/home/robbinke/code/util/bgc_read_utils.c"

FILE *fout;

// GLOBAL CONSTANTS AND VARIABLES
 char extension[] = ".centers.dat"; // file name based on bgc file name
 int minNumberPart = 1000;   // halo skipped if number of particles, npart 

< minNumberPart
 double redshift = 0.0;    // z, redshift, needed to properly compare 

potential and kinetic energies
 double a_scale = 1.0;    // scale factor a=1/(1+z)
 double softening = 0.015;   // softening length, depends on simulation, 

Mpc/h

// FUNCTIONS
 void newFileName(char * file, char * longFile, char * extension);
 int process_halos(FILE *fp, const OUTPUT_HEADER hdr, char * bgc_file);
 int try_file( char * bgc_file);

int main(int argc, char ** argv)
{ 
    int i;

    if(argc < 2)
    { 
        fprintf(stderr, "Usage: ");
        fprintf(stderr, "  %s redshift softening BGC_file[s] \n", argv[0]);
        exit(EXIT_FAILURE);
    } 
    
    redshift = atof(argv[1]);
    a_scale = 1.0/(1.0 + redshift);
    softening = atof(argv[2]);

    /* loop over input files for processing */
    for(i=3; i<argc; i++)
    { 
        char * bgc_file = argv[i];
        try_file( bgc_file );
    } 
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    return(EXIT_SUCCESS);
}

// FUNCTION process_halos
// Called by try_file, goes though all the halos in the current bgc file, calculates 

and outputs results into files
int process_halos(FILE *fp, const OUTPUT_HEADER hdr, char * bgc_file) 
{ 
    int i,j,k,n;
    
    // Set up input and output files.
  char output[strlen(bgc_file) + strlen(extension)];
  newFileName(output, bgc_file, extension); //output filename is based on the bgc 

filename
  fout = fopen(output,"a");
  // Check that files have opened properly
  if(fout == NULL) { fprintf(stderr, "ERROR: problem opening file '%s'\n", output); 

assert(fout != NULL); }
  fprintf(stderr, "Output file: %s\n", output);
    
    int *nParticlesPerGroup;
    PARTICLE_DATA_PV  *pdata;
    
    /* allocate array of structures based on the biggest halo, which means only once 

per file */
    pdata = calloc( hdr.max_npart, bgc_sizeof_pdata(hdr.format) );
    assert(pdata != NULL);

    nParticlesPerGroup = bgc_read_grouplist(fp,hdr);
    
    // loops though each halo in the file
    for(i=0; i < hdr.ngroups; i++)
    { 
  int gid   = i + hdr.first_group_id;
        int npart = nParticlesPerGroup[i];
   
        //int flag_periodic = 0;
        PARTICLE_DATA_PV pd1;
  PARTICLE_DATA_PV pd2;
  double xdpp[3], xmbp[3], E, U;
  E = U = 0.0;
  
  double mpart = 0.931*pow(10.,10.);
        double G = 4.3*pow(10.0,-9.0);
  
        bgc_read_part_into(fp, npart, hdr.format, pdata);
  
  
        // Conditions to skip haloes
  if(npart < minNumberPart)
   continue;
  
  
 /* Find center (deepest potential particle)*/
  for(k=0; k<3; k++)
   xdpp[k] = xmbp[k] = 0.0;
  
  for(n=0; n < npart; n++)
  { 
   pd1 = pdata[n];
   double Ei = 0.0, Ki = 0.0, Ui = 0.0;
   
   for(j=0; j < npart; j++)
   {
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    pd2 = pdata[j];
    double rsq = 0., d = 0., plength_check = hdr.BoxSize/5.0;
    for(k=0; k<3; k++)
    {
     d = pd1.pos[k] - pd2.pos[k];

     if(d > plength_check)
      d = pd2.pos[k] + hdr.BoxSize - pd1.pos[k];
  
     else if(d < -1.0 * plength_check)
      d = pd1.pos[k] + hdr.BoxSize - pd2.pos[k];

     rsq += d*d;
    }
    double r = sqrt(rsq);
    
    if(r != 0.0)
     Ui += -1.0*G*mpart*mpart/(r+softening);
   }
   
   Ki = 0.5*mpart*(pow(pd1.vel[0], 2.0) + pow(pd1.vel[1], 2.0) + pow(pd1.vel

[2], 2.0));
   Ei = Ui + Ki;
   
   if(Ei < E || n==0)
   {
    E = Ei;
    for(k=0; k<3; k++)
     xmbp[k] = pd1.pos[k];
   }
   
   if(Ui < U)
   {
    U = Ui;
    for(k=0; k<3; k++)
     xdpp[k] = pd1.pos[k];
   }
  }
  
 // Find the seperation of the two centers
  double rsq = 0., d = 0., plength_check = hdr.BoxSize/5.0;
    for(k=0; k<3; k++)
    {
     d = xmbp[k] - xdpp[k];

     if(d > plength_check)
      d = xdpp[k] + hdr.BoxSize - xmbp[k];
  
     else if(d < -1.0 * plength_check)
      d = xmbp[k] + hdr.BoxSize - xdpp[k];

     rsq += d*d;
    }
  double difference = sqrt(rsq);
 
 // Print centers out to file
  fprintf(fout, "%08d\t%010d\t", gid, npart);
        for(k=0; k<3; k++) 
            fprintf(fout, "%08.4f\t", xmbp[k]);
  for(k=0; k<3; k++)
   fprintf(fout, "%08.4f\t", xdpp[k]);
  fprintf(fout, "%08.4f\n", difference);
  
    }
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    fclose(fout);
    free (pdata);
    return hdr.ngroups;
}

// FUNCTION try_file
// checks that bgc_file opens properly then calls function process_halos
int try_file( char * bgc_file ) 
{ 
    FILE * fp;
    OUTPUT_HEADER hdr;
    int ngroups_read = 0;

    fprintf(stderr, "Reading BGC file: %s\n", bgc_file);
//     fprintf(stdout, "# from BGC file: %s\n", bgc_file);
    fflush(stderr);
    fp = fopen(bgc_file, "r");
    if(fp == NULL)
    { 
        fprintf(stderr, "ERROR: problem opening file '%s'\n", bgc_file);
        assert(fp != NULL);
    } 

    bgc_read_header(fp,&hdr);

    if(PDATA_FORMAT_PV == hdr.format)
    { 
//         fprintf(stdout, "# 11 columns: gid(0) npart(1) group_mass(2) pos_com(3,4,5) 

vel_com(6,7,8) vdisp(9) periodic_needed(10)\n");

        ngroups_read = process_halos(fp, hdr, bgc_file);
    }
    else if( PDATA_FORMAT_PVBE == hdr.format )
    { 
//         ngroups_read = calc_stats_mbp(fp, hdr);
        fprintf(stderr, "USING BINDING ENERGY IS NOT YET IMPLEMENTED!\n");
        return(EXIT_FAILURE);
    }
    else
    { 
        fprintf(stderr,"ERROR: skipping '%s' -- PDATA_FORMAT not compatible (%d)\n", 

bgc_file, hdr.format);
        return(EXIT_FAILURE);
    } 

    return ngroups_read;
} 

// FUNCTION newFileName
// 'longFile' is the filename we want to modify and is in the form [characters]/

[middle characters].[more characters]
// [middle characters] cannot have any '/' or '.' in it.
// Changes 'file' to be a character array that is [middle_characters][extension]
// Be carefule to make sure that 'file' is long enough to hold all the characters and 

extension, or there will be problems...
// initializing file as: char * file[strlen(longFile) + strlen(extension)]; should 

guarantee good things
void newFileName(char * file, char * longFile, char * extension)
{
 int i, start = -1, end = strlen(longFile);
 for(i= 0; i < strlen(longFile); i++)
 {
  if(longFile[i] == '/')
   start = i;
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 }
 for(i= strlen(longFile) - 1; i > start; i--)
 {
  if(longFile[i] == '.')
   end = i;
 }
 for(i= start+1; i < end; i++)
 {
  file[i-(start+1)] = longFile[i];
 }
 for(i= (end-start)-1; i < strlen(file); i++) //trims out any other characters that 

may have been left in 'file'
 {
  file[i] = '\0';
 }

 strcat(file, extension);
}

Program for measuring profiles and fitting to NFW:

/*
 fittingNFW.c
 
 Created 2/03/2010 by Katie Robbins
 
 **What it does**
 Fits dark matter halos with > minNumPart particles to an NFW profile by using either 

(1) a fixed number of equal width bins in log(radius) or (2) a specified number of 
particles per bin, such that the total number of bins across halos varies. Does one 
realization at a time.

 
 **Usage**
 Usage: ./fittingNFW [bins] [deltavir] [softing] [centers_file] [BGC_file(s)]
  - where bins is the number of bins when using a fixed number of bins, if bins 

is <= 0 the binning will be a fixed number of particles per bin.
  - deltavir specifies the value of deltavir (normally 377, corresponds to an 

overdensity and is used to find Rvir)
  - softening specifies the softening length in Mpc/h, differs according to 

simulation type
  - centers_file is the file containing centers data for the halos, created by 

the centers program, there is 1 centers file for each realization.
  - BGC_file(s) are the files containing friends-of-friends halo data. There are 

several BGC files for each realization.
 
 **Outputs**
  Ouputs a data file (with a name based on the input BGC files) containing a 

bunch of stuff about each halo. One line per halo.
  Also outputs a geometry file also containing a bunch of stuff about each halo, 

one line per halo.
  
  Ouputs: identification #, # particles, chi squared (reduced), Mass2(final 

trimmed mass), best fit concentration, Radius2(encloses M2), Mass friend-of-friends, 
Mass1(partially trimmed mass), Radius1(encloses M1), chi squared, degrees of 
freedom, maximum/intermediate/minimum principle moment of inertia, A/B/C axis 
lengths, center positions x,y,z for most bound particle/ center of mass/ deepest 
potential particle, seperation between center of mass and most bound particle, 
difference (distance between) deepest potential particle and the most bound 
particle.

  
  Data output file includes: id(1) #particles(2) chi^2red.(3) M2 (4) cfit(5) R2

(6) Mfof(7) M1(8) R1(9) chi^2(10) dof(11)
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  Geo output file includes: id(1) #particles(2) Imax(3) Imin(4) Imed(5) Aaxis(6) 
Baxis(7) Caxis(8) mbp-x,y,z(9,10,11) com-x,y,z(12,13,14) dpp-x,y,z(15,16,17) 
seperation(18) difference(19)

 
 Note on scaling errors:
 Gives all halos similar percent errors.
 Turning on scaleErrors will change sigma from sigma = sqrt(N), where N is the number 

of particles in a bin to sigma = sqrt(N)*sqrt(Ntot/minNumPart), where Ntot is the 
total number of particles in that halo, and minNumPart is the least possible number 
of particles considered for fitting.

 Scaling the errors like this allows us to compare how well halos of different masses 
will fit an NFW profile when only considering the shape of the profile. This still 
preserves the relative size of the errors across bins.

*/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <string.h>

#define VERBOSE 0
#include "/home/robbinke/code/util/binary_output.h"
#include "/home/robbinke/code/util/bgc_read_utils.c"
FILE *fout;
FILE *fout2;
FILE *fin;

#define avg_density (0.25*2.775*pow(10.0,11.0))

// GLOBAL CONSTANTS AND VARIABLES
 int minNumPart = 1000;  // only halos with >= minNumPart will be fit
 int ppbin = 50;    // number of particles per bin, percent errors are sqrt

(Nbin)/Nbin= 1/sqrt(Nbin), 
 double scaleRmin = 10.;  // Rmin = softening*scaleRmin, higher is more 

conservative
 double scaleRmax = 1.0;  // Rmax = R2*scaleRmax, should be <= 1
 int const N_C = 100;   // number of concentrations to try
 double cRangeMin = 0.01; // lower limit for concentration, can't be 0!
 double cRangeMax = 40.01; // upper limit for concentration
 double const PLENGTH = 5.0; // when checking for periodic wrapping to determine 

distances, wrapping occurs when the distance between two points is greater than 
BOXLENGTH/PLENGTH.

 double const GOODCHI = 1.8; // p = 1%
 int printedHalo = 0;   // keeps track of whether a single halo has been printed 

out when singleHalo is >= 0
 
 //options
 int scaleErrors = 0; // errors will be scaled (see note at top) if scaleErrors is 

set to 1
 int printgeo = 1;  // prints a geometry file if set to 1
 int printfit = 1;  // prints a fit file if set to 1
 
 //set in main()
 char * extension;  // extension for the fitting file
 char * extension2; // extension for the geometry file
 int BINS;    // number of radial bins to put particles into, if zero then 

equal number of particles for each bin
 int singleHalo;  // if >= 0, only print out the fit information for 1 halo with 

the ID#=singleHalo
 double delta_vir;  // used to find Rvir
 double softening;  // softening for given simulation in Mpc/h
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// FUNCTIONS
 void diagonalize(double S[3][3], double * Ixx, double * Iyy, double * Izz);
 double get_r(double pos1[], double pos2[], double BoxSize);
 double getNFWDensity(double logR1, double logR2, double c, double logM);
 void newFileName(char * file, char * longFile, char * extension);
 int process_halos(FILE *fp, const OUTPUT_HEADER hdr, char * centers_file);
 int try_file( char * bgc_file, char * centers_file );
 int compareDoubles (const void *A, const void *B);
 void findAxisRatios(double Ieig[3], double mass, double * major, double * medium, 

double * minor);

int main(int argc, char ** argv)
{ 
    int i;
    
    if(argc <= 6)
    { 
        fprintf(stderr, "Usage: ");
        fprintf(stderr, "  %s [bins] [deltavir] [softing] [centers_file] [BGC_file(s)] 

\n", argv[0]);
        exit(EXIT_FAILURE);
    } 
    
 singleHalo = atoi(argv[1]);
 BINS = atoi(argv[2]);
 delta_vir = atof(argv[3]);
 softening = atof(argv[4]);
 extension = argv[5];
 extension2 = argv[6];
 char * centers_file  = argv[7];
 
    /* loop over input files for processing */
    for(i=8; i<argc; i++)
    { 
        char * bgc_file = argv[i];
        
        // Check to make sure that bgc_file matches centers_file.
   char ext[] = "";
   char cen[strlen(centers_file) + strlen(ext)];
   char bgc[strlen(bgc_file) + strlen(ext)];
   newFileName(cen, centers_file, ext);
   newFileName(bgc, bgc_file, ext);
   int same = strcmp(cen, bgc);
        
  if(same == 0)
   try_file( bgc_file, centers_file );
    } 
    
    return(EXIT_SUCCESS);
}

// FUNCTION process_halos
// Called by try_file, goes though all the halos in the current bgc file, calculates 

and outputs results into files
int process_halos(FILE *fp, const OUTPUT_HEADER hdr, char * centers_file) 
{ 
    int i,j,k,n, haloIndex;
    
    // Set up input and output files.
  char output[strlen(centers_file) + strlen(extension)];
  char output2[strlen(centers_file) + strlen(extension2)];
  newFileName(output, centers_file, extension); //output filename is based on the 

centers filename
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  newFileName(output2, centers_file, extension2);
  fin = fopen(centers_file,"r");
  fout = fopen(output,"a");
  fout2 = fopen(output2,"a");
 // Check that files have opened properly
  if(fin == NULL) { fprintf(stderr, "ERROR: problem opening file '%s'\n", 

centers_file); assert(fin != NULL); }
  if(fout == NULL) { fprintf(stderr, "ERROR: problem opening file '%s'\n", 

output); assert(fout != NULL); }
  if(fout2 == NULL) { fprintf(stderr, "ERROR: problem opening file '%s'\n", 

output2); assert(fout2 != NULL); }
  
    int *nParticlesPerGroup;
    PARTICLE_DATA_PV  *pdata;
    double plength_check = hdr.BoxSize / PLENGTH;
    
    /* Allocate array of structures based on the biggest halo, which means only once 

per file */
    pdata = calloc( hdr.max_npart, bgc_sizeof_pdata(hdr.format) );
    assert(pdata != NULL);
    
    // Allocate arrays for binning
  int *number = malloc (sizeof (int) * BINS);
  double *radii = malloc (sizeof (double) * hdr.max_npart);
   
  if(BINS > 0) // fixed width bins in log(R)
   n = BINS;
  else
   n = hdr.max_npart/ppbin;
 
  double *density = malloc (sizeof (double) * n);
  double *sig_d = malloc (sizeof (double) * n);

    nParticlesPerGroup = bgc_read_grouplist(fp,hdr);
    
    // Loops though each halo in the file
    for(haloIndex=0; haloIndex < hdr.ngroups && printedHalo == 0; haloIndex++)
    { 
  int gid   = haloIndex + hdr.first_group_id;
        int npart = nParticlesPerGroup[haloIndex];
        PARTICLE_DATA_PV pd1;
        double mpart = hdr.part_mass * pow(10.0,10.0);
  
        bgc_read_part_into(fp, npart, hdr.format, pdata);
   
   // Check if we only want to print out the info for 1 halo with id=singleHalo
    if(singleHalo >= 0)
    {
     if(singleHalo != gid) // skip it
      continue;
     else
      printedHalo = 1;
    }
 
 // Conditions to skip haloes
  if(npart < minNumPart)
   continue;
   
  int gid_r, npart_r;
  double xmbp[3], xdpp[3], diff;
  int halofound = 0;
  
 // Look for matching gid and npart, will scan to the end of input then stop looking
  while(fscanf(fin, "%d %d %lf %lf %lf %lf %lf %lf %lf", &gid_r, &npart_r, &xmbp
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[0], &xmbp[1], &xmbp[2], &xdpp[0], &xdpp[1], &xdpp[2], &diff) == 9)
  {
     if(gid == gid_r && npart == npart_r)
     {
      halofound = 1;
      break;
     }
  }   
   
 // Skip over halo if center isn't found, and rewind file input stream
  if(halofound == 0)
  {
   fprintf(stderr, "ERROR: center isn't found for ID=%d in '%s'\n", gid, 

centers_file);
   rewind(fin);
   continue;
  }
  
 /* Trimming points.
 // Mfof is total mass of halo
 // Radius R1 contains mass M1
 // Radius R2 contains mass M2
 */
   double Mfof = mpart *(double)npart;
   double R1 = pow(3.0/4.0/M_PI*Mfof/delta_vir/avg_density, 1.0/3.0);
   double M1 = 0.0;
   double R2;
   double M2 = 0.0;
   
  //First trim
   for(n=0; n < npart; n++)
   { 
    pd1 = pdata[n];
    double pos[3] = {pd1.pos[0], pd1.pos[1], pd1.pos[2]};  
    double r = get_r(pos, xmbp, hdr.BoxSize);
    if(r < R1)
     M1 += mpart; 
   }
   
  //Second trim, Binning, determine center of mass position and principle moments 

of inertia
  //  (done simultaneously in order to only loop though all particles once)
   R2 = pow(3.0/4.0/M_PI*M1/delta_vir/avg_density, 1.0/3.0);
   int numberCore = 0;    // number of particles in core bin
   int numberShells = 0;   // number of particles in fitting shells
   double com[3] = {0.,0.,0.}; // the center of mass position
   double I[3][3];     // moment of inertia tensor
    for(i=0; i<3; i++)
     for(j=0; j<3; j++)
      I[i][j] = 0.0;   
      
   double logrRangeMax = log10(R2*scaleRmax);    // Maximum radius for 

fitting.
   double logrRangeMin = log10(softening*scaleRmin);   // Minimum radius 

for fitting.
   double logrWidth = logrRangeMax - logrRangeMin;   // Radial bin 

width. Only used for equal width bins.
   if(BINS > 0)
   {
    logrWidth = (logrRangeMax - logrRangeMin)/((double)BINS);
    for(k=0; k<BINS; k++)
     number[k] = 0;
   }
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   for(n=0; n < npart; n++)
   {
    int isInsideR2 = 0;
    pd1 = pdata[n];
    double pos[3] = {pd1.pos[0], pd1.pos[1], pd1.pos[2]};  
    double logr = log10( get_r(pos, xmbp, hdr.BoxSize) );
    
    if(logr <= logrRangeMax && logr >= logrRangeMin) //particle is in the 

shell region
    { 
     if(BINS > 0)
      number[(int)((logr-logrRangeMin)/logrWidth)]++;
     else
      radii[numberShells] = pow(10.0,logr);
      
     numberShells++;
     isInsideR2 = 1;
    }
    
    else if(logr < logrRangeMin) // particle is in the core region
    {
     numberCore++;
     isInsideR2 = 1;
    }
    
   /* Particles inside logrRangeMax contribute to M2, center of mass position, 

and the moment of inertia tensor */
    if(isInsideR2 == 1)
    {
     M2 += mpart;
     
     // Find center of mass, and moment of inertia tensor for trimmed halo 
      double d[3]; // position of particle (with the mbp at origin)
      for(k=0; k<3; k++)
      {
       d[k] = pd1.pos[k] - xmbp[k];
    
       if(d[k] > plength_check)
        d[k] = xmbp[k] + hdr.BoxSize - pd1.pos[k];
       
       else if(d[k] < -1.0 * plength_check)
        d[k] = pd1.pos[k] + hdr.BoxSize - xmbp[k];
       
       com[k] += xmbp[k] + d[k];
      }
      
      I[0][0] += mpart*(d[1]*d[1] + d[2]*d[2]);
      I[1][1] += mpart*(d[0]*d[0] + d[2]*d[2]);
      I[2][2] += mpart*(d[0]*d[0] + d[1]*d[1]);
      I[0][1] -= mpart*d[0]*d[1];
      I[0][2] -= mpart*d[0]*d[2];
      I[1][2] -= mpart*d[1]*d[2];
      I[1][0] = I[0][1];
      I[2][0] = I[0][2];
      I[2][1] = I[1][2];
    }
   }
   
 // Condition to skip haloes after trimming
  if((numberShells + numberCore) < minNumPart)
   continue;
  
  for(k=0; k<3; k++)
   com[k] = com[k]/(double)(numberShells + numberCore);
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 /*Find the eigenvalues for moment of inertia tensor*/
  double Ieig[3] = {0.,0.,0.};   // the eigenvalues of the moment of inertia 

tensor
  double axisRatios[3] = {0.,0.,0.}; // the axis ratios
  diagonalize(I, &Ieig[0], &Ieig[1], &Ieig[2]);
  findAxisRatios(Ieig, (double)(numberShells + numberCore)*mpart, &axisRatios[0], 

&axisRatios[1], &axisRatios[2]);
  
  if(BINS > 0)
  {
  /* Make array of densities in each shell, binning by logR the same as above. 

Also, get sigma (poisson errors).  */
   // double density[BINS] holds the density of each bin
   // double sig_d[BINS] holds the error for each bin
   for(n=0; n < BINS; n++)
   {
    double Rout = pow(10.0, logrRangeMin + logrWidth*(double)(n+1));
    double Rin = pow(10.0, logrRangeMin + logrWidth*(double)n);
    double Vshell = 4./3.*M_PI*(Rout*Rout*Rout - Rin*Rin*Rin);
    density[n] = number[n]*mpart/Vshell;
    sig_d[n] = sqrt(number[n])*mpart/Vshell;
    if(scaleErrors == 1)
    {
     sig_d[n] *= sqrt((double)(numberShells + numberCore)/(double)

minNumPart);
    } 
   }
  }
  
  else // fixed number of particles per bin
  {
   qsort(radii, numberShells, sizeof(double *), compareDoubles);
   logrRangeMax = log10(radii[numberShells-1]);
   logrRangeMin = log10(radii[0]);
   for(n=0; n < numberShells/ppbin; n++)
   {
    int lastBin;
    if(n == numberShells/ppbin - 1)
     lastBin = 1;
    else
     lastBin = 0;
     
    double Rin = radii[n*ppbin];
    double Rout = radii[(n+1)*ppbin - 1*lastBin];
    double Vshell = 4./3.*M_PI*(Rout*Rout*Rout - Rin*Rin*Rin);
    density[n] = ppbin*mpart/Vshell;
    sig_d[n] = sqrt(ppbin)*mpart/Vshell;
    if(scaleErrors == 1)
    {
     sig_d[n] *= sqrt((double)(numberShells + numberCore)/(double)

minNumPart);
    } 
   }
  }
  
  double Vcore = 4./3.*M_PI*pow(pow(10.0, logrRangeMin), 3.0);
  double densityCore =  (double)numberCore*mpart/Vcore;
  double sig_dCore = sqrt((double)numberCore)*mpart/Vcore;
  
  
 /* Make a 1d array to hold values of chi^2. chisquared[c] */
  double chisquared[N_C];
  int goodfit[N_C];
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  double cwidth = (cRangeMax-cRangeMin)/(double)N_C;
  
  double cmax = cRangeMin-1.0; // dummy values
  double cmin = cRangeMax+1.0;
  double chimin = 12345678.0, cFIT = 12345678.0;
  int good = 0;
  int dof;
  int freeParam = 1;
  
  for(i=0; i < N_C; i++)
  {
    double c = cRangeMin + cwidth*i;
    chisquared[i] = 0.0;
    goodfit[i] = 0;
    dof = 0;
    
    if(BINS > 0)
    {
     for(n=0; n < BINS; n++)
     {
      if(number[n] != 0) // skip bins that have no particles
      {
       double Rin = pow(10., logrRangeMin + logrWidth*((double)n));
       double Rout = pow(10., logrRangeMin + logrWidth*((double)n + 

1.));
       chisquared[i] += pow(density[n] - getNFWDensity(Rin, Rout, c, 

log10(M2)), 2.0)/pow(sig_d[n], 2.0);
       dof++;
      }
     }
    }
    
    else //fixed number of particles per bin
    {
     for(n=0; n < numberShells/ppbin; n++)
     {
      int lastBin;
      if(n == numberShells/ppbin - 1)
       lastBin = 1;
      else
       lastBin = 0;
     
      double Rin = radii[n*ppbin];
      double Rout = radii[(n+1)*ppbin - 1*lastBin];
      chisquared[i] += pow(density[n] - getNFWDensity(Rin, Rout, c, 

log10(M2)), 2.0)/pow(sig_d[n], 2.0);
      dof++;
     }
    }
    
    //contribution to chi^2 from inner average density
    chisquared[i] += pow(densityCore - getNFWDensity(0.0, pow(10., 

logrRangeMin), c, log10(M2)), 2.0)/pow(sig_dCore, 2.0); 
    dof++;
    
    // mark as good fit, look for Mmax, cmax, Mmin, cmin
    if(chisquared[i]/(double)dof <= GOODCHI)
    {
     goodfit[i] = 1;
     
     if(c > cmax)
      cmax = c;
     else if(c < cmin)
      cmin = c;
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    }
    
    // where is chisquared min? (even if there is no "good fit")
    if(chisquared[i] < chimin || i == 0)
    {
     chimin = chisquared[i];
     good = goodfit[i];
     cFIT = c;
    }
  } // chisquared minimization
  
  dof = dof - freeParam;
  
 /* Print out results */
  if(singleHalo < 0) // print out for all halos
    {
   if(printfit == 1)
   {
    fprintf(fout, "%8d\t", gid);
    fprintf(fout, "%8d\t", npart);
    fprintf(fout, "%8.3f\t", chimin/(double)dof);
    fprintf(fout, "%7.4f\t", log10(M2));
    fprintf(fout, "%6.3f\t", cFIT);
    fprintf(fout, "%5.4f\t", R2);
    fprintf(fout, "%7.4f\t", log10(Mfof));
    fprintf(fout, "%7.4f\t", log10(M1));
    fprintf(fout, "%5.4f\t", R1);
    fprintf(fout, "%8.3f\t", chimin);
    fprintf(fout, "%8d\n", dof);
   }
   
   if(printgeo == 1)
   {
    fprintf(fout2, "%8d\t", gid);
    fprintf(fout2, "%8d\t", npart);
    for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", Ieig[k]/mpart);
    for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", axisRatios[k]);
    for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", xmbp[k]);  
    for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", com[k]); 
    for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", xdpp[k]);
    fprintf(fout2, "%5.4f\t", get_r(com, xmbp, hdr.BoxSize));
    fprintf(fout2, "%5.4f\n", get_r(xdpp, xmbp, hdr.BoxSize));
   }
   
   // This is the ratio of densities for the core bin
   //fprintf(fout, "%8.4f\n", densityCore/getNFWDensity(0.0, pow

(10.,logrRangeMin), cFIT, log10(M2)));
  }
  
  else // print out for only one halo
  {
   for(n=0; n < npart; n++)
   {
    pd1 = pdata[n];
    for(k=0; k<3; k++) //printout particle positions
     fprintf(fout, "%8f\t", pd1.pos[k]);
     
    if(BINS > 0 && n < BINS) //print out density information
    {
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     // density profile
     fprintf(fout, "%8f\t", (logrRangeMin + logrWidth*((double)n +.5)));
     fprintf(fout, "%8f\t", log10(density[n]));
     fprintf(fout, "%8f\t", log10(sig_d[n]));
     double Rin = pow(10., logrRangeMin + logrWidth*((double)n));
     double Rout = pow(10., logrRangeMin + logrWidth*((double)n + 1.));
     fprintf(fout, "%8f\t", log10(getNFWDensity(Rin, Rout, cFIT, log10

(M2))));
    }
    else if(BINS <= 0 && n < numberShells/ppbin)
    {
      int lastBin;
      if(n == numberShells/ppbin - 1)
       lastBin = 1;
      else
       lastBin = 0;
     
      double Rin = radii[n*ppbin];
      double Rout = radii[(n+1)*ppbin - 1*lastBin];
      fprintf(fout, "%8f\t", (log10(Rin) + log10(Rout))/2.0);
      fprintf(fout, "%8f\t", log10(density[n]));
      fprintf(fout, "%8f\t", log10(sig_d[n]));
      fprintf(fout, "%8f\t", log10(getNFWDensity(Rin, Rout, cFIT, log10

(M2))));
    }
    
    fprintf(fout, "\n");
   }
    
   fprintf(fout2, "%6.3f\t", cFIT);   
   fprintf(fout2, "%7.4f\t", log10(M2));
   for(k=0; k<3; k++)
     fprintf(fout2, "%9.4f\t", xmbp[k]); 
   fprintf(fout2, "%5.4f\t", R1);
   fprintf(fout2, "%5.4f\t", R2);
   fprintf(fout2, "%8.3f\t", chimin/(double)dof);
   fprintf(fout2, "%7.4f\t", log10(Mfof));
   fprintf(fout2, "%7.4f\n", log10(M1));
  }
  
  // This is the ratio of densities for the core bin
  //fprintf(fout, "%8.4f\n", densityCore/getNFWDensity(0.0, pow

(10.,logrRangeMin), cFIT, log10(M2)));
        
 
    } // loops over all halos
    
    // free up malloc memory
 free (number);
 free (radii);
 free (density);
 free (sig_d);
 
    fclose(fin);
    fclose(fout);
    fclose(fout2);
    free (pdata);
    return hdr.ngroups;
}

// FUNCTION try_file
// checks that bgc_file opens properly then calls function process_halos
int try_file( char * bgc_file, char * centers_file ) 
{ 
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    FILE * fp;
    OUTPUT_HEADER hdr;
    int ngroups_read = 0;

 fprintf(stderr, "Reading Center file: %s\n", centers_file);
    fprintf(stderr, "Reading BGC file: %s\n", bgc_file);
//     fprintf(stdout, "# from BGC file: %s\n", bgc_file);
    fflush(stderr);
    fp = fopen(bgc_file, "r");
    if(fp == NULL)
    { 
        fprintf(stderr, "ERROR: problem opening file '%s'\n", bgc_file);
        assert(fp != NULL);
    } 

    bgc_read_header(fp,&hdr);

    if(PDATA_FORMAT_PV == hdr.format)
    { 
//         fprintf(stdout, "# 11 columns: gid(0) npart(1) group_mass(2) pos_com(3,4,5) 

vel_com(6,7,8) vdisp(9) periodic_needed(10)\n");

        ngroups_read = process_halos(fp, hdr, centers_file);
    }
    else if( PDATA_FORMAT_PVBE == hdr.format )
    { 
//         ngroups_read = calc_stats_mbp(fp, hdr);
        fprintf(stderr, "USING BINDING ENERGY IS NOT YET IMPLEMENTED!\n");
        return(EXIT_FAILURE);
    }
    else
    { 
        fprintf(stderr,"ERROR: skipping '%s' -- PDATA_FORMAT not compatible (%d)\n", 

bgc_file, hdr.format);
        return(EXIT_FAILURE);
    } 

    return ngroups_read;
} 

// FUNCTION: diagonalize
// Takes a 3x3 symmetric matrix S and diagonalizes it. Ixx, Iyy, Izz are the diagonal 

elements.
// From wiki Eigenvalues of a Symmetric 3x3 matrix: http://en.wikipedia.org/wiki/

Eigenvalue_algorithm#Eigenvalues_of_a_Symmetric_3x3_Matrix
// Originally from Oliver K. Smith: Eigenvalues of a symmetric 3 × 3 matrix. Commun. 

ACM 4(4): 168 (1961) 
void diagonalize(double S[3][3], double * Imax, double * Imin, double * Imed)
{
 int i,j;
 double m,q,p,detK,phi;
 double K[3][3];
 
 m = (S[0][0] + S[1][1] + S[2][2])/3.0;
 
 for(i=0; i<3; i++) {
  for(j=0; j<3; j++) {
   if (i == j)
    K[i][j] = S[i][j] - m;
   else
    K[i][j] = S[i][j];
  } }
 
 detK = ( K[0][0]*(K[1][1]*K[2][2] - K[1][2]*K[2][1]) - K[0][1]*(K[1][0]*K[2][2] - K
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[1][2]*K[2][0]) + K[0][2]*(K[1][0]*K[2][1] - K[1][1]*K[2][0]) );
 
 q = detK/2.0;
 
 p = 0.0;
 for(i=0; i<3; i++) {
  for(j=0; j<3; j++) {
  p += K[i][j]*K[i][j];
 } }
 p = p/6.0;
 
 phi = 1./3.*atan(sqrt(p*p*p - q*q)/q);
 
 if(phi < 0.)
  phi=phi+M_PI/3.0; // this is equivalent to phi = 1/3*(atan(-#) + pi)
 
 *Imax = m + 2.0*sqrt(p)*cos(phi);
 *Imin = m - sqrt(p)*(cos(phi) + sqrt(3.)*sin(phi));
 *Imed = m - sqrt(p)*(cos(phi) - sqrt(3.)*sin(phi));
}

// FUNCTION get_r
// Returns the distance between two points (pos1(x,y,z) and pos2(x,y,z)), checks for 

periodic wrap
double get_r(double pos1[], double pos2[], double BoxSize)
{
 int k;
 double rsq = 0., d = 0., plength_check = BoxSize/PLENGTH;
  for(k=0; k<3; k++)
  {
   d = pos1[k] - pos2[k];

   if(d > plength_check)
    d = pos2[k] + BoxSize - pos1[k];
   
   else if(d < -1.0 * plength_check)
    d = pos1[k] + BoxSize - pos2[k];

   rsq += d*d;
  }
 return sqrt(rsq);
}

// FUNCTION: getNFWDensity
// Returns average density between R1 and R2 for an NFW with mass logM and 

concentration c.
double getNFWDensity(double R1, double R2, double c, double logM)
{
 // NFW
 // average density = 4*pi/Vbin*integral_R1^R2[denistyNFW*r^2dr]
 // = 4*pi/Vbin*B/A^3*[ln(AR+1/c) + 1/(cAR + 1)]|R1^R2
 
 double Vbin = 4./3.*M_PI*(R2*R2*R2 - R1*R1*R1);
 
 double A = pow(pow(10.,logM)/(4./3.*M_PI*delta_vir*avg_density),-1.0/3.0);
 double B = delta_vir*avg_density/3./(-c/(1.+c)+log(1.+c));
 double x = A*c*R2 + 1.;
 double y = A*c*R1 + 1.;
 
 return 4.*M_PI*B/(Vbin*A*A*A)*(log(x/y) + 1./x - 1./y); //log gives ln
}

// FUNCTION: newFileName
// 'longFile' is the filename we want to modify and is in the form [characters]/
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[middle characters].[more characters]
// [middle characters] cannot have any '/' or '.' in it.
// Changes 'file' to be a character array that is [middle_characters][extension]
// Be carefule to make sure that 'file' is long enough to hold all the characters and 

extension, or there will be problems...
// initializing file as: char * file[strlen(longFile) + strlen(extension)]; should 

guarantee good things
void newFileName(char * file, char * longFile, char * extension)
{
 int i, start = -1, end = strlen(longFile);
 for(i= 0; i < strlen(longFile); i++)
 {
  if(longFile[i] == '/')
   start = i;
 }
 for(i= strlen(longFile) - 1; i > start; i--)
 {
  if(longFile[i] == '.')
   end = i;
 }
 for(i= start+1; i < end; i++)
 {
  file[i-(start+1)] = longFile[i];
 }
 for(i= (end-start)-1; i < strlen(file); i++) //trims out any other characters that 

may have been left in 'file'
 {
  file[i] = '\0';
 }

 strcat(file, extension);
}

// FUNCTION: compareDoubles
// used in qsort to compare doubles
int compareDoubles (const void *A, const void *B)
{
   double a = *((double *)A);
   double b = *((double *)B);
   
   if (a < b)
    return -1;
   else if (a > b)
    return 1;
   else
    return 0;
}

// FUNCTION: findAxisRatios
// Takes moment of inertia eigenvalues (principle moments of inertia) and assumes the 

object is an ellipsiod to calculate axis ratios.
// For now, this also assumes that the density of the ellipsiod is constant (probably 

not the best assumption).
void findAxisRatios(double Ieig[3], double mass, double * major, double * medium, 

double * minor)
{
 *major  = sqrt(5./2.*(Ieig[0] + Ieig[2] - Ieig[1])/mass);
 *medium = sqrt(5./2.*(Ieig[0] + Ieig[1] - Ieig[2])/mass);
 *minor  = sqrt(5./2.*(Ieig[1] + Ieig[2] - Ieig[0])/mass);
}
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