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1. Background 

 

1.1 The interplay of neural network states and cognitive-behavioral states 

 

The primary aim of systems neuroscience is to comprehend how the nervous system's 

operations, particularly within neural circuits and networks levels, underlie an organism's 

capacity to function in its intricate environment. Neurophysiologists often employ 

statistical methods to unveil associations between neural activity patterns and observable 

behavior; however, research over the past two decades has revealed that these neural-

behavior connections offer only a partial narrative. Neuronal activity, whether at the 

individual-cell or population level, is not solely influenced by external factors but is also 

intricately governed by the dynamics of the networks in which they are embedded (Harris 

et al. 2003; Carrillo‑Reid et al. 2015; Dragoi and Tonegawa 2014; Fontanini and Katz 

2008). Network activity is described as "states," characterized by a balance of inhibitory 

and excitatory processes. These states can be observed through recordings of local field 

potentials (LFPs) which capture the collective electrical activity within local networks 

(György Buzsáki, Anastassiou, and Koch 2012). The term "network state" denotes the 

emergence of coherent, often oscillatory, patterns in the activity of interconnected 

individual neurons (Fontanini and Katz 2008). Theoretical analyses have suggested that 

alterations in these network states can significantly and non-randomly influence how 

individual neurons respond to incoming inputs (Başar et al. 2000; Singer 1993; György 

Buzsáki 2006). 

The relationship between network states and cognitive-behavioral states can be explored 

during the transition from sleep to wakefulness which is marked by significant alterations 

in neural network states (Fontanini and Katz 2008). These changes can be quantified by 

shifts in the frequency spectrum of individual LFPs and interactions between multiple 

LFPs or spike trains (Pesaran et al. 2018). Sleep encompasses various stages, each 

correlated with distinct LFP patterns, physiological characteristics, and behavior (Klinzing, 

Niethard, and Born 2019; Diekelmann and Born 2010; Steriade, McCormick, and 

Sejnowski 1993). Neuronal responses to the same external stimuli differ during different 

https://sciwheel.com/work/citation?ids=281130,430063,605398,223672&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=281130,430063,605398,223672&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=281130,430063,605398,223672&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=222898&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=223672&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=376967,375287,376307&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=376967,375287,376307&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=223672&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5481512&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7371018,278315,368734&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7371018,278315,368734&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7371018,278315,368734&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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network states in various sleep stages (Livingstone and Hubel 1981; Edeline et al. 2001). 

This implies that even in seemingly monolithic situations where the animal remains 

immobile without apparent movements, neural responses are contingent on subtle 

distinctions in local and distributed network states. During wakefulness, significant 

changes in animal behavior or cognitive states coincide with shifts in network states. 

Similarly, in awake animals, individual neurons' activity is intricately linked to the 

immediate spatiotemporal dynamics of the network (Mark and Tsodyks 2012; Grinvald et 

al. 2003; Tsodyks et al. 1999). 

Learning can modify an organism's ability to perceive the spatiotemporal dynamics of its 

environment, comprehend their relevance, and engage with them effectively. At the 

circuit-level, learning leads to alterations in network states, including variations in the 

spectral content of spontaneous activity in different areas, along with shifts in functional 

connectivity within and between regions as learning progresses (Segal, Disterhoft, and 

Olds 1972; Quirk, Repa, and LeDoux 1995; W E Skaggs and McNaughton 1996; Wilson 

and McNaughton 1993; Macrides, Eichenbaum, and Forbes 1982). Additionally, the 

spiking patterns of individual neurons change in response to the environment and in 

relation to ongoing network states (Benchenane et al. 2010; Hirase et al. 2001; Ji and 

Wilson 2008). These changes in neuronal responses driven by learning result from 

widespread patterns of plasticity at multiple levels within the circuit or transient 

phenomena, such as the phasic activation of neuromodulatory nuclei (Jeffrey C Magee 

and Grienberger 2020; Abbott and Nelson 2000; Mayford, Siegelbaum, and Kandel 

2012; Bocchio, Nabavi, and Capogna 2017). In this manner, network function shapes 

sensory function, with learning-related synaptic plasticity facilitating the transition of the 

network into new states. In this context, as behavioral control relies on the functional 

attributes of neurons operating within a framework of transformed neuronal circuit 

dynamics, the processing of incoming stimuli continuously evolves through experience. 

This body of work highlights that experience and internal contexts exert a profound impact 

on sensory network states, subsequently influencing the processing of specific sensory 

stimuli. With these insights, cognitive states can be reconceptualized in terms of network 

states which constraints the way environment can modulate neural dynamics and learning 

can be defined as a specific shift in the network-level neural states. 

https://sciwheel.com/work/citation?ids=556815,141462&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15540429,846078,300536&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15540429,846078,300536&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15540455,290554,557119,556370,5138056&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15540455,290554,557119,556370,5138056&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15540455,290554,557119,556370,5138056&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=275281,281616,1456786&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=275281,281616,1456786&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8801514,137497,53354,3625273&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8801514,137497,53354,3625273&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8801514,137497,53354,3625273&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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In conclusion, it is imperative to investigate the prevailing network states across different 

cognitive-behavioral states, how these network states organize the patterns of activity at 

the single cell or population level, and how the emerging neural dynamics supports 

behavior. In the context of this dissertation, I will focus these questions on the operations 

of the hippocampus, a brain region renowned for its involvement in learning and memory 

processes, in macaque monkeys during awake-learning and sleep state transitions. 

 

1.2 An ethological approach to brain and memory research 

 

Both in animals and humans, multiple lines of evidence from anatomical, 

neuropsychological, and physiological investigations suggest that the hippocampus plays 

a vital role in the organization and persistence of memory networks. Impairments in 

memory retrieval, particularly with respect to contextual memories and the sequence of 

recently visited spatial locations, are prominently observed when the hippocampus is 

lesioned or inactivated.  (Douglas 1967; Hampton and Shettleworth 1996; Sutherland et 

al. 1989; Maren, Aharonov, and Fanselow 1997; Fortin, Wright, and Eichenbaum 2004; 

Gaffan 1994; Hampton, Hampstead, and Murray 2004; Lavenex, Amaral, and Lavenex 

2006; Scoville and Milner 1957; Ryan et al. 2000; Moscovitch et al. 2005; L R Squire 

1992). This highlights the hippocampus's involvement in processing the sequential 

ordering of events rich in spatiotemporal context (Fortin, Agster, and Eichenbaum 2002; 

Agster, Fortin, and Eichenbaum 2002). Additionally, the hippocampus support 

generalization across memories that share item and context information, aligning with its 

proposed role in transforming detailed memory representations into gist-like and 

schematic forms (Libby et al. 2019). Furthermore, the hippocampus plays a crucial role in 

memory consolidation, the process by which newly acquired, initially fragile and 

interference-prone memories transition into more stable and enduring forms over time 

(Dudai 2004; Larry R Squire et al. 2015; Bontempi et al. 1999; Frankland and Bontempi 

2005; G Buzsáki 1989). While there is a consensus on the hippocampus's critical role in 

learning and memory, debates persist regarding its precise functional contributions to 

these processes. In various species, hippocampal single cell activity correlates with 

https://sciwheel.com/work/citation?ids=5141690,13708705,4047114,933510,387971,279767,281044,3024495,372544,3025166,382662,984405&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5141690,13708705,4047114,933510,387971,279767,281044,3024495,372544,3025166,382662,984405&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5141690,13708705,4047114,933510,387971,279767,281044,3024495,372544,3025166,382662,984405&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5141690,13708705,4047114,933510,387971,279767,281044,3024495,372544,3025166,382662,984405&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5141690,13708705,4047114,933510,387971,279767,281044,3024495,372544,3025166,382662,984405&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=279410,2330807&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=279410,2330807&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6203469&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=375128,1128160,862626,23354,481514&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=375128,1128160,862626,23354,481514&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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changes in location (J O’Keefe 1976), directions, movement speed (Maurer et al. 2005, 

2012; Geisler et al. 2007), time (Mankin et al. 2012; L M Rangel et al. 2014; Kraus et al. 

2013), context (Rajji et al. 2006), and event sequences (Manns, Howard, and 

Eichenbaum 2007; Wood et al. 2000). Because episodic memories inherently contain 

details about the timing and location of events, these single-cell findings underscore the 

hippocampus's substantial involvement in representing critical contextual information for 

event memory. Additionally, insights have been gained into the internal organization of 

neural activity within the hippocampus, which I will review in the following sections. Many 

of these findings have primarily originated from rodent studies. Translating the findings of 

rodent to primates, including humans, is laden with challenges due to differences in 

perceptual capabilities, exploratory behaviors, brain structures, and functions (Kaas, Qi, 

and Stepniewska 2022; Passingham 2009; Pine, Wise, and Murray 2021; Thome et al. 

2017). Furthermore, electrophysiological studies in primates have predominantly 

revolved around stationary computerized tasks, rendering direct comparisons with freely-

moving rodent findings a complicated endeavor.  

While traditional laboratory memory tasks have contributed to our understanding of 

memory systems, these sterile laboratory paradigms often overlook critical aspects of 

memory processes and learning, such as dynamic engagement within complex 3D 

environments (Shamay‑Tsoory and Mendelsohn 2019). Evidence suggests that actively 

engaging with the environment significantly impacts and enhances memory formation, 

especially for visuospatial and spatial information, potentially due to providing more 

specific and detailed memories compared to passive experiences (Carassa et al. 2002; 

Brandstatt and Voss 2014; Koriat and Pearlman‑Avnion 2003; Murty, DuBrow, and 

Davachi 2015; Plancher et al. 2013; Rotem-Turchinski, Ramaty, and Mendelsohn 2019; 

Brooks et al. 1999; Penaud et al. 2022). These findings align with the embodied views of 

memory, emphasizing the role of bodily interactions in memory formation (Glenberg 

1997). Omitting natural elements such as real contextual information, active participation, 

and bodily movement diminishes the ecological validity, and hinders our understanding 

of network and mnemonic states in real-life contexts (Shamay‑Tsoory and Mendelsohn 

2019). 
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https://sciwheel.com/work/citation?ids=14764777,14764781,7384680,1812152,14537144,14764785,14764788,14542379&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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To address the limitations of stationary memory tasks and bridge the gap between rodent 

and primate research on the interplay of network states and cognitive-behavioral states, 

this dissertation will leverage freely behaving macaques within a more natural training 

environment. The rhesus macaque (Macaca mulatta) shows close genetic homology to 

humans (Rhesus Macaque Genome Sequencing and Analysis Consortium et al. 2007) 

and shares numerous structural and functional features with human brains (Orban, Van 

Essen, and Vanduffel 2004; Nakahara et al. 2002; Vanduffel et al. 2002). They are also 

capable of performing complex cognitive tests similar to those used in humans 

(Nagahara, Bernot, and Tuszynski 2010; Peters et al. 1996; Rapp and Amaral 1989; 

Chau et al. 2011). A memory system like the human episodic memory system can be 

identified in macaque monkeys (Gaffan 1994; Templer and Hampton 2012; Hampton, 

Engelberg, and Brady 2020; Brown et al. 2019; Templer and Hampton 2013b). For these 

reasons, macaques as model organisms represent a holistic and systems approach to 

studying mechanisms underlying human learning and memory. 

 

 

1.3 Cytoarchitectonic Organization of the hippocampal CA1 

 

Over the years, the mammalian hippocampal formation has held a fascination for 

neuroscientists due to its easily distinguishable anatomical characteristics and prominent 

electrophysiological activity patterns. In the following sections, I will begin by providing an 

account of the sublayer-specific organization and dynamics of CA1 microcircuits in 

rodents, as this model has been the most extensively studied. Subsequently, I will 

establish connections between these dynamics and memory models. For each section, I 

will take a comparative electrophysiological approach and explore the similarities and 

differences between rodent and primate models, which serve as the driving force behind 

the dissertation projects I will present. 

The hippocampal formation (HF) consists of three distinct subregions: the dentate gyrus 

(DG), the hippocampus proper (comprising CA3, CA2, and CA1), and the subiculum 

(Sub) (Andersen et al. 2006). In this dissertation, my primary focus is on CA1. A feature 

https://sciwheel.com/work/citation?ids=1209724&pre=&suf=&sa=0&dbf=0
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of the hippocampus, which greatly facilitates the study of its local field potentials, is its 

laminar organization. Within CA1, specific sub-layers are clearly delineated: stratum 

oriens (so), stratum pyramidal (sp), stratum radiatum (sr), and stratum lacunosum 

moleculare (slm). The stratum oriens, situated deep to the pyramidal cell layer, is a 

relatively narrow layer with minimal cell density. It houses the basal dendrites of pyramidal 

cells along with various classes of interneurons. Stratum pyramidal is densely populated 

with various pyramidal cell types and several categories of inhibitory interneurons 

(Klausberger and Somogyi 2008; Pelkey et al. 2017). Immediately above the pyramidal 

cell layer in CA1 lies the stratum radiatum. The stratum oriens and stratum radiatum are 

the locations for CA3 to CA3 associational connections and the CA3 to CA1 Schaffer 

collateral connections. The uppermost layer of the hippocampus is referred to as the 

stratum lacunosum-moleculare, where fibers from the entorhinal cortex make their 

terminations. Both the stratum radiatum and the stratum lacunosum-moleculare house a 

diverse array of interneurons. 

The hippocampus is composed of various cell classes (Klausberger and Somogyi 2008; 

Pelkey et al. 2017; Bugeon et al. 2022; Cembrowski and Spruston 2019). While 

hippocampal CA1 pyramidal neurons were traditionally considered a homogenous 

population, recent observations have provided strong evidence of within-cell-type 

heterogeneity, along different axes (Ivan Soltesz and Losonczy 2018). This dissertation 

focuses on differentiating between superficial (CA1sup) and deep (CA1deep) pyramidal 

cells along this radial axis. These two distinct groups of pyramidal cells originating at 

distinct time points developmentally, and exhibit variations in gene expression and can 

be identified using specific biomarkers (Slomianka et al. 2011). Notably, strongly 

calbindin-expressing cells are the only ones that tend to occupy a superficial location in 

the pyramidal cell layer across rodents, macaques, and humans (Seress, Gulyás, and 

Freund 1991; Seress et al. 1993; Baimbridge and Miller 1982; Rami et al. 1987). 

Furthermore, they also diverge concerning their inputs from the entorhinal cortex, with 

deep CA1 pyramidal cells receiving stronger projections from the medial entorhinal cortex 

(MEC) in proximal CA1 and superficial CA1 pyramidal cells receiving stronger inputs from 

the lateral entorhinal cortex (LEC) in distal CA1 (Masurkar et al. 2017). Additionally, CA2 

pyramidal cells provide more substantial excitatory inputs to deep CA1 pyramidal cells 

https://sciwheel.com/work/citation?ids=605458,4344847&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=605458,4344847,13278767,6479457&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=605458,4344847,13278767,6479457&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5028932&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=984287&pre=&suf=&sa=0&dbf=0
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https://sciwheel.com/work/citation?ids=984176,984175,1459831,15541552&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7904231&pre=&suf=&sa=0&dbf=0
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compared to their superficial counterparts (Kohara et al. 2014). These differences extend 

to the dendritic morphology, with deep pyramidal cells extend less of their dendritic tree 

into stratum radiatum compared to superficial pyramidal cells (Bannister and Larkman 

1995). Similarly, macaque monkeys have significantly higher apical dendritic arborization 

in superficial pyramidal cells compared to those at deeper levels (Altemus et al. 2005). 

These subclasses of pyramidal cells also vary in their efferent connectivity.  Retrograde 

tracing in rodents and primates have revealed a preference for labeled pyramidal cells to 

be located either deep or superficial within the cell layer. These include the hippocampo-

septal projection (Chronister and DeFrance 1979), projections from deep CA1 pyramidal 

cells to the prefrontal cortex (Insausti and Muñoz 2001; Barbas and Blatt 1995; Roberts 

et al. 2007; Harvey et al. 2023), and orbitofrontal cortices (Cavada et al. 2000), as well as 

projections from superficial CA1 pyramidal cells to the medial temporal cortex (Yukie 

2000; Insausti and Muñoz 2001) and medial entorhinal cortex (Harvey et al. 2023). 

In contrast to the supposed uniformity of hippocampal pyramidal cells, the diversity of 

hippocampal GABAergic interneurons has long been recognized (Parra, Gulyás, and 

Miles 1998; Pelkey et al. 2017; Klausberger and Somogyi 2008; Krook‑Magnuson et al. 

2012; T F Freund and Buzsáki 1996). Inhibitory interneurons can be distinguished by 

their anatomical features (e.g. domain-specific innervation of postsynaptic cells), 

molecular characteristics (e.g.expression of calcium-binding proteins, neuropeptides and 

transcription factors) and functional properties (e.g. intrinsic electrophysiological 

properties and the phase-specific firing during hippocampal network oscillations).  

Moreover, the specialization of inhibitory neurons can further be revealed with respect to 

their interactions with different subpopulation of pyramidal cells (Krook‑Magnuson et al. 

2012). Specifically, CA1deep neurons exhibit stronger connectivity with CCK+ basket 

cells, which, in turn, provide substantial innervation to CA1sup (Valero et al. 2015). 

Conversely, parvalbumin basket cells (PVBCs) receive increased excitation from CA1sup 

but deliver stronger inhibition to CA1deep (S.‑H. Lee et al. 2014). This intricate 

organization suggests the presence of distinct microcircuits within the hippocampal 

network, potentially contributing to the support of various behavioral and cognitive 

phenomena (Ivan Soltesz and Losonczy 2018). 
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https://sciwheel.com/work/citation?ids=2600565&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5708263,9904251&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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Figure 1-1. Schematic representation of hippocampal pyramidal and interneuron subtypes. 

Left. The location of the soma and the axonal target projection for each cell type is illustrated by circles and semicircles respectively. 

Think lines extending through layers are dendrites. Deep CA1PCs receive stronger feedforward excitation from MEC and from 

hippocampal area CA2, while superficial CA1PCs receive stronger excitatory drive from LEC. CA3 Schaffer collateral excitation is 

stronger in calbindin-positive, superficially located CA1PCs. PVBCs provide stronger perisomatic inhibition onto deep CA1PCs and 

receive stronger excitation from superficial CA1PCs. The second major basket cell class that provides perisomatic innervation to PCs, 

the regular-spiking cholecystokinin-positive (CCK) basket cells, did not show a preference for either the deep or superficial CA1PCs 

in mice, although they appeared to provide stronger innervation to superficial PCs in rats. Right. Superficial and deep sublayers 

provide output both to cortical and subcortical target areas. mPFC, medial prefrontal cortex; AMG, amygdala; NAc, nucleus 

accumbens. For some of these efferent projections, the soma locations of CA1PCs have been mapped, showing or deep/or 

superficiall-biased localization of projection neurons. (Modified from (Klausberger and Somogyi 2008; Pelkey et al. 2017; Ivan Soltesz 

and Losonczy 2018)) 

 

1.4 State-dependent oscillatory dynamics in the hippocampus 

 

Intricate spatiotemporal interactions among these cell types in the hippocampus 

culminates in the emergence of distinct neural oscillatory states. To gain deeper insights 

into the operations of hippocampus, it is important to understand the physiological 

properties and underlying mechanisms of these state-dependent oscillations. Moreover, 

we need to elucidate how these oscillatory states correlate with the local spiking activity 

of different cell types and the coordination of cell assemblies. This multifaceted endeavor 

will help our understanding of how the dynamics of the hippocampus contribute to 

learning and memory. 
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The hippocampus displays distinctive patterns of neural oscillations in different frequency 

ranges including theta (6–10 Hz), beta (15-30 Hz), beta2 (23-30 Hz), gamma (∼40–100 

Hz), and ultra-fast (140–200 Hz) frequency ranges (Vanderwolf 1969; G Buzsáki et al. 

2003; Bragin, Jandó, Nádasdy, Hetke, et al. 1995; J Csicsvari et al. 1999b; França et al. 

2014; Jayachandran et al. 2023). Our understanding of the underlying cellular and 

synaptic mechanisms of these hippocampal oscillations and their behavioral significance 

has mainly come from research conducted in rodents. In this context, I will present an 

overview of the physiological characteristics and proposed mechanisms underlying 

various state-dependent oscillations, emphasizing theta, gamma, and ripple oscillations 

in rodents. Furthermore, I will investigate the divergences between rodents and primates 

concerning these oscillations. 

 

1.4.1 Mechanisms and physiological properties of Theta oscillations in the 

hippocampus 

 

1.4.1.1 Rodent models 

 

Ever since its discovery in the rabbit hippocampus by Jung and Kornmuller in 1938 (Jung 

and Kornmüller 1938) behavioral data have been used to support a role for theta rhythm 

in one of two main behavioral functions: (1) voluntary movement during arousal/alert 

states, or (2) learning and memory. 

Green and Arduini (Green and Arduini 1954) showed that the theta pattern correlated 

inversely with neocortical desynchronization, suggesting that it represented the 

hippocampal arousal pattern. Later, Vanderwolf performed studies correlating theta 

rhythm with specific behavioral states and argued that theta rhythm was particularly 

prominent in association with voluntary movement (Vanderwolf 1969; Whishaw and 

Vanderwolf 1973; Bland and Oddie 2001).  The same observation has been replicated 

during different types of movement  (W E Skaggs et al. 1996; Fox, Wolfson, and Ranck 

1986).  Considerable data support a role of theta rhythm in the sensory-motor interface 

(Bland and Oddie 2001; Macrides, Eichenbaum, and Forbes 1982; Semba and 
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https://sciwheel.com/work/citation?ids=7140417&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7140417&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3561923&pre=&suf=&sa=0&dbf=0
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Komisaruk 1984; Griffin et al. 2004; Berry and Seager 2001). However, theta rhythm 

(albeit at lower frequencies) also appears during immobility in rats and mice during fear 

conditioning (Seidenbecher et al. 2003), or attention to predators (Sainsbury, Heynen, 

and Montoya 1987; Sainsbury, Harris, and Rowland 1987). 

Features of theta rhythm also correlate with learning and memory (Berry and Thompson 

1978; Winson 1978; Griffin et al. 2004; Berry and Seager 2001). Adey et al. (1960) (Adey 

1960), in their early attempts to correlate the theta rhythm with aspects of learning, 

reported frequency shifts during simple discrimination learning. The rate of learning is 

faster in individual rabbits when the hippocampal EEG has the highest amount of theta 

power (Berry and Thompson 1978). Theta rhythm appears to reset its phase for encoding 

new stimuli during presentation of visual stimuli in a delayed match to sample task (B. 

Givens 1996) but not during a reference memory task (McCartney et al. 2004). 

Theta consists of rhythmical, asymmetric oscillations that have a narrow frequency power 

spectrum, with a sharp peak around 8 Hz and often associated with higher harmonics 

(second peak around 16 Hz) (G Buzsáki et al. 2003). Theta oscillation is most regular in 

frequency and largest amplitude in the str. lacunosum-moleculare of the hippocampal 

CA1 region (György Buzsáki 2002). Both the amplitude and phase of theta waves change 

as a function of depth. Current source density (CSD) analysis of Theta oscillations in the 

hippocampus reveals a strong sink in the CA1 str. lacunusom-moleculare and a source 

in the pyramidal layer. These observations lend support to rhythmic excitation of the distal 

dendrites by the entorhinal afferents as a current generator of theta waves (György 

Buzsáki 2002). Following surgical removal of the EC, the stratum lacunosum-moleculare 

dipole disappears (Kamondi et al. 1998). Additional sinks are seen in stratum radiatum 

that are thought to reflect excitatory inputs from the CA3. Although EC and CA3 are 

considered the main current generators of the extracellularly recorded theta field, neither 

of these structures are capable of generating theta activity on their own (György Buzsáki 

2002).  Numerous intrinsic and extrinsic mechanisms have been postulated to underlie 

theta rhythm generation and its regulation within the hippocampal CA1(György Buzsáki 

2002; Colgin 2013). In vivo, septo-hippocampal projections are the main candidates for 

generating theta rhythmicity.  
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About 65% of the projections from the septal region to the hippocampus originate from 

cholinergic neurons (Sun et al. 2014). These cholinergic neurons fire at relatively low 

frequencies, around 4 Hz (Simon et al. 2006; Sotty et al. 2003), and are responsible for 

releasing acetylcholine to the proximal dendrites and cell bodies of pyramidal neurons 

(Frotscher and Léránth 1985; Sun et al. 2014). The levels of cholinergic signaling in the 

hippocampus typically increase during exploratory activities, leading to enhanced 

excitability and firing rates of the neurons (H. Zhang, Lin, and Nicolelis 2010; Stanley, 

Wilson, and Fadel 2012; Park and Spruston 2012). Due to the distinct distribution of 

cholinergic receptors on various types of interneurons, different levels of acetylcholine 

may selectively activate specific subsets of interneurons (McQuiston 2014). This selective 

activation might engage specific interneuron populations across different hippocampal 

layers, resulting in a highly state-dependent recruitment of interneurons. For example, the 

oriens-lacunosum moleculare (O-LM) interneurons, situated in the oriens layer with 

axonal extensions into the radiatum and lacunosum moleculare layers, become active in 

response to cholinergic input (Leão et al. 2012). In response, they strongly inhibit the 

distal dendritic tufts of pyramidal neurons in the lacunosum moleculare layer, 

counteracting the excitation from the entorhinal cortex through the temporoammonic 

pathway. When optogenetically stimulated, the septo-hippocampal cholinergic 

projections increase the strength and coherence of theta oscillations while effectively 

suppressing slower frequency bands (0.5–4 Hz), higher frequency bands above theta 

(10–25 Hz), and other competing oscillations such as sharp-wave ripples (150-250 Hz) in 

actively behaving rodents (Vandecasteele et al. 2014). These effects on gamma 

oscillations closely resemble the patterns observed in theta oscillations. 

The septo-hippocampal glutamatergic projections specifically target alveus/oriens 

interneurons (INTalv/ori) (Sun et al. 2014) and engage them in a manner influenced by 

the speed of locomotion (Fuhrmann et al. 2015). When these interneurons are activated 

during higher-speed running, both the population of CA1 pyramidal neurons and the 

alveus/oriens interneurons show increased firing rates (Fuhrmann et al. 2015). 

Consequently, INTalv/ori, which can be activated either by cholinergic or glutamatergic 

septal input, may have a dual effect: they tend to inhibit the distal dendrites of CA1 

pyramidal neurons (via O-LM-mediated dendritic inhibition; (Lovett‑Barron et al. 2014; 
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Maccaferri and McBain 1995) while also having a disinhibitory effect on proximal 

dendrites (by reducing feed-forward inhibition; (Fuhrmann et al. 2015; Leão et al. 2012)). 

The third category of septo-hippocampal projections involves GABAergic neurons. Some 

of the parvalbumin-positive neurons within the medial septum express HCN channels (V. 

Varga et al. 2008) and exhibit rhythmic firing patterns that tightly couples to the trough or 

the peak of theta oscillations and thus are proposed to mediate theta synchronization of 

the local network (Borhegyi et al. 2004). This rhythmic theta activity is then conveyed to 

the hippocampus. The septohippocampal GABAergic projections predominantly target 

hippocampal GABAergic interneurons that also express parvalbumin (T F Freund and 

Antal 1988; T F Freund 1989). Parvalbumin-positive (PV+) hippocampal interneurons, 

particularly the basket cells, deliver potent synchronized inhibition to the perisomatic 

region of CA1 pyramidal neurons (Tamás F Freund and Katona 2007). Thus, the net 

effect of the rhythmic activation of medial septal GABAergic neurons is the rhythmic 

disinhibition of the hippocampal pyramidal neuron population (Tóth, Freund, and Miles 

1997; Hangya et al. 2009). Optogenetic studies confirm the involvement of PV+ 

interneurons in generating theta oscillations by showing that these interneurons can 

effectively entrain hippocampal networks to resonate at theta frequencies in vivo (Stark 

et al. 2013; Gangadharan et al. 2016). Furthermore, rhythmic optogenetic stimulation of 

medial septal GABAergic neurons controls the frequency of the hippocampal LFP, 

although it doesn't significantly impact the oscillation frequency of individual hippocampal 

cells. Therefore, the inputs from septal GABAergic neurons to the hippocampus appear 

to influence cellular and circuit mechanisms that enhance the rhythmicity of individual 

cells rather than directly controlling cellular oscillation frequencies. 

In vitro recordings in isolated CA1 slices shows theta oscillations, which suggest that theta 

rhythms can also be generated intrinsically (Goutagny, Jackson, and Williams 2009). A 

common feature of interneurons in the hippocampus and pacemaker interneurons in the 

MS is the expression of HCN channels (Maccaferri and McBain 1996; V. Varga et al. 

2008). Neurons expressing these channels can undergo a repetitive sequence of events, 

starting with an action potential, followed by afterhyperpolarization, depolarization via 

HCN channels, and another action potential, thus initiating a cycle. Disrupting HCN 
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channels through pharmacological blockade or genetic deletion interferes with theta 

frequency membrane-potential oscillations (Dickson et al. 2000; Giocomo and Hasselmo 

2009). These findings strongly suggest that HCN channels play a pivotal role in 

generating theta rhythms. This might suggest that any network of neurons containing 

HCN channels is predisposed to participate in theta rhythms if the neurons are suitably 

depolarized to trigger this cycle. Depolarization can result from various sources. Neurons 

that rhythmically fire can recruit other neurons, leading to the spread of theta rhythms 

across the network. In this scenario, local neuronal groups function as separate 

oscillators, and the extent of synchronization depends on the reach of pacemaker 

projections. Thus, theta oscillations combine inputs from a subcortical pacemaker with 

local operations to generate complex oscillatory patterns (Colgin 2013). 

 

1.4.1.2 Primate models 

 

Early recordings from the monkey hippocampus suggested that theta activity, 4-8 Hz 

range, is notably less prominent in behaving or sleeping primates compared to rodents 

(Green and Arduini 1954). Subsequent studies in macaques further substantiated these 

findings, demonstrating that hippocampal LFP lack a dominant theta rhythmicity, although 

brief episodes of rhythmicity within the theta frequency band were observed. These 

patterns were distinct from the robust and continuous theta rhythms observed in rodents 

during active locomotion and REM sleep (William E Skaggs et al. 2007). The challenges 

in observing hippocampal theta in awake monkeys have been associated with the fact 

that the recording methods typically require immobile, head-restrained monkeys, unlike 

rodent studies involving freely moving animals (William E Skaggs et al. 2007). It is 

possible that head restraint, like whole-body restraint in rats, might suppress theta activity 

(T. C. Foster, Castro, and McNaughton 1989). Recent wireless recordings in freely-

moving monkeys, including macaques and marmosets, as they naturally explore their 

spatial environments, indicate that theta activity in these species is either weak or absent. 

When present, it occurs in brief episodes rather than continuously and is not significantly 

influenced by locomotion (Talakoub et al. 2019; Courellis et al. 2019; Martinez‑Trujillo et 
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al. 2023). Thus, immobility cannot explain the absence of strong hippocampal theta 

during wake states in the primate hippocampus. Intriguingly, distinct hippocampal theta 

activity patterns emerge during offline behavioral states such as sleep or anesthesia 

(Stewart and Fox 1991). During sleep, the amplitude of theta oscillations is notably more 

pronounced during slow-wave sleep compared to REM sleep and the waking state 

(Takeuchi et al. 2015). Wireless recordings in the macaque hippocampus further affirm 

the prevalence of stronger theta oscillations during early-stage sleep compared to periods 

of alert volitional movement, including walking (Talakoub et al. 2019). These collective 

findings suggest that theta activity in the non-human primate hippocampus emerges in 

short bursts without displaying the stationary slow wave rhythmicity commonly observed 

in rodents. Similar to rodents, its occurrence is state-dependent, yet in contrast, it is more 

pronounced during slow-wave sleep. The question remains whether these observations 

extend to the human hippocampus. 

Human studies of the hippocampal theta oscillation have provided mixed evidence 

complicated by recording techniques, variations in reported spectral properties, 

prevalence, and behavioral correlates. Here, I will focus on direct hippocampal recordings 

from neurosurgical patients because this is the only method for obtaining human brain 

data that are comparable with laboratory recordings of rodents and other primates.  

Early direct recordings in the human hippocampus during various behaviors revealed an 

irregular rhythmic component at 3-4Hz (Arnolds et al. 1980). Notably, while the spectral 

characteristics of this slow activity consistently changed during verbal behavior, a 

significant disparity with rodent data was the absence of a connection between gross 

motor activity (e.g., walking or sitting) and the spectral properties of low-frequency 

hippocampal oscillations. A pioneering study on hippocampal recordings during virtual 

navigation reported episodes of 4-8Hz theta activity, which were influenced by virtual 

movement (Ekstrom et al. 2005). However, low-frequency oscillations (LFO) in humans 

exhibited a lower frequency compared to rodents, peaking at around 3.3 Hz during virtual 

movements in humans as opposed to 7.7 Hz in rats (Ekstrom et al. 2005; Watrous et al. 

2013). This difference could be attributed to the argument that virtual reality poorly 

simulates real spatial navigation due to the absence of body-based input, which 
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potentially impacts the recording of movement-dependent theta activity. In line with this 

argument, even in rodents, virtual movement has been shown to reduce theta activity 

compared to real-world movement, resulting in a lower LFO frequency and the removal 

of the relationship between movement speed and LFO (G. Chen et al. 2013; Ravassard 

et al. 2013; Aghajan et al. 2015).  

During real-world navigation, one study reported peaks at either lower frequencies, 

between 1–4 Hz, or alpha range, 7-13Hz (Bohbot et al. 2017). In another study during 

real-world ambulation, bouts of theta, and lower frequencies (<4Hz) in the medial 

temporal lobe (MTL) of sighted participants occupied less than 10% of recordings but 

were significantly modulated by movement in terms of prevalence and bout duration. 

Interestingly the clearest peaks of theta activity were recorded in a congenitally blind 

participant (M Aghajan et al. 2017). These findings align with previous results showing 

that hippocampal theta activity decreased during conditions of resting with open eyes and 

visuospatial activation compared to resting with closed eyes (Meador et al. 1991). This 

might suggest that visual inputs suppress theta activity in humans. 

Several investigations have pointed out variations in the features of theta activity along 

the longitudinal axis of the hippocampus and between the two hemispheres. The initial 

study reported that the left hippocampal low-frequency oscillations (3-4Hz) exhibited 

smaller amplitude and less rhythmicity compared to the right hippocampus (Arnolds et al. 

1980). During virtual movement, oscillations around 8 Hz were observed in the posterior 

hippocampus, and the precise frequency of these oscillations correlated with movement 

speed, suggesting their involvement in spatial navigation. On the other hand, slower 

oscillations at around 3 Hz were more common in the anterior hippocampus, and their 

frequency remained consistent regardless of movement speed (Goyal et al. 2020). 

Additionally, the average frequency of theta bouts was found to be higher (~6.0 Hz) in the 

right hippocampus (RH) compared to the left hippocampus (5.3 Hz, LH). LH theta bouts 

also had lower amplitudes but were more prevalent when compared to the RH, 

representing 26% versus 21% of the total time (Penner et al. 2022). 

A comparison of theta activity between offline and waking active states in humans reveals 

similar results to monkeys. During periods of quiet wakefulness, hippocampal theta 
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activity dominates but diminishes when individuals engage in tasks (Halgren, Babb, and 

Crandall 1978; Meador et al. 1991). Additionally, electrocorticography (ECoG) recordings 

in the human medial temporal lobe revealed the presence of Beta-1 activity (10-20Hz) 

and robust gamma oscillations (30-100Hz) during both wakefulness and rapid eye 

movement (REM) sleep, while they were absent during slow-wave sleep (SWS). 

Conversely, delta power (frequencies below 4Hz) was more pronounced during SWS in 

comparison to wakefulness and REM sleep (Uchida et al. 2001). A more recent study 

indicated that in awake participants, delta (with a peak around 2Hz) and alpha (with a 

peak around 12Hz) ranges exhibited stronger power, while theta activity appeared more 

robust in anesthetized patients (Kleen et al. 2021). 

Overall, these findings provide compelling evidence that in the primate hippocampus, 

theta rhythm is altered in frequency, prevalence and behavioral correlates relative to 

rodents. 

 

1.4.2 Mechanisms and physiological properties of Gamma oscillations in the 

hippocampus 

 

1.4.2.1 Rodent models 

 

The historical definition of the gamma frequency band in the hippocampus proper has 

undergone changes over time, with recent research revealing distinct sub-bands of 

gamma activity (Zhou et al. 2019). Early observations identified a broad, unified range of 

activity within 25-70 Hz, which often occurred in conjunction with slower theta oscillations 

but could also manifest independently (Bragin, Jandó, Nádasdy, Hetke, et al. 1995). 

Gamma and theta rhythms exhibit strong cross-frequency coupling, where the amplitude 

and/or phase of gamma oscillations are modulated by the phase of theta oscillations 

(Bragin, Jandó, Nádasdy, Hetke, et al. 1995; G Buzsáki et al. 2003; Belluscio et al. 2012; 

Tort et al. 2009; Colgin et al. 2009). Consequently, the power of high-frequency gamma 

activity was observed to be higher during periods of walking and running compared to 

immobile or drinking states, (G Buzsáki, Leung, and Vanderwolf 1983; Bragin, Jandó, 
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Nádasdy, Hetke, et al. 1995). Despite similar levels of theta activity in the CA1 region 

during rapid eye movement (REM) sleep and wakefulness, CA1 gamma activity 

significantly decreases during REM sleep (Montgomery, Sirota, and Buzsáki 2008). This 

coupling between theta and gamma rhythms in CA1 is dependent on inhibitory input to 

parvalbumin-containing (PV) interneurons (Wulff et al. 2009). Removing GABAA 

receptors from PV interneurons reduces the amplitude of CA1 theta oscillations but 

leaves gamma oscillations unaffected, supporting the idea that these two rhythms are 

independently generated and interact through the actions of specific inhibitory cell types. 

Bilateral lesions of the entorhinal cortex attenuate or abolish gamma oscillations in the 

dentate gyrus but unveil a slower (25–50 Hz), larger amplitude gamma oscillation 

occurring in the CA3 to CA1 network (Bragin, Jandó, Nádasdy, Hetke, et al. 1995). This 

observation is the first to demonstrate that there are distinct hippocampal gamma 

oscillators, one in the dentate gyrus and one in the CA3-CA1 network, with the former 

requiring input from extrahippocampal regions (Bragin, Jandó, Nádasdy, Hetke, et al. 

1995). More detailed studies confirm that gamma oscillations can be categorized into 

different types based on their origin, spatial localization in CA1, and preferred phase of 

theta (Colgin et al. 2009; Lasztóczi and Klausberger 2014; Belluscio et al. 2012; 

Scheffer‑Teixeira et al. 2012; Schomburg et al. 2014). CA3 and medial entorhinal cortex 

projections can generate gamma oscillations with slow (25-50 Hz) and medium (60-90 

Hz) frequencies, which can be recorded separately in the stratum radiatum (SR) and 

stratum lacunosum moleculare (SLM) layers of CA1 (Colgin et al. 2009). Faster gamma 

(90-130 Hz) oscillations appear to result from local spiking activity in the pyramidal layer 

of CA1 (György Buzsáki and Wang 2012). 

Multiple circuit mechanisms have been suggested for the generation of gamma 

oscillations in the hippocampus (György Buzsáki and Wang 2012; Whittington et al. 

2000). Originally, one proposal was the "PING model," which posited that a recurrent 

network of pyramidal and inhibitory cells could underlie gamma-frequency population 

rhythms in the hippocampus. In this model, a full cycle included pyramidal cell excitation, 

followed by inhibitory cell excitation, pyramidal cell inhibition, inhibitory cell disexcitation, 

pyramidal cell disinhibition (essentially another form of excitation), and this cycle could 
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repeat. An alternative model (ING) suggests that gamma band local field potential (LFP) 

patterns can emerge through the activation of reciprocally connected inhibitory 

interneurons that mutually regulate each other's activity, primarily via reciprocal inhibition 

(Bartos, Vida, and Jonas 2007; Leung 1998; X. J. Wang and Buzsáki 1996; Börgers and 

Kopell 2003). PING-type oscillations rely on phasic synaptic excitatory input to 

interneurons, whereas ING-type oscillations can occur in sparsely connected interneuron 

networks with only tonic excitatory drive (Traub et al. 1996; Whittington, Traub, and 

Jefferys 1995). In vitro examinations of intrinsic CA3 gamma oscillations suggest that 

these oscillations are generated via PING model because inhibition of pyramidal cells 

suppresses gamma oscillations in CA3 (Cunningham et al. 2003; Gloveli et al. 2005; 

Traub et al. 2003; Craig and McBain 2015). Conversely, intrinsically generated gamma 

oscillations in CA1 persist even during optogenetic inhibition of pyramidal cell firing, 

indicating an ING-type gamma (Craig and McBain 2015). Interestingly, in contrast to CA3, 

CA1 gamma oscillations do not appear to require the involvement of fast-spiking basket 

cells (Craig and McBain 2015). In CA1, the firing of bistratified cells, which target 

dendrites of pyramidal cells coaligned with the glutamatergic input from hippocampal area 

CA3, is strongly phase locked to field gamma oscillations (Craig and McBain 2015; 

Tukker et al. 2007) and thus provide an attractive candidate for being the driver of the 

locally generated, predominantly interneuron-driven model of CA1 gamma oscillations. 

Overall, these findings underscore the coexistence of various qualitatively distinct gamma 

oscillations within hippocampal networks. 

 

 

1.4.2.2 Primate models 

 

As described, in rodents, theta-nested sub-bands of gamma oscillations emerge during 

waking mobility states and REM sleep, with both oscillations dissipating during slow-wave 

sleep. This reflects a tight behavioral coupling between theta and gamma in rodents. In 

the macaque hippocampus, theta and gamma are also behavioral state-dependent but 

appear uncoupled. Studies investigating the spectral content of the hippocampus (both 
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dentate gyrus and CA1) across waking-sleep behavioral states have found that during 

wakefulness and REM sleep, fast gamma oscillations in the frequency range of 20–80Hz 

dominate the hippocampal LFP. In the deep stages of non-REM sleep, fast gamma 

oscillations are partly replaced by continuous, slower oscillations ranging from 0.5 to 8 Hz 

with high amplitudes (Tamura et al. 2013; Takeuchi et al. 2015; Richardson et al. 2017; 

Talakoub et al. 2019). The most striking feature of REM sleep-related changes in primate 

hippocampal activity is the increase in gamma band oscillations (Takeuchi et al. 2015), 

and the low- and gamma-frequency power ratio defines two clear network states that 

alternate throughout the night (Richardson et al. 2017). These results suggest that in 

monkeys, hippocampal theta and gamma are associated with distinct behavioral states, 

in contrast to rodents. This is supported by cross-frequency coupling (CFC) studies. 

Amplitude-amplitude CFC (AA-CFC) between gamma oscillations and slow waves (0.5-2 

Hz)/theta (4-10 Hz) reveals a significant negative correlation (Takeuchi et al. 2015; 

Richardson et al. 2017). When measuring CFC separately for different sleep stages, a 

significant positive correlation between gamma and theta band amplitudes is detected 

only in stage N4 (Takeuchi et al. 2015), suggesting a strong cooperative relationship 

between the gamma and delta/theta bands during this stage. Interestingly, phase-

amplitude CFC shows that gamma amplitude is significantly modulated by the phase of 

delta and theta waves during waking states and N3/N4 sleep stages. This phase-

amplitude relationship appears strongest for the delta band compared to theta and shows 

individual differences among subjects (see (Takeuchi et al. 2015), Figure S5, and 

(Richardson et al. 2017) Figure 4). 

In rodents, different sub-bands of gamma have been documented. In macaques, to the 

best of my knowledge, only one study has reported a clear bimodality in the gamma power 

spectrum under ketamine-dexmedetomidine sedation (Richardson et al. 2017). Under 

this condition, the amplitude distributions of low (30 – 50 Hz) and high (75 – 100 Hz) 

gamma activity as a function of slow oscillations (0.5-2 Hz) phase showed a consistent 

phase shift resembling segregated phase-amplitude coupling between different types of 

gamma and theta rhythms in rodents. This bimodality disappeared during sleep 

recordings, leaving only high-frequency gamma (~70 Hz). In addition, a separate study 
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showed that monkey hippocampal neurons tend to have spike-field coherence in low 

gamma (30–60 Hz) or high gamma (60–100 Hz) (Jutras, Fries, and Buffalo 2009). These 

findings suggest that distinct gamma oscillations might exist in the monkey hippocampus. 

Hippocampal gamma range activity has also been detected in human subjects (Fell et al. 

2001; Sederberg et al. 2003, 2007; Chaieb et al. 2015; B. Lega et al. 2016; Staresina et 

al. 2016; Umbach et al. 2022). Broad-band gamma activity (34-130 Hz) shows phase-

amplitude coupling with low-frequency oscillations (2.5-5 Hz), and this phase-amplitude 

coupling is modulated by success or failure during a memory task (B. Lega et al. 2016). 

More recently, a study reported the presence of two distinct types of gamma activity in 

the human hippocampus with segregated interareal relationships with neocortical areas. 

Neocortical alpha/beta (8 to 20 Hz) power decreases reliably precede and predict 

hippocampal "fast" gamma (60 to 80 Hz) power increases during episodic memory 

formation; during episodic memory retrieval, however, hippocampal "slow" gamma (40 to 

50 Hz) power increases reliably precede and predict later neocortical alpha/beta power 

decreases (B. J. Griffiths et al. 2019). 
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Figure 1-2. Spatiotemporal dynamics of CA1 in the rodents. 

A. Schematic representation of different CA1 and Dentate gyrus (DG) layers. B. Power spectral density of CA1 LFP during different 

stages of sleep (slow-wave sleep, SWS; and rapid-eye movement, REM) and running (RUN). Theta-gamma activity is strongest during 

RUN and REM and diminishes during SWS. In contrast, sharp-wave ripples emerge during SWS. C. Cross-frequency amplitude-

amplitude (TOP) and phase-amplitude (Bottom) coupling showing strong relationship between theta and gamma oscillations in the 

rodent CA1. D. Examples of laminar recordings in the CA1 and DG in mouse during SWS (blue traces) and RUN (red traces) and 

current source density showing the position of sinks and sources. A from (Vitor Lopes‑dos-Santos, Brizee, and Dupret 2023); B 

modified from (G Buzsáki et al. 2003; Kang et al. 2017); C from (G Buzsáki et al. 2003; Belluscio et al. 2012); D from (Zutshi et al. 

2022) with permission. 
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1.4.3 Mechanisms and physiological properties of sharp-wave ripples in the 

hippocampus 

 

1.4.3.1 Rodent models 

 

During offline states of the brain, such as slow-wave sleep and periods of immobility in 

freely moving animals, the prominent hippocampal "theta state" observed in rodents 

diminishes or disappears, giving way to the emergence of sharp-wave ripples (SWRs) (G 

Buzsáki 1986; György Buzsáki 2015). SWRs consist of sharp-waves, which manifest as 

large-amplitude negative polarity deflections lasting 40–100 ms in CA1 stratum radiatum. 

These sharp-waves are often, though not consistently, accompanied by a brief fast 

oscillatory pattern in the local field potential (LFP), referred to as ripples, typically 

occurring in the range of 130-200 Hz within the CA1 pyramidal layer (György Buzsáki 

2015). 

Sharp wave-ripple events (SPWs), have a unique depth profile and specific patterns of 

electrical current sink and source distributions (G Buzsáki, Leung, and Vanderwolf 1983; 

G Buzsáki 1986; Sullivan et al. 2011). Notably, the most prominent current sinks are 

localized within the mid-apical dendritic layers of both the CA1 and CA3 regions of the 

hippocampus (Stark et al. 2014; G Buzsáki et al. 1986). These sinks are accompanied by 

corresponding current sources within the pyramidal layers of the same regions. These 

sink-source distributions demonstrate a strong spatial correlation with the evoked LFP 

responses resulting from electrically induced discharges of CA3 pyramidal neurons (G 

Buzsáki et al. 1986; G Buzsáki 1989). This correlation implies that SPWs essentially 

mirror the excitatory depolarization occurring in the apical dendrites of CA1 pyramidal 

neurons due to the synchronized bursting activity of CA3 pyramidal cells. This 

synchronized bursting activity in CA3 neurons initiates a series of excitation events 

directed at CA1 pyramidal cells, which can lead to the local generation of ripples within 

the CA1 region. Recent research has clarified the temporal sequence of events, indicating 

that sharp wave-ripples initially manifest in CA3 before propagating to CA1. Interestingly, 

for a subset of CA1 ripples, the activation of pyramidal cells in CA2 precedes synchronous 
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firing in CA3 (Oliva et al. 2016). While CA2 neurons contribute to sharp wave-ripple 

events during both sleep and wakefulness, their role appears to be more pronounced 

during wakeful states. This finding strongly suggests that CA2 may serve as the primary 

site for sharp wave-ripple generation. Emerging evidence also points to the significant 

involvement of the subiculum in the generation of sharp wave-ripples (Oliva et al. 2016). 

SWRs originating in the subiculum propagate forward into the entorhinal cortex and 

backward into the hippocampus proper. This observation suggests that structures 

receiving output from the hippocampus not only facilitate the transmission of sharp wave-

ripples to the cortex but also actively participate in their generation (Imbrosci et al. 2021). 

Interneurons have been proposed to play a pivotal role in initiating sharp wave-ripple 

(SPW) bursts through several mechanisms (Ylinen et al. 1995; Schlingloff et al. 2014). 

First, perisomatic-targeting interneurons can enhance SPW generation by temporarily 

imposing strong inhibition on a subset of pyramidal neurons. When this inhibition 

subsides, the synchronized firing of a critical number of pyramidal neurons can start a 

population burst (Ellender et al. 2010; Stark et al. 2014). In line with this, the optogenetic 

activation or suppression of parvalbumin-expressing (PV) interneurons has been shown 

to be sufficient for triggering or interrupting SPW-ripples (Schlingloff et al. 2014; 

Papatheodoropoulos 2010; Cobb et al. 1995). Notably, whole-cell recordings of 

postsynaptic current in CA1 pyramidal neurons in awake mice revealed that during SPW-

ripples, inhibition prevails over excitation (Gan et al. 2017). Specifically, phasic inhibition, 

especially by PV+ interneurons, plays a crucial role in shaping SPW oscillations in the 

hippocampal CA1 region in vivo. These findings support a model in which SPWs are 

generated through a combination of tonic excitation from CA3 and phasic inhibition within 

CA1 (Gan et al. 2017). Another potential way in which interneurons may contribute to 

initiating or sustaining a population burst is through their temporary silencing (György 

Buzsáki 2015). In this scenario, when CA3 inhibitory cells are silenced, the pyramidal 

neurons they innervate are released from inhibition, resulting in robust population bursts. 

A prime candidate for this role is the chandelier or axo-axonic interneuron. Studies in both 

CA1 and CA3 regions have shown that a subset of axo-axonic neurons exhibit reduced 

firing rates during SPW-ripples, regardless of whether the subject is anesthetized 

(Klausberger et al. 2003) or freely moving (Viney et al. 2013; Dudok, Szoboszlay, et al. 
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2021). The silencing of axo-axonic neurons during SPW-ripples can also be achieved by 

PV-basket cells and bistratified interneurons. These interneurons exhibit significant 

increases in discharge rates during SPW-ripples (Ylinen et al. 1995; Klausberger et al. 

2003; C. Varga et al. 2014). 

 

1.4.3.2 Primate models 

 

The sharp-wave ripple is a relatively conserved physiological phenomenon of the 

hippocampal LFP across rodents and primates (A. A. Liu et al. 2022). SWRs have been 

recorded in different primate species including marmosets (Bukhtiyarova et al. 2022), 

macaques (William E Skaggs et al. 2007), and humans (Vaz et al. 2019, 2020; Norman 

et al. 2019, 2021; Y. Y. Chen et al. 2020; Le Van Quyen et al. 2008). Similar to rodents, 

primate SWRs consist of a high-frequency ripple oscillation, occurring together with a 

sharp-wave deflection (William E Skaggs et al. 2007). Three notable differences to the 

rodent are that ripple activity is usually slower in primates than in rodent ripples (William 

E Skaggs et al. 2007), the slow wave component may not always reverse polarity through 

the layer, and the post-ripple deflection is more prominent than in rodents (William E 

Skaggs et al. 2007; Hussin, Leonard, and Hoffman 2020). As in rodents, sharp-wave 

ripples are more abundant during drowsiness or sleep, although their overall prevalence 

is less than in rodents, and they can also occur in awake monkeys (Hussin, Leonard, and 

Hoffman 2020; Leonard and Hoffman 2017; Leonard et al. 2015). In apparent contrast to 

rodent SWRs, monkey SWRs can occur during active periods of exploration, e.g., while 

animals searched for a target object in a scene. SWRs were associated with smaller 

saccades and longer fixations (Leonard and Hoffman 2017; Leonard et al. 2015).  

 

1.4.4 Brain-state- and cell-type-specific firing of hippocampal neurons 

 

The cognitive function of neural oscillations is not inherently determined by their 

physiological characteristics. The operational advantages and behavioral associations of 
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a particular oscillation rely on the circuits that generate it. In the hippocampus CA1, 

extensive research has revealed a remarkable diversity among pyramidal cells and 

GABAergic interneurons with significant anatomical, molecular, physiological and 

functional differences (Pelkey et al. 2017; Klausberger and Somogyi 2008; Cembrowski 

and Spruston 2019; Bezaire and Soltesz 2013; T F Freund and Buzsáki 1996; Ivan 

Soltesz and Losonczy 2018). Precisely timed inhibition targeting specific somatodendritic 

regions of pyramidal neurons is essential for maintaining excitation balance, selectively 

modulating synaptic excitation, regulating the timing of spike output, gain control, 

governing burst firing and synaptic plasticity (Royer et al. 2012; Topolnik and Tamboli 

2022; Kullmann and Lamsa 2007; Dupret, Pleydell‑Bouverie, and Csicsvari 2008). 

Additionally, at the network level, this inhibition plays a crucial role in coordinating cell 

assemblies by preserving oscillations and synchrony (Dupret, O’Neill, and Csicsvari 

2013; Bartolini, Ciceri, and Marín 2013; X.‑J. Zhang et al. 2017). A comprehensive 

understanding of the intricate mechanisms governing local hippocampal operations and 

their active support of ongoing brain processes necessitates delving beyond oscillations 

to explore the underlying circuits and the physiological diversity of different cell classes. 

 

1.4.4.1 Rodent models 

 

The firing patterns of different cell classes dynamically change in response to the 

oscillatory states in the hippocampus. In addition to oscillation-associated alterations in 

firing rates, hippocampal cell classes also show a specific phase-relationship with 

different types of local oscillations (Buzsàki and Eidelberg 1983; Klausberger et al. 2003). 

The phase of firing may fluctuate as a function of the behavioral or brain states 

(Klausberger and Somogyi 2008). Analyzing the phase relationship between cell types 

and oscillations offers a valuable tool for understanding network function at a cellular level 

across species. However, challenges exist. First, rhythms often have a spectrolaminar 

profile, sometimes with different phases at different locations in hippocampal formation, 

so the reference waves against which the firing of different neurons are compared must 

be constant across animals.  Secondly, there might exist different kinds of rhythms in a 
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narrow frequency range, even within a single species (e.g., different types of theta 

oscillations in rodents).  It is crucial to know which kind of rhythm is present and to have 

data on unit firing in more than one kind.  Thirdly, each site in the hippocampal formation 

harbors different neuron types with distinct relations to the rhythm, emphasizing the need 

for neuron type identification. Finally, appropriate methods of analysis should be used 

(Fox, Wolfson, and Ranck 1986). 

In terms of firing pattern, hippocampal pyramidal cells are characterized by low average 

firing rates (<2Hz) and high propensity for generating complex-spike bursts comprising 

two to seven spikes with interspike intervals of 3–10 ms (Ranck 1973; J Csicsvari et al. 

1999b). The physiological properties of pyramidal cells varies as a function of depth in 

the pyramidal layer. Superficial pyramidal cells display higher firing rates, less burstiness 

and greater coefficient of variation (Mizuseki et al. 2011; Harvey et al. 2023). Local 

GABAergic inhibitory cell types in CA1 have a diverse spectrum of firing patterns. 

Although most of the GABAergic inhibitory cell types have a higher firing rate compared 

to pyramidal cells (C. Varga, Golshani, and Soltesz 2012; Klausberger et al. 2005, 2003), 

some inhibitory interneurons, such as Ivy cells, discharge at a low frequency, and have 

unusually broad waveforms for interneurons, but lack complex spike bursting (Fuentealba 

et al. 2008). Distinct inhibitory cell classes control the timing, rate and bursts of pyramidal 

cells (Royer et al. 2012). For example, although silencing PV+ or somatostatin (SOM) 

expressing interneurons in area CA1 increases the firing rate of pyramidal cells, only SOM 

suppression, but not PV+, lead to increased burst firing (Royer et al. 2010). 

The majority of both pyramidal and inhibitory cell types increase their activity during 

sharp-wave ripple events (J Csicsvari et al. 1999a; Royer et al. 2012; Geiller et al. 2020; 

C. Varga, Golshani, and Soltesz 2012); however, the ratio, participation probability, and 

maximum response time vary among these cell types. Putative pyramidal cells and 

interneurons typically increase their firing rate during SWRs by approximately sixfold and 

threefold respectively (J Csicsvari et al. 1999a). The participation probability shows a 

significantly positive correlation with the firing rate of the cells, with overall inhibitory cell 

types having higher participation probabilities than pyramidal cell types (Fernández‑Ruiz 

et al. 2019; Nádasdy et al. 1999). Moreover, pyramidal cell types display within-class 
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variability in participation probability, with CA1deep demonstrating a higher participation 

probability (Harvey et al. 2023).  

In behaving rats, a small population of CA1 cells decrease their firing activity during 

ripples (J Csicsvari et al. 1999a). Recordings from specific cell classes reveals that these 

ripple-suppressed cells may include a subset of axo-axonic cells, and CCK-expressing 

basket cell (Klausberger et al. 2003; Viney et al. 2013; Dudok, Szoboszlay, et al. 2021; 

Dudok, Klein, et al. 2021). In behaving rats, compared to PVBC and bistratified cells 

which more reliably and strongly increase their firing during sharp-wave ripples (Katona 

et al. 2014; C. Varga, Golshani, and Soltesz 2012), O-LM cells show increased firing rate 

during approximately half of the ripple events (C. Varga, Golshani, and Soltesz 2012) but 

are otherwise silent or inhibited (Katona et al. 2014). A very small subset of putative 

pyramidal cells is also suppressed during ripple events (Harvey et al. 2023). The ripple-

suppression of a subset of inhibitory cell members or suppression during some but not all 

ripple events can be due to dynamic reconfiguration of inhibitory circuits to support the 

expression of distinct behaviorally-relevant pyramidal cell assemblies (Dupret, O’Neill, 

and Csicsvari 2013). Moreover, if cells are silenced by hyperpolarization, it can create 

conditions conducive to inducing anti-Hebbian LTP, occurring during negative membrane 

potentials rather than depolarization. Such synaptic plasticity during sharp-wave ripples 

in offline states has the potential to influence the phase of pyramidal cell firing and how 

different afferent input populations contribute to the circuit's population behavior 

(Kullmann and Lamsa 2007). 

Activated pyramidal cells, on average, exhibit their highest firing intensity at the peak of 

the most prominent ripple amplitudes, (J Csicsvari et al. 1999a; G Buzsáki et al. 1992). 

Interneurons tend to fire earlier than pyramidal cells, and the decline in their firing 

frequency is slower than that of the pyramidal cells (J Csicsvari et al. 1999a). Among the 

group of inhibitory cells, different cell types exhibit varying timing in their discharge 

patterns. PV basket cells tend to have a high probability of firing right from the beginning 

of the ripple oscillations, whereas the increase in OLM cell firing occurs with a delayed 

onset (C. Varga, Golshani, and Soltesz 2012). In behaving rats, during each ripple cycle, 

the maximum probability of putative pyramidal cell discharge occurs near the trough of 
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the ripple (J Csicsvari et al. 1999a), with superficial pyramidal cells spiking earlier than 

deep cells (Stark et al. 2014; Berndt et al. 2023). PVBCs interneurons show strong phase 

locking to the early ascending phase of the ripple waves. OLM cells preferentially fire 

during the late ascending phase of the ripple waves (C. Varga, Golshani, and Soltesz 

2012). In anesthetized rats, bistratified cells fire with high frequency and in-phase with 

PVBCs, on average 1–2 ms after the discharges in pyramidal cell somata and dendrites 

(Klausberger et al. 2004). 

During gamma oscillations, modulated CA1 pyramidal cells form a bimodal distribution 

with one class firing near the trough while the other class fire at early ascending phase of 

gamma oscillations (Senior et al. 2008). These groups also differ in terms of their spike 

waveforms, firing rates, and burst firing tendency. Although not directly investigated in the 

paper, these two pyramidal groups may correspond to the superficial-deep distinctions.  

In anesthetized rats, bistratified cells, which innervate the dendrites of pyramidal cells 

aligned with glutamatergic input from hippocampal area CA3, show a strong 

synchronization with field gamma oscillations while other inhibitory cell types demonstrate 

a moderate level of synchronization with gamma oscillations (Tukker et al. 2007). This 

supports the proposal that bistratified neurons might be the main contributors to the local 

gamma generation in CA1 while PV+ basket cells might not be a requirement in CA1 

(Craig and McBain 2015). Cholecystokinin-expressing interneurons tend to fire earliest 

within the gamma cycle, which aligns with their presumed role in regulating the activity of 

individual pyramidal cells (Tukker et al. 2007). The firing rate of OLM cells remains 

relatively constant during gamma oscillations, but these cells synchronize with the gamma 

rhythm (C. Varga, Golshani, and Soltesz 2012). Notably, the temporal ordering of 

preferred firing phases among PV and OLM cells remains consistent across different 

frequencies during fast (>25Hz) network oscillations, typically differing by one or two 

synaptic delays. Considering that PV and OLM cells target distinct segments of pyramidal 

cells (perisomatic vs. distal dendrites), this specific temporal arrangement between these 

two cell types may reflect the regulation of particular inputs in an oscillatory dynamic 

context (C. Varga, Golshani, and Soltesz 2012). 
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During theta oscillations, the long-term firing rates of pyramidal cells remain consistent 

(Csicsvari et al. 1999). PV+ basket cells and oriens-lacunosum-moleculare (OLM) 

interneurons increase their firing rates during theta states compared to nontheta states 

(C. Varga, Golshani, and Soltesz 2012). Deep and superficial pyramidal cells exhibit 

opposite firing phases in the theta cycle (trough vs. peak) (Navas‑Olive et al. 2020). Both 

experimental work and computational modeling propose that perisomatic inhibition, 

provided by populations of basket cells, plays a pivotal role in shaping the phase-locked 

preferences of deep and superficial pyramidal cells (Navas‑Olive et al. 2020). In behaving 

mice, PVBCs tend to fire preferentially during the descending phase of theta (C. Varga, 

Golshani, and Soltesz 2012), followed by OLM cells and bistratified cells which fired 

strongly phase-coupled to the trough of theta oscillations recorded in strata pyramidale 

(Katona et al. 2014; C. Varga, Golshani, and Soltesz 2012). Ivy cells have sparse firing 

during theta oscillations but phase-lock to the trough (Fuentealba et al. 2008) and adjust 

their firing rate in response to the frequency of theta oscillations (Lapray et al. 2012). 

CCK-expressing interneurons, while representing a morphologically diverse group of 

neurons, appear to demonstrate relatively homogeneous and similar phase-locked firing 

behaviors during theta oscillations in CA1 (Klausberger et al. 2005; Tukker et al. 2007). 

Extrahippocampal neuronal firing can also align with hippocampal theta. Theta activity 

recorded in the third layer of the entorhinal cortex (EC3) typically exhibits phase 

synchrony and high coherence with theta recorded from the CA1 pyramidal layer 

(Mizuseki et al. 2009). Various cell types within the entorhinal cortex display specific theta 

phase preferences. EC2 and EC3 principal neurons, serving as the primary afferents to 

dentate gyrus/CA3 and CA1 neurons, respectively, demonstrate, on average, out-of-

phase firing relative to each other. Moreover, their preferred discharge phases tend to be 

approximately opposite those of their target hippocampal neurons. Interestingly, a small 

subset of EC3 pyramidal cells fires in phase with the EC2 population, and this subgroup 

displays the strongest theta phase locking among all EC3 cells. Group cross-correlogram 

analysis substantiates these findings, indicating that EC2 principal cell-EC2/3 interneuron 

pairs exhibit small temporal offsets, whereas EC3 principal cell-EC2/3 interneuron pairs 

display more significant temporal offsets. Additionally, EC2 principal cell-DG/CA3 

interneuron pairs and EC3 principal cell-CA1 interneuron pairs also exhibit substantial 
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temporal discrepancies. These observations imply that population activities in 

unidirectionally and monosynaptically connected layers/regions display significantly more 

temporal delays than what a simple drive-integrate model would predict (Mizuseki et al. 

2009). 

 

1.4.4.2 Primate models 

 

While a detailed study of spike-LFP phase dynamics for various cell types across diverse 

frequency ranges is yet to be conducted in the primate hippocampus, spike-field 

coherence (SFC) analyses suggest that primate hippocampal neurons exhibit oscillatory 

modulations. In monkeys, SFC peaks during a visual memory task were most prominent 

in the 1–8 Hz range (delta/theta band), and the 30–100 Hz range (gamma band). Across 

the population, gamma-band SFC tended to cluster in one of two frequency bands: low 

gamma (30–60 Hz) and high gamma (60–100 Hz) (Jutras, Fries, and Buffalo 2009). More 

recent results show that hippocampal neurons show phase-locking to a spectrum of 

frequencies with prominent peaks in low theta (1-4Hz) and high gamma (60-120Hz) 

frequency bands (Mao et al. 2021). 

In humans, spike timing during ripples is phase locked (Le Van Quyen et al. 2008; Tong 

et al. 2021) and this relationship is cell-type specific (Le Van Quyen et al. 2008).   Putative 

pyramidal cells fired preferentially at the highest amplitude of the ripple, but interneurons 

began to discharge earlier than pyramidal cells. Furthermore, a large fraction of cells were 

phase-locked to the trough of the ripple cycle, but the preferred phase of discharge of 

interneurons followed the maximum discharge probability of pyramidal neurons (Le Van 

Quyen et al. 2008). Spiking activity also shows significant phase locking to the trough of 

the 2–10Hz low-frequency signal. Phase locking in this frequency band is probably due 

to the strong negative deflections that accompany ripple activity. When measuring the 

relation between spiking activity and individual frequencies between 2 Hz and 400 Hz, 

across participants, spiking activity is significantly locked to specific high-frequency bands 

in the LFP (peak 86.9 Hz) (Tong et al. 2021).  
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1.4.5 State-dependent subcircuit dynamics of hippocampal CA1 cell assemblies 

in rodent models 

 

1.4.5.1 Cell assemblies as temporal structures of neural dynamics 

 

Cortical neurons typically exhibit irregular spike trains; however, when these spike trains 

are examined within the context of other simultaneously recorded neurons and then 

rearranged to group synchronously firing cells together, structured patterns emerge. 

These patterns often suggest the presence of a cell assembly organization, wherein 

different groups of cells consistently display distinct spatio-temporal configurations (Harris 

et al. 2003; Harris 2005). A cell assembly, in this context, refers to an anatomically 

dispersed group of neurons in which excitatory connections have been potentiated (Hebb 

1949). Furthermore, a sequence of such assemblies, each triggered by the previous one, 

is termed a “phase sequence”.  

Spike trains within a phase sequence exhibit a temporal structure that is modulated by 

external variables but displays more variability than what would be expected from strict 

sensory control (Harris 2005). In the hippocampus, neurons increase their firing rate when 

the animal navigates over a specific locations within the local environment (J O’Keefe 

1976). Neighboring place cells fired at different locations such that, throughout the 

hippocampus, the entire trajectory of the animal is correlated with the temporal ordering 

of the cells (J O’Keefe 1976; Wilson and McNaughton 1993). Individual place cell activity 

has a particular temporal relationship to local theta oscillations, in that the phase of the 

theta cycle at which a place cell emits spikes is negatively correlated with the position of 

the animal within the place field (J O’Keefe and Recce 1993; W E Skaggs et al. 1996). 

This phenomenon is known as ‘‘theta precession,’’ because these neurons consistently 

spike at progressively earlier phases of the theta oscillation as the animal runs forward 

through the place field. The prediction of spike train of a hippocampal place cell can 

improve by incorporating peer prediction, estimating spike trains of a cell given the spike 

times of simultaneously recorded assembly members, compared to models where only 
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theta phase and place fields are used (Harris et al. 2003). This finding underscores that 

the firing patterns of the hippocampal population are not solely dictated by external factors 

but exhibit a high degree of internally generated and coordinated activity. Such 

interdependence among neuronal ensembles suggests that comprehending the temporal 

structure of neuronal activity necessitates an analysis at the population level (Harris et al. 

2003). 

Further experimental support favoring internally-generated versus environment-

controlled assembly sequences is derived from the observation that in the rat 

hippocampus, consistently evolving cell assemblies emerge not only during spatial 

navigation but also in the absence of alterations in environmental or self-derived inputs 

(Pastalkova et al. 2008). Additionally, disrupting the internally organized rhythmicity of the 

hippocampal network by inactivating the medial septum abolishes firing fields during 

running in the sensory-cue controlled condition but not running in a maze. Nevertheless, 

theta sequences are abolished in both conditions (Y. Wang et al. 2015). These findings 

imply the existence of two distinct mechanisms supporting the development of spatial 

firing fields in the hippocampus, with only the internally organized system facilitating short-

term sequential firing. 

These internally generated cell assembly sequences are hypothesized to play a crucial 

role in supporting various cognitive processes, including goal acquisition across multiple 

timescales, action control, and the formation of learning and memory (György Buzsáki 

2010; Pezzulo, Kemere, and van der Meer 2017). Consequently, to gain insights into how 

system-level operations contribute to cognitive functions, it is essential to concentrate on 

the population activity of simultaneously recorded neurons and examine their 

organizational principles. In the following sections, I will explore three distinct forms of 

temporal structure in hippocampal cell assemblies: theta sequences, preplay, and replay. 

 

1.4.5.2 Theta sequences, preplay, and replay in the hippocampus of rodents 

 

Observation of phase precession in hippocampal place cells led to the prediction of 

temporal sequences across a population of several neurons (W E Skaggs and 
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McNaughton 1996; W E Skaggs et al. 1996; Wallenstein and Hasselmo 1997; Dragoi 

and Buzsáki 2006). Experimental support followed from the demonstration that precise 

sequences of place cell activity occur during theta-states (D. J. Foster and Wilson 2007). 

In these theta sequences, spike times are correlated with the rank positions of the place 

fields of the cells, over a short timescale of tens of milliseconds. Theta sequences 

represent time-compressed trajectories through space in which a portion of the animal’s 

spatial experience is played out in forwards order (Dragoi 2020; Drieu and Zugaro 2019). 

What would we observe if we examined the spatiotemporal firing patterns of hippocampal 

CA1 principal neurons in awake and sleeping rats? During sleep, there is no external 

perceptual reference or motor behavior to drive hippocampal cells. Therefore, if recurring 

spike sequences are present during sleep, they are likely to be internally generated. 

In an early study, place cells that were exposed to their individual place fields during 

awake behavior showed significant increases in the spiking activity and rate of bursting 

during subsequent sleeping states compared to the unexposed place cells (Pavlides and 

Winson 1989). This finding suggests that neuronal activity of hippocampal place cells in 

the awake states may influence the firing characteristics of these cells in subsequent 

sleep. A later study showed that neuron pairs which represented similar parts of the 

environment in the awake rat and therefore fired together during exploration showed an 

increased correlation in their firing during the subsequent slow-wave sleep episode 

compared with the preceding sleep episode (Wilson and McNaughton 1994; W E Skaggs 

and McNaughton 1996). Examining the temporal structure of an ensemble of 

hippocampal CA1 principal neurons demonstrated that during sleep, and usually 

coaligned with sharp-wave ripples, the spatiotemporal pattern of neuronal sequences is 

self-generated spontaneously that recapitulates previously experienced behavioral 

trajectories, a phenomenon called replay (Nádasdy et al. 1999; W E Skaggs et al. 1996; 

Wilson and McNaughton 1994; Z. S. Chen and Wilson 2023; D. J. Foster 2017; O’Neill et 

al. 2010; Ólafsdóttir, Bush, and Barry 2018). Although replay events were originally 

reported during sleep, later results established highly robust replay sequences across 

tens of simultaneously recorded cells occurring during the awake state (Carr, Jadhav, and 

Frank 2011; Davidson, Kloosterman, and Wilson 2009; D. J. Foster and Wilson 2006). 
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An important new dimension has been added to this picture with the finding that during 

pre-run sleep and rest, the hippocampal network of adult naive rats and mice exhibits 

repertoires of pre-formed firing motifs which precede animals’ first ever run on a linear 

track and can preplay the future place cell sequences and animal trajectories on the track 

(Diba and Buzsáki 2007; Dragoi and Tonegawa 2011, 2013). This indicates that a new 

spatial experience can be formed, in part, by the selection of blocks of preexisting cellular 

firing sequences from a larger internal repertoire identifiable during the preceding sleep 

and rest, rather than by exclusively forming all the sequences in response to the external 

cues, even in experimentally naive animals (Dragoi and Tonegawa 2014). The rapid 

selection of pre-existing cellular firing sequences could be essential to the role of the 

hippocampus in rapid encoding and learning (Tse et al. 2007; McClelland, McNaughton, 

and O’Reilly 1995). How are aspects of navigational experience encoded such that they 

modify the pre-existing default patterns to better represent and consolidate the 

experience during replay compared with preplay?  

A series of experimental studies have demonstrated that in the absence of detectable 

robust theta sequences in the hippocampus during navigation, the expected experience-

dependent replay during sleep is abolished (Drieu, Todorova, and Zugaro 2018; Chenani 

et al. 2019). More interestingly, developmentally, although preplay and non-plastic replay 

with similar characteristics before and after the navigational experience exist from early 

stages, it is only during late stages that locations experienced sequentially become 

uniquely bound into larger trajectories within hippocampal theta sequences during 

navigation; consequently, their replay during the following slow wave sleep became 

stronger than their preplay preceding the experience (Farooq et al. 2019; Muessig et al. 

2019). Three types of changes in cell-assembly dynamics from preplay to replay have 

been recently proposed to underlie the replay plasticity including 1) increases in firing 

rates and coactivation of contributing neurons specifically within the preferred cell 

assembly, 2) increased precision of firing of these neurons within preferred cell-

assemblies during sleep replay (i.e., decreased spike dispersion and increased tuning to 

preferred cell assembly), 3) amplification of number of repeats for short neuronal motifs 

specifically encoding the prediction-error signal during navigation (Dragoi 2020). These 

changes in cell-assembly dynamics could primarily support an increased trajectory 
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representation during replay at the (tens of) millisecond activation lifetime of cell 

assemblies.  

Overall, these observations indicate that early in development experience–independent 

assembly of preconfigured trajectory-like sequences emerge. During behavior, an 

assembly is selected from the repertoire of pre-existing cell assemblies to support the 

novel experience. Novel experience induces plasticity in trajectory experience–

dependent replay during sleep. 

 

 

Figure 1-3. The emergence of theta sequences and sharp-wave ripples the hippocampus. 

A. Theta spike phase precession. Top, schematic representation of the temporal organization of successive place cell bursts relative 

to theta as a rat runs along a linear track. When the rat enters the firing field (pink ellipse), the cell fires near the end of the theta cycle, 

i.e., with a phase of ∼360◦. As the rat progresses through the field, bursts occur on earlier and earlier phases (red vertical ticks, action 

potentials; black numbered dots, mean burst times within individual theta cycles). Bottom, phase precession plot. For each spike, 

phase is represented as a function of position (tilted black line, best linear-circular regression line). B. Top, four schematic overlapping 

firing fields. Middle, in their overlap region the cells discharge in sequence (A, AB, ABC, etc.) within each theta cycle, reflecting the 

order of field traversal at a compressed time-scale. Bottom, these past-present-future “sweeps” may require coordination between 

individual phase precessing cells. C. During slow-wave sleep sharp-wave ripple events, sequences that occur during track running 

are replayed in reverse order. (Modified from (Drieu and Zugaro 2019)) 
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1.4.6 Linking physiology to behavior 

 

The extensive physiological data on hippocampal rhythms provide an opportunity to 

evaluate hypotheses about the role of these rhythms for hippocampal network function. 

Here, I will review work on network models in which hippocampal rhythms contributes to 

the following functions: (1) two-stage model of memory formation (2) separating the 

dynamics of encoding and retrieval, (3) facilitating the context-dependent retrieval of 

sequences. I should emphasize that these models were largely motivated by findings in 

rodents and as such might not readily be translatable to primate behavior. Still, the core 

ideas can provide insights into how brain rhythms can structure the temporal dynamics of 

cell assemblies that support behavior. 

 

1.4.6.1 Two-stage model of memory formation 

 

The prevailing understanding is that the formation of memories relies on experience-

driven synaptic plasticity, which allows the modification of connections between neurons 

(Bailey, Kandel, and Harris 2015). This idea emerged shortly after the discovery of 

synapses, with various models suggesting that information is represented by patterns of 

individual neuron firing (Hebb 1949, Lynch 1986). In these models, memory results from 

changes in neuronal connections driven by activity, which subsequently leads to an 

enhanced occurrence of the same activity pattern during recall. The exploration of this 

concept gained traction when the phenomenon of long-term potentiation (LTP) was 

demonstrated, revealing enduring synaptic changes following strong, preferably burst-

like, high-frequency activation (Bliss and Lomo 1973). To induce LTP, certain conditions 

must be met, including intense synaptic stimulation, the coactivation of multiple 

converging input pathways, and high rates of neuronal firing associated with synchronized 

population discharges (Henry Markram, Gerstner, and Sjöström 2011). These conditions 

are met during temporally-compressed sequential activation of cell assemblies in the 

hippocampus during different behavioral states.  
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During wakefulness, increased levels of neuromodulators like acetylcholine in the 

hippocampus enhance the influence of external sensory inputs compared to intrinsic 

neural activity. This amplification of external inputs favors sensory processing and 

promotes the flow of information from the neocortex to the hippocampus (M E Hasselmo 

1999). As animals explore their environment, they sequentially traverse successive place 

fields, and the corresponding place cells activate in a sequence reflecting the ongoing 

trajectory at the behavioral timescale (Drieu and Zugaro 2019). Embedded in these slow 

sequences, due to the overlapping nature of place fields, overlapping place cells fire 

within a sub-theta-cycle which leads to the emergence of time-compressed sequences in 

each cycle of the ongoing theta rhythm (D. J. Foster and Wilson 2007; J O’Keefe and 

Recce 1993; W E Skaggs et al. 1996). This fast temporal organization, continually 

repeated in successive theta cycles, brings together and links cell assemblies within a 

temporal range where they can be modulated by synaptic plasticity (William E. Skaggs et 

al. 1996; J C Magee and Johnston 1997; György Buzsáki and Draguhn 2004; Wójtowicz 

and Mozrzymas 2015). In line with this, targeted lesions of the medial septum and fornix 

reduce hippocampal theta power or alter its frequency (Rawlins, Feldon, and Gray 1979; 

Winson 1978; S Leutgeb and Mizumori 1999; Peter Christian Petersen and Buzsáki 

2020) which further leads to impairments in various memory-guided tasks, (B. S. Givens 

and Olton 1990; Aggleton et al. 1995; Numan and Quaranta 1990; S Leutgeb and 

Mizumori 1999). Medial septum inactivation results in the elimination of theta sequences, 

while preserving the firing field of neurons during navigation. Under this condition, the 

performance of the animals in the memory task becomes significantly impaired (Y. Wang 

et al. 2015). These results suggest that theta structuring of cell assemblies is vital for 

normal memory formation. 

During subsequent episodes of slow wave sleep (SWS), the brain becomes effectively 

isolated from external sensory inputs, and the reduced levels of acetylcholine in the 

hippocampus facilitate recurrent effective connectivity which results in the expression of 

endogenous activity recapitulated in sharp-wave ripple (SWR) events (Gais and Born 

2004b; M E Hasselmo 1999). During SWR events, temporally structured population-level 

events within the hippocampus often appears in which the pattern of neural activity 

correspond to the behaviorally-related theta sequences on a compressed timescale that 
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is conducive to Hebbian plasticity (J C Magee and Johnston 1997; Silva, Feng, and 

Foster 2015). Several studies have provided confirmation of the role of slow-wave sleep 

in the consolidation of memories (Gais and Born 2004a; Peigneux et al. 2004; Plihal and 

Born 1997). Interventions aimed at enhancing specific aspects of slow-wave sleep, 

including the content of neuronal activity, have been shown to result in improved 

performance in memory tasks that were learned prior to sleep (Marshall et al. 2006; 

Rasch et al. 2007). Furthermore, the selective disruption of sharp-wave ripples during 

sleep or quiet wakefulness leads to memory deficits (Ego‑Stengel and Wilson 2010; 

Jadhav et al. 2012; Girardeau et al. 2009). In parallel, increases in sharp wave-ripple 

events have been observed following learning in both humans and rats (Axmacher, Elger, 

and Fell 2008; Eschenko et al. 2008). Artificially prolonging these ripple events enhance 

memory performance, while truncating the late part of ripples has the opposite effect 

(Fernández‑Ruiz et al. 2019). These findings strengthen the notion that the critical 

attribute of slow-wave sleep for memory consolidation is the presence of sharp wave-

ripple events. 

Based on these observations, it was proposed that behavior-dependent electrical 

changes in the hippocampus, specifically theta and sharp-wave ripple (SPW)-associated 

states, might underlie a two-stage process of information storage (G Buzsáki 1989). In 

stage 1, a labile form of memory trace is created through the convergence of excitatory 

inputs from fast-firing granule cells onto CA3 pyramidal neurons during theta-associated 

behavioral states, resulting in a weak and transient heterosynaptic potentiation of CA3 

pyramidal cells. This process is influenced by subcortical inputs. In stage 2, a long-lasting 

form of memory trace is established through the long-term modification of synaptic 

efficacy, facilitated by SPW-population bursts that occur at the end of theta behaviors. 

The highly synchronous population bursts in CA3 lead to the long-term enhancement of 

synaptic efficacy in CA3 and some of their CA1 target neurons. From this perspective, 

both theta and SPW states are considered essential for normal memory trace formation. 
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1.4.6.2 Separating the dynamics of encoding and retrieval 

 

The formation of new memories requires new information to be encoded in the face of 

proactive interference from the past. SPEAR model (Separate Phases of Encoding And 

Retrieval) has been proposed as a solution. Based on this model, encoding preferentially 

occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and 

retrieval occurs at the trough, coincident with input from CA3, consistent with theta phase-

dependent synaptic plasticity (Michael E Hasselmo, Bodelón, and Wyble 2002; Michael 

E Hasselmo 2005). Physiological data on theta rhythm are consistent with the 

encoding/retrieval model, including phase changes in membrane potential dynamics, 

inhibition, synaptic input, long-term potentiation, and gamma coupling. 

In the encoding phase, dendrites are depolarized (Kamondi et al. 1998) by entorhinal 

input, allowing for the encoding of information. However, the cell body is hyperpolarized 

in this phase to prevent spiking and interference from the retrieval of previously stored 

associations (Michael E Hasselmo, Bodelón, and Wyble 2002). On the other hand, during 

the retrieval phase of the theta cycle, the external input from the entorhinal cortex is 

weaker, but the excitatory input from region CA3 is stronger. In this phase, CA1 cell 

bodies are depolarized by the input from region CA3, enabling the spread of activity 

across previously modified synapses to retrieve stored associations. This is supported by 

the fact that spiking in region CA1 follows spiking in region CA3 and does not coincide 

with spiking in entorhinal layer III (Mizuseki et al. 2009). These changes in membrane 

potential align with the patterns of synaptic currents during theta, as revealed by current 

source density analysis (G Buzsáki et al. 1986; Kamondi et al. 1998). 

Phase fluctuations in membrane potential during theta cycles may be attributed to distinct 

types of inhibitory interneurons that spike at different phases of the theta rhythm 

(Klausberger and Somogyi 2008). Computational models propose functional roles for 

various phases of interneuron firing in segregating the processes of encoding and 

retrieval (Cutsuridis and Hasselmo 2012; Kunec, Hasselmo, and Kopell 2005). Inhibitory 

axo-axonic and basket cells, for example, can suppress the cell bodies and axons of 

excitatory cells, reducing spiking activity during the encoding phase (Cutsuridis and 
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Hasselmo 2012). Conversely, during the retrieval phase, the spiking of oriens lacunosum-

moleculare cells inhibits the layer where entorhinal input connects with the distal 

dendrites, thereby diminishing external input as associations from previously modified 

synapses in the stratum radiatum are retrieved (Kunec, Hasselmo, and Kopell 2005; 

Michael E Hasselmo, Bodelón, and Wyble 2002). During this phase, the cell body 

receives minimal inhibition, allowing the retrieval process to drive neuronal spiking 

activity. Fluctuations in membrane potential give rise to dynamic changes in long-term 

potentiation (LTP). During the encoding phase, there is robust synaptic modification at 

the synapses located in region CA1, resulting in the strengthening of synapses containing 

NMDA receptors. This process encodes associations between the presynaptic activity in 

CA3 and the postsynaptic activity induced in CA1 neurons by input from the entorhinal 

cortex (Michael E Hasselmo and Stern 2014). Experimental evidence from physiological 

data indicates that LTP can be induced at the synapses originating from region CA3 when 

synaptic transmission is relatively weak at these CA3–CA1 synapses, but postsynaptic 

dendrites become depolarized due to input from the entorhinal cortex (Hölscher, Anwyl, 

and Rowan 1997; Huerta and Lisman 1995; Hyman et al. 2003). 

Studies of gamma oscillations in rats further substantiates the proposed model. Gamma 

oscillations are observed during specific phases of the theta rhythm in both the 

hippocampus (Bragin, Jandó, Nádasdy, Hetke, et al. 1995) and the entorhinal cortex 

(Chrobak and Buzsáki 1998; Tort et al. 2009). Aligning with the encoding phase of the 

model, high-frequency gamma oscillations exhibit synchronization between the entorhinal 

cortex and region CA1 during a particular phase of theta (Colgin et al. 2009). In contrast, 

during a different phase of theta, region CA1 displays coherence of low-frequency gamma 

with region CA3 (Colgin et al. 2009), in line with the concept of a retrieval phase. 

Several studies have directly tested the SPEAR model's predictions. Empirical evidence 

indicates that in novel environments, the preferred theta phase of CA1 place cell firing 

shifts closer to the peak of the CA1 pyramidal-layer theta cycle, tilting the balance more 

toward encoding. Notably, this shift during encoding in novel environments is disrupted 

by the administration of cholinergic antagonists. In contrast, in familiar environments, the 

cholinergic antagonism push the preferred theta firing phase closer to the theta trough, 
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shifting the encoding-retrieval balance even further toward retrieval (Douchamps et al. 

2013). These findings align with the anticipated outcomes from the SPEAR model. 

Moreover, applying phase-specific closed-loop inhibition to dorsal CA1 during the 

endogenous theta rhythm in freely moving mice resulted in improved performance on a 

spatial navigation task that required both encoding and retrieval of reward-related 

information in each trial. The effectiveness of this intervention was contingent on both the 

specific phase of theta and the task phase at which the stimulation occurred. Stimulation 

during the encoding phase enhanced performance when synchronized with the theta 

peak, while stimulation during the retrieval phase was more effective when aligned with 

the theta trough. Taken together, these observations indicate that in rodents, processes 

related to encoding and retrieval of task-relevant information are preferentially active at 

distinct theta phases, and the cholinergic system plays a pivotal role in orchestrating 

these phasic transitions (Siegle and Wilson 2014). 

 

1.4.6.3 Facilitating the context-dependent retrieval of sequences 

 

Episodic memory is the primary cognitive function often associated with hippocampal 

activity (Tulving and Markowitsch 1998). Episodic memories are contextual-rich 

experiential phenomena that contain temporally-ordered spatiotemporal configurations 

(Allen and Fortin 2013). Episodic memories are impaired in animals or patients with 

hippocampal lesion (Aggleton and Brown 1999). Furthermore, a substantial and 

continually evolving body of research indicates that the dynamics of single hippocampal 

cells or assemblies are linked to factors like the animal's location, time, and spatial context 

(György Buzsáki and Llinás 2017; Howard Eichenbaum 2017b). This suggests that the 

hippocampus plays a role in processing contextual information. Nevertheless, there is 

ongoing and extensive debate regarding the precise contribution of the hippocampus to 

episodic memories. 

While the activity of individual hippocampal cells is associated with both spatial and 

nonspatial aspects of the environment, the cognitive map theory proposes that 

hippocampal processing is fundamentally rooted in spatial information and that nonspatial 

https://sciwheel.com/work/citation?ids=83297&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=83297&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=706130&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15544435&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=644253&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1459803&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4440132,3966967&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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information is integrated within a primary spatial framework in the hippocampus (John 

O'Keefe and Lynn Nadel 1978). According to this view, place-related features are created 

within the hippocampus itself, whereas nonspatial inputs originate from other sources and 

are incorporated into these place representations within the hippocampus (John O’Keefe 

and Krupic 2021). 

Some have argued that the apparent prioritization of spatial representation in 

hippocampal activity is a consequence of ever-present spatial regularities associated with 

various behavioral episodes (H Eichenbaum et al. 1999). This means that locations 

where events take place typically exhibit distinct patterns that can be included in most 

event-related coding. At the same time, nonspatial events are incorporated in situations 

where they occur with regularity and can provide a pervasive influence when the events 

occur across many places (Wood, Dudchenko, and Eichenbaum 1999). Based on this 

perspective, it has been inferred that the neural activity of individual hippocampal neurons 

reflects a multidimensional association between relevant object and spatial dimensions, 

essentially creating a system for relational memory (Howard Eichenbaum 2017a). To 

illustrate, in a nonspatial 'transitive inference' task, rats were trained to distinguish 

between pairs of overlapping odors (e.g., odor A > odor B; odor B > odor C, and so on). 

After mastering these paired associations, the rats were able to construct a sequence 

that allowed them to deduce relationships between pairs of odors not directly learned, 

such as odor A > odor C. Rats with hippocampal lesions were capable of learning 

individual discriminations but struggled to correctly infer the relationship between a novel 

pair, like odor A > odor C (Bunsey and Eichenbaum 1996; Dusek and Eichenbaum 1997; 

Devito, Kanter, and Eichenbaum 2010). In a context-guided object associations task, 

hippocampal neuronal networks demonstrated a hierarchical organization that 

interconnected overlapping elements of related memories, encompassing both spatial 

and nonspatial aspects of separate experiences. Features associated with events that 

dictated divergent behaviors and reward expectations were segregated into distinct 

hippocampal representations (McKenzie et al. 2014). These findings support the idea that 

the hippocampus plays a role in a broad relational memory capacity, serving two main 

functions: 1) systematically organizing multiple overlapping memories to establish 

relational networks among items to be remembered and 2) enabling the flexible 

https://sciwheel.com/work/citation?ids=10514111&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10514111&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=313009&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=302054&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3552128&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=276262,278627,432078&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=276262,278627,432078&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=627300&pre=&suf=&sa=0&dbf=0
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expression of memories through inferences about indirectly related items (N. J. Cohen, 

H. Eichenbaum 1993). 

The above hypothesis does not address the issue of how the brain organizes its memory 

content and the role of the hippocampus in this process. The Index theory posits that 

incoming sensory information is initially processed and stored in unique assemblies of 

cortical modules within distributed sensory and association areas throughout the cortex 

(Teyler and DiScenna 1986). The function of the hippocampus, according to this theory, 

is to map functional units of the neocortex and other brain structures activated by 

experiential events. This concept assumes that neocortical memory networks are content-

addressable. Content addressability implies a systematic relationship between the 

content of an experience and the specific brain networks responsible for representing it 

(Nadel and Hardt 2011). An intriguing aspect of content-addressable systems is their 

reliance on pattern completion mechanisms for accurate information retrieval. Pattern 

completion involves the ability to retrieve complete memories or associations from partial 

or incomplete cues (Marr, Willshaw, and McNaughton 1991). The unique circuits within 

the hippocampus, particularly the recurrent networks of CA3-CA3 synapses, are believed 

to be the subcellular basis for pattern completion (Guzman et al. 2016; Bennett, Gibson, 

and Robinson 1994). Recall in the neocortex is achieved through a reverse hierarchical 

series of pattern association networks facilitated by the hippocampo-cortical 

backprojections. Each of these networks performs pattern generalization to retrieve a 

complete pattern of cortical firing in higher-order cortical areas (Rolls 2013).  

The accurate recall of event memories necessitates preserving the temporal order of 

events. So, how does the hippocampus maintain this temporal order during pattern 

completion? As mentioned earlier, hippocampal circuits can activate cell assemblies in a 

specific temporal sequence that corresponds to the behavioral trajectory. This sequential 

activation of these cell assemblies is the leading candidate for preserving the temporal 

order of events. Therefore, as an extension of the Index theory, it has been proposed that 

the role of the hippocampal system is to generate content-limited cell assembly 

sequences without encoding the details of specific events. In this framework, the 

hippocampus, acting as a sequence generator, essentially points to items (such as a 

https://sciwheel.com/work/citation?ids=1189224&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=448889&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13470706&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2991670,2716998&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2991670,2716998&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=718426&pre=&suf=&sa=0&dbf=0
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percept or 'what') stored in the neocortex in the same order they were experienced during 

learning (Friston and Buzsáki 2016; György Buzsáki, McKenzie, and Davachi 2022; 

György Buzsáki and Tingley 2018). Evidence supporting this hypothesis comes from 

physiological data that indicates when the temporal sequence among hippocampal 

neurons is disrupted at the theta oscillation timescale, without affecting place fields, the 

animal's memory is impaired (Robbe et al. 2006; Y. Wang et al. 2015). 

https://sciwheel.com/work/citation?ids=1484451,11727641,5786648&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1484451,11727641,5786648&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=856674,481643&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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2. Chapter 1: Learning of object-in-context sequences in freely-moving 

macaques1 

 

2.1 Abstract 

 

Flexible learning is a hallmark of primate cognition, which arises through interactions with 

changing environments. Studies of the neural basis for this flexibility are typically limited 

by laboratory settings that use minimal environmental cues and allow restricted behaviors 

for actively sensing and interacting with the environment. To address this, we constructed 

a 3-D enclosure containing touchscreens on its walls, for studying cognition in freely 

moving macaques. To test flexible learning, monkeys completed trials consisting of a 

regular sequence of selections across four touchscreens. On each screen, the monkeys 

had to select the sole correct item (‘target’) from a set of four available items. Each item 

was the target on exactly one screen of the sequence, making correct performance 

conditioned on the spatiotemporal sequence rule. Both monkeys successfully learned 

multiple 4-item sets (N=14 and 22 sets), totaling over 50 and 80 unique, conditional item-

context memoranda, with no indication of capacity limits. The enclosure allowed freedom 

of movements leading up to and following the touchscreen interactions. To determine 

whether movement economy changed with learning, we reconstructed 3D position and 

movement dynamics using markerless tracking software and gyroscopic inertial 

measurements. Whereas general body positions remained consistent across repeated 

sequences, fine head movements varied as monkeys learned, both within and across 

sequence sets, demonstrating learning set or “learning to learn”. These results 

demonstrate monkeys’ rapid and flexible learning within a true 3-D space. Furthermore, 

this approach enables the measurement of continuous behavior while ensuring precise 

experimental control and behavioral repetition of sequences over time. Overall, this 

approach harmonizes the design features that are needed for electrophysiological studies 

from within tasks that showcase fully situated, flexible cognition. 

 
1 This chapter is adapted from Learning of object-in-context sequences in freely-moving macaques available in bioRxiv and has 

been reproduced with the permission of my co-authors KF Rahman, W Zinke, KL Hoffman. 
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2.2 Introduction   

Emulating natural learning conditions in laboratory tasks should increase the external 

validity of behavioral results. In addition, it can help to pinpoint those neural mechanisms 

that will also generalize outside the laboratory environment. Examples of naturalistic 

elements in learning tasks for non-human primates typically include either photorealistic 

stimuli or complex visuospatial stimuli, but under reduced spatial and/or temporal 

dimensions, or else the animals are tested under spatially extended contexts, albeit with 

simplified stimuli and/or temporal demands (Bachevalier, Nemanic, and Alvarado 2015; 

Gaffan 1994; Elisabeth A. Murray, Baxter, and Gaffan 1998; Froudist‑Walsh et al. 2018; 

Templer and Hampton 2013a; Hampton, Hampstead, and Murray 2004, 2005; Lavenex, 

Amaral, and Lavenex 2006; Parkinson, Murray, and Mishkin 1988). Furthermore, the 

dependent variables to operationalize learning in such tasks have traditionally been 

limited to percent correct or error count and error type. Technological advances make it 

possible to incorporate greater contextual richness and variety, and factor in a wider 

range of behaviors that occur during learning, including the range of movements and 

behaviors exhibited by macaques. In addition, increasing temporal resolution enhances 

the opportunity to capture some species-typical macaque behaviors, including foraging in 

space and visuomotor reaching for manipulable and visually-distinct 3-D (real) objects.  

 

Traditional neurophysiological studies came at the direct cost of species-typical 

affordances and active sensing, due to requirements for stationarity of the recording 

apparatus. More recently, some of the technological improvements for neurophysiological 

studies can free these restrictions and capitalize on the natural multisensory richness of 

stimuli-in-context (Mao et al. 2021; Schwarz et al. 2014; Berger, Agha, and Gail 2020; 

Voloh et al. 2023; Courellis et al. 2019; Stangl, Maoz, and Suthana 2023). Using 

chronically implanted arrays and wireless recordings, neurophysiology has been possible 

under conditions of mobility, offering more direct comparisons with neurophysiological 

studies in freely moving rats and mice (Abbaspoor, Hussin, and Hoffman 2023; Mao et al. 

2021; Courellis et al. 2019). Furthermore, implementing a more naturalistic behavioral 

context strengthens the generalizability of the results for understanding human memory 

https://sciwheel.com/work/citation?ids=7340151,279767,14764756,5664606,5664637,281044,643068,3024495,3024927&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7340151,279767,14764756,5664606,5664637,281044,643068,3024495,3024927&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7340151,279767,14764756,5664606,5664637,281044,643068,3024495,3024927&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7340151,279767,14764756,5664606,5664637,281044,643068,3024495,3024927&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11893337,4044798,9247586,15607711,7918536,14858613&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11893337,4044798,9247586,15607711,7918536,14858613&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15512682,11893337,7918536&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15512682,11893337,7918536&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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as it exists in the natural world, beyond experimental settings (Shamay‑Tsoory and 

Mendelsohn 2019). Indeed, memory can be impaired in humans tested under more 

restricted movements and impoverished multisensory and visual environments, further 

emphasizing the importance of naturalistic learning settings (Brandstatt and Voss 2014; 

Carassa et al. 2002; Koriat and Pearlman‑Avnion 2003; Murty, DuBrow, and Davachi 

2015; Plancher et al. 2013; Rotem-Turchinski, Ramaty, and Mendelsohn 2019). Thus, 

while recognizing the benefits of precisely timed experimental control and the strengths 

of a reductionist approach, there remains a need to conduct neurophysiology under more 

naturalistic settings (Miller et al. 2022; Krakauer et al. 2017; Gomez‑Marin et al. 2014).  

 

The growing adoption of large-scale wireless recordings in monkeys and the emergence 

of interactive computer control of environments offers the potential to reconcile 

neurophysiological and neuroethological demands for a broader range of studies. 

Specifically, in this study, our aim was to create an environment that meets 

electrophysiological demands (precise timing and experimental control, and repetition for 

comparison to rodent neurophysiology studies) while allowing conditional, complex 

stimulus arrays extended in space and time, and within the situated context of naturalistic 

movements and exploratory behaviors that are native to learning in this species. 

 

We constructed an enclosure for macaques that allows exploratory movements and 

affords exposure to numerous and diverse combinations of contexts and visual objects 

through the use of computer touchscreen displays distributed throughout the enclosure. 

By conditionally rewarding the selection of objects as a function of their spatiotemporal 

position, we created structured, sequential, goal-directed journeys. We asked i. can 

macaques learn items in context under this complex conditional structure, replete with 

protracted delays and action sequences prior to reward, ii. can repeated discriminanda 

be learned without prohibitive interference/memory capacity issues, and iii. do 

movements track with learning? The answers to these questions will inform not only the 

utility of the task and enclosure for understanding learning, but also its suitability for use 

in electrophysiological studies, to understand the neural mechanisms driving task 

performance. 

https://sciwheel.com/work/citation?ids=11179177&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11179177&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14764781,14764777,7384680,1812152,14537144,14764785&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14764781,14764777,7384680,1812152,14537144,14764785&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14764781,14764777,7384680,1812152,14537144,14764785&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13052749,3108658,105854&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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2.3 Results 

 

2.3.1 Learning sequentially-presented item-context associations 

 

Two macaques learned stimulus sets whereby each set consisted of a four-item 

sequence of target objects-in-context, spanning across the four different touchscreens of 

one corner (i.e., 4 item-screen associations) per trial. Monkey F completed 22 sets, 

Monkey W completed 14 sets, with 3 sets excluded based on unclear learning estimates 

(i.e. possible learning failures or forgetting). Each target occurred in the face of 3 

distractors, but the objects designated distractors on any one screen would be targets in 

exactly one of the other screens, i.e. ‘context-conditional’. Figure 2A and 2B present the 

mean learning curves and learning trial statistics for each animal subject separately. Both 

monkeys showed performance improvement within sets, and both learned according to 

the learning state-space model. The learning trial was defined as the trial in which the 

lower bound of the performance confidence interval surpassed the chance level for each 

set (P = 0.25, dotted grey lines on lower plots).   

Completion of this task required a series of decisions and extensive movement in the 

enclosure prior to reward. Trial duration (the elapsed time from touch on the 1st screen 

cue to when animals completed performance on the 4th screen, triggering reward) was, 

on average, 40.5 and 29.0 s for W and F, respectively (N: 1408, and 2157 trials, s.d. 11.0 

and 5.5 s). 

We designed this task to offer several means to learn the correct responses. These 

include learning 4 distinct spatial/temporal/visual-contextual associations, or adopting a 

non-matching working memory rule that would eliminate as a candidate object any 

confirmed target object from the previous screens on that trial. These two possible 

strategies would lead to different performance probabilities across screens, as a function 

of trial repetition. The second strategy would appear as a linear performance 

improvement across screens within each trial, reflecting the shifting chance performance 

as targets are eliminated: 1/(4-# previous screens); Figure 2C, dotted line with square 

markers, by the time animal arrives at the 4th screen, she had eliminated 3 objects as 
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target so the probability of success should be 1.0). Importantly, this strategy does not 

require long term memory across trials i.e. is as effective on the first as on the last trials, 

distinguishing it from the associative-learning strategies that are ineffective on the first 

trial, but become optimal strategies if the associations can be learned with repeated 

exposure. To test these two possibilities, we computed the proportion of success on the 

first trial across sets for each screen and for each animal separately (Figure 2C). The 

performance of neither animal subject follows the linear trend that would be expected 

from an ideal process of elimination. Although this doesn’t rule out the possibility that 

animals sporadically used this strategy over the course of learning, it shows that this was 

not a prepotent strategy. 

The two monkeys, W and F  learned 14 and 22 sets of 4-item sequences for over 50 and 

80 unique item-context memoranda. In practice, proactive interference would be a sign 

of reaching capacity limits. We tested for signs of proactive interference by comparing 

learning points for the new sets presented over time. Neither animal showed worsening 

performance over the sets based on a linear regression of learning trial over set number, 

suggesting that additional sets could have been introduced (i.e. no observable proactive 

interference): (W: t(62) = -3.85, p < 0.001; F: t(86) = 1.4; p > 0.1). On the contrary, one of 

the animals (W) showed significant improvement over time, potentially reflecting learning 

set or schema learning.  
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Figure 2-1. Monkeys learn sequentially-presented associations between objects and context. 

(A) Top learning points in monkey W across different sets of object context associations, shown for each screen in the trial sequence. 

White bars and numbers indicate the median (N = 14 sets). Circles show outliers. Bottom Mean learning curves across sets for each 

screen. The dotted grey line indicates the chance level at 0.25. (Please see the methods section for more details on the learning point 

estimation) (B) Same as A for monkey F (N = 22 sets). (C) The proportion of correct choices for the first trial across sets for each 

screen for both animals (right bars for each screen correspond to the second monkey in B). The dotted line with circle markers shows 

the chance level at 0.25. The dotted grey line with square markers indicates the expected performance if monkeys were using only a 

non-match, working memory strategy across items in the trial sequence.  

 

2.4 Markerless motion capture for macaques using Jarvis and accelerometer 

data 

 

Adopting more naturalistic, unconstrained behavior increases potential benefits but also 

burdens for quantifying movements that have more degrees of freedom (Gomez‑Marin et 

al. 2014; Juavinett, Erlich, and Churchland 2018). It was of interest, therefore, to 

determine how consistent the animal’s position was across learning, during key task 

epochs and in general, during performance.  We trained a CNN model for each corner 

and each animal, owing to different camera views and camera calibrations needed per 

animal (see Methods for details). Simultaneously we obtained accelerometer data 

sampled at 3 kHz, for greater temporal precision. Although the outward facing animal and 

https://sciwheel.com/work/citation?ids=105854,4536403&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=105854,4536403&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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slow (30 fps) cameras made reach trajectories difficult to measure in all cases, most other 

body parts were tracked qualitatively well. Figure 3A shows the markerless location of the 

headpost position for one complete block, out of two blocks completed in that corner for 

that session. Figure 3B expands to include all trials, with the head position at the time of 

touch highlighted with black dots, revealing a relatively consistent position at the time of 

screen engagement. Using the IMU, we screened for the most relevant axis during the 

decision epoch specifically, for each animal. Comparing the trials leading up to the 

learning point (N(W)=507, N(F)=1443) with the final trials after learning (‘post-learning’ 

N(W)=519, N(F)=840), both animals showed a decrease in head movements following 

learning (Figure 3D,E; Mann-Whitney U test (W: z = 5.80, p < 0.001; F: z = 4.87, p < 

0.001). To explore whether this effect emerged with learning set (as the animals 

continued to perform new sets) we separated out the first 5 (‘early’) and last 5 (‘late’) sets 

learned for each animal, (Figure 3D,E, insets). Qualitatively, the low amplitude differences 

were more visible across animals in the late sessions, suggesting a ‘learning to learn’ the 

effective changes in movements with learning. To explore the changes in finer temporal 

detail, example IMU traces were selected from the distribution extrema. Whereas the late 

learning traces will, per definition, be smaller overall, the changes over the course of the 

choice epoch suggests specific attributes may be indicative of learning (e.g. addressing 

when the larger excursions occur, relative to selection.) Drawing from an example trial 

(Figure 3C), we see from the head label compared to the mid-shoulder label that early 

learning contains some ‘waffling’ or ‘scanning’ head movements relative to the body, 

consistent with viewing the wide object spatial array. This opens up the possible future 

benefit to use head movements and video labels to assess gaze (visual point of regard), 

when visual items are made sufficiently distant in the viewpoint of the animal. More work 

will be required to determine the unique contributions of these metrics in evaluating 

reaction time, learning, gaze, and attention during deliberative decision making and 

possible vicarious trial and error behaviors.  
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Figure 2-2. Body movements during the task. 

Body movements during the task. (A) Markerless tracking during repeated trials of one training block. The top of the head is tracked 

across cameras to generate a  3-D position estimate in the enclosure during one block of trials, shown in yellow (see methods). (B) 

Positions across both corners’ sequences in a session. As in A., but depicting each position point in red, and the positions at the time 

of any touchscreen touch, in black. Qualitatively consistent positions are shown, based on the clustering of black points into 8 discrete 
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locations, at the touchscreens. (C) A series of labeled points from the head and shoulder, selected during the choice (deliberation) 

epoch early in learning (from a trial in E.) Head oscillation may reflect vacillation. (D) Average IMU movements during the choice 

epoch in monkey W, as a function of learning. Shown is the cumulative distribution of average movement amplitude during the choice 

epoch from trials preceding the learning point (Learning) in red (N=507), and from trials after the learning point (‘Post-Learning’) in 

black (N=519); shaded areas indicate the bootstrapped 95% confidence intervals. There was, on average, more movement during 

learning than after the sequence was learned, (Mann-Whitney U test, z = 5.80, p < 0.001). Top inset: the same cumulative distributions 

as in the main plot, but only for data obtaind from the first 5 sets learned by this monkey. Bottom inset: the same as the top inset but 

for the final 5 sets. (E) The same as in D., but for monkey F. Learning trials N = 1443; Post-Learning trials N = 840; Mann-Whitney U 

test (F: z = 4.87, p < 0.001). Asterisks in insets indicate the subset of data selected for the plot in F. (F) Example IMU movements 

during the choice epoch. A selection of example traces to illustrate the movement over the course of the epochs exemplifying the 

larger movement early in learning (red) relative to late in learning (black). Because the choice epochs vary in duration, the responses 

are shown in proportional elapsed time from the choice array onset to the selection touch. The body positions in C. are taken from 

one example during the choice epoch. 

 

2.5 Discussion  

 

In this study we introduced monkeys to a 3D task environment designed to test cognitive 

skills and track unconstrained, continuous behavior while preserving elements of precise 

temporal and stimulus control and trial structure. To demonstrate the utility of this 

enclosure, we designed an object-in-context associative learning task whose items were 

presented sequentially. Both exposed monkeys learned the structure of the task and 

completed multiple sets of unique item-in-context sequences, including memory for two 

different sets presented in opposite corners within the same session. Markerless tracking 

of multi-camera recordings allowed 3D pose reconstruction. Furthermore, we collected 

IMU data and observed that movement patterns varied with different stages of learning. 

These results demonstrate the feasibility of training monkeys on complex cognitive tasks 

and tracking their behavior under naturalistic conditions, while preserving precisely timed 

behavioral contingencies needed for wireless electrophysiological recordings. 

As a new apparatus, the experimental design must weigh theoretical advances against 

the uncertainty of obtaining viable behaviors from the test subjects. In the present 

experiment, we prioritized the enrichment of “routes”, including primate specializations, 

while encouraging sufficient repetition of cues, contexts, and actions to support use with 

wireless neural recordings in the relevant brain structures. We held a secondary interest 
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in exploring the multiple modalities for assessing behaviorally-relevant movements, for 

future elaboration of pose and possibly embodied memory in the enclosure.  

 

2.5.2 Route enrichment 

 

We incorporated several common features from studies of freely-moving rats and mice 

involved in memory or navigation studies, adapting them to be more relevant to the 

macaque. First, we include temporal context (a sequential ‘route’), which had been used 

to bridge rodent hippocampal place field studies and human list learning and item 

sequences (Pastalkova et al. 2008; Howard Eichenbaum 2014; Fortin, Agster, and 

Eichenbaum 2002; Allen et al. 2014; Salz et al. 2016; Long and Kahana 2019; Hsieh et 

al. 2014; Jang and Huber 2008). We additionally incorporate visual objects into the 

sequences as relevant material for primate species (Ranganath 2010; Libby et al. 2019). 

The objects on a background scene are reminiscent of hippocampal-dependent object-

context memory tasks to assess hippocampal and MTL function in monkeys (Gaffan 

1994; Froudist‑Walsh et al. 2018; Basile et al. 2020; Templer and Hampton 2013b; Chau 

et al. 2011), but in this case, we require the 3-D screen location in the environment as the 

spatial associate; finer, 2-d position on the screen must be ignored, adding another level 

of flexibility to the task. These attributes are important for creating event memories that 

demonstrate flexible learning through the layered spatio-temporal contingencies and 

rules (or features) that need to be ignored. The cost of this task structure is that we require 

sufficient changing elements to be learned in parallel, before reward, and it was not clear 

at the outset if the monkeys would succeed. Furthermore, electrophysiological studies of 

replay or that measure trajectories, typically require repeating sequences (Z. S. Chen and 

Wilson 2023). To encourage learning and to encourage resampling of behaviors/positions 

through a common sequence, we incorporated a correction trial. This complicates 

reinforcement learning modeling and could have led to 1-pass learning, in principle. In 

practice, the monkeys take the serial equivalent of ~1-5 trials to learn, even in the face of 

the distractors. This rate of learning suggests they did not come to rely on the correction 

in favor of responding appropriately to the choice array. Empirically, they learned and did 

https://sciwheel.com/work/citation?ids=84098,423763,279410,2717488,4730073,14549064,337661,1812496&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=84098,423763,279410,2717488,4730073,14549064,337661,1812496&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=84098,423763,279410,2717488,4730073,14549064,337661,1812496&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=388525,6203469&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=279767,5664606,10724036,73127,6898657&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=279767,5664606,10724036,73127,6898657&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=279767,5664606,10724036,73127,6898657&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14480693&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14480693&pre=&suf=&sa=0&dbf=0
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so rapidly considering the multiple strategies and conditionals that could have impeded 

progress. Having demonstrated learning, future studies may isolate different cues and 

rules to encourage different learning strategies. For example, contingencies could be 

based on the background image, temporal sequence (order), spatial sequence, or item 

sequence.  Capacity and memory generalization could be assessed by varying the 

similarity and relationship among cues to be grouped or discriminated. Prospective and 

retrospective replay could be probed by varying the spatial trajectories just completed 

with those that are about to commence. Meanwhile, proceeding with the present design 

offers a convergence of spatiotemporal cues, each of which can drive differentiable neural 

responses, to facilitate neural decoding of the different trial trajectories. 

 

2.5.3 Tracking pose across learning 

 

In the present experiment, we placed the touchscreens as the primary behavioral 

assessment tool, using cameras and IMU to augment those measures, unlike other freely-

moving monkey setups (Bala et al. 2020). As a consequence, the animal shows a regular 

outward positioning to react to screens, limiting the visibility of face and limbs during the 

task epochs. As such, this task structure is not optimized for assessing reach and eye 

movements, therefore other design strategies could be added for tasks designed to study 

reaching and facial movements (Womelsdorf et al. 2021) Our use of touches on the 

screen, however, was effective at ensuring spatiotemporal and physical (vision and 

reach) points of alignment, each funneling into lower degrees of freedom than the full 

continuous behaviors would offer. This suggests that for predictable goals, the range of 

movements and poses has far fewer degrees of freedom and is therefore more tractable 

to analyze than random foraging and exploration. It also helps dissociate performance 

differences due to movements versus perceptual or mnemonic differences. If more 

complete foraging or spontaneous behaviors are desired, changing the structure of the 

environment and experimental contingencies will prevent ‘settling’ into a regular goal-

directed path. Future experiments should expand on the curiosity, free foraging, and more 

https://sciwheel.com/work/citation?ids=9758369&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14544119&pre=&suf=&sa=0&dbf=0
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diverse response strategies of macaques to capitalize on the full benefits of such 

enclosures. 

 

2.5.4 Learning set, or ‘learning to learn’ 

 

The use of richer task structures offers an opportunity to assess whether and how 

subjects use previously learned structure to inform new decisions. In the present study, 

monkeys changed head movements with learning. Specifically, the head ‘toggling’ during 

deliberation was reduced post-learning, and further, over set repetition. This may be an 

analog of saccadic scan paths that invoke fewer checks and re-checks before a decision 

is made. Tracking the animal’s body, head, and eyes may be useful to detect the 

embodiment of learning (Gottlieb and Oudeyer 2018; Yang, Lengyel, and Wolpert 2016; 

Yang, Wolpert, and Lengyel 2018; Gomez‑Marin and Ghazanfar 2019; Gomez-Marin et 

al. 2014). In addition, one of the monkeys showed improved performance across sets. 

Because the monkeys have different overall levels of performance and different levels of 

experience viewing visual objects, further work will be needed to reveal the conditions 

that are conducive to learning greater movement economy versus correct flexible-

associative learning, across set repetition. 

In the present study, we do not measure explicitly whether movement itself improves 

learning speed, robustness to interference, or capacity; however, numerous studies 

restricting movement or using virtual and 2-D visual environments make a compelling 

argument for the use of maximal immersion and bodily agency in experiments (Aghajan 

et al. 2015; Carassa et al. 2002; T. C. Foster, Castro, and McNaughton 1989). In 

particular, to understand flexible learning, maximize the capacity of memory, and to 

understand the neural circuits as they have developed to aid the individual, we must 

endeavor to use the organism’s defaults: natural movements within 3-D naturalistic 

settings. The present example is one demonstration of this, within the nascent but vital 

field studying primate neurophysiology through a freely-moving, ethological lens.   

 

https://sciwheel.com/work/citation?ids=5979846,3115141,6843384,7599748,105854&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5979846,3115141,6843384,7599748,105854&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5979846,3115141,6843384,7599748,105854&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=372447,14764777,980896&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=372447,14764777,980896&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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2.6 Materials and Methods 

 

All animal procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee, in compliance with the policies of the United States Department of Agriculture 

and Public Health Service on the humane care and use of laboratory animals. 

Experimental subjects were two adult female rhesus macaque monkeys (Macaca 

mulatta). 

 

2.7 Behavioral Testing  

 

Testing environment. The testing apparatus consisted of a custom-made enclosure 

(1.52 x 1.52 x 2.13 m; the ‘Treehouse’, Figure 1a,b), equipped with modular panels 

organized into upper and lower levels. Among the panels, 8 were designated as testing 

stations, each equipped with a touchscreen (ViewSonic 24” 1080p 10-Point Multi Touch 

Screen Monitor, models 2421 and 2455) and a perch. These stations were arranged 

symmetrically in two opposed corners (e.g., northwest and southeast) with a 2-level x 2-

side arrangement in each corner. Fluid reward was delivered by peristaltic pumps 

(Campden Instruments Precision Liquid Feed Pump) placed in both active corners. The 

pumps were controlled with a Measurement Computing Corporation USB DAQ (OM-USB-

1208FS) that was connected to the Experimental Control System.  

 

Behavioral tracking We monitored and recorded animals' behavior in using 8 side 

cameras and 1 overhead camera (Figure 1A; 5 e3Vision, WhiteMatter cameras, 

https://white-matter.com/products/e3vision/, and 4 Logitech webcams) set up around the 

enclosure. Video frames from all cameras/webcams were collected at 30Hz with HD 

resolution. e3Vision frames from all cameras were sent to the e3Vision hub and 

synchronized online before recording. Logitech video frames were synced to e3Vision 
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frames manually by aligning a reference frame (a simultaneous change of background on 

all screens). In addition to video recordings, we recorded movements, with a wireless 9-

axis Inertial Measurement Unit (IMU, Freelynx, Neuralynx, Inc.) to previously-implanted 

titanium cranial fixtures (Double-Asymmetric Head Post, Gray Matter Research or similar 

custom fixtures from Rogue Research). The IMU data were acquired at 3kHz and saved 

directly to the acquisition computer’s disk. To synchronize IMU and camera frames, TTL 

pulses for the start and end of the e3Vision frames were sent from the e3Vision hub to 

the acquisition system where IMU data were recorded. 

 

Experimental control. Experiments were controlled by a single computer equipped with 

two AMD graphics cards (Cape Verde PRO FirePro W600) that connected to the eight 

touchscreens, plus one control monitor. A MATLAB toolbox based on PLDAPS (Eastman 

and Huk 2012) was developed in house (‘TreeTop’ at https://github.com/hoffman-

lab/TreeHouse)(Wagner 2006). This toolbox uses Psychtoolbox functionality (Brainard 

1997; Pelli 1997) to control stimulus selection and presentation on each monitor 

independently with precise timing, of stimulus presentations and monitoring multi-touch 

activations of the screens with exact locations, and control of reward delivery. To achieve 

the precision and independence in stimulus timing and touch monitoring, the toolbox 

relies on object oriented programming using a finite state system approach (Wagner 

2006) as outlined for the PLDAPS (Eastman and Huk 2012) and Opticka packages 

(Andolina 2023). The TreeTop system also sent event codes to the IMU DAQ, allowing 

experimental control, cameras, and IMU to be synchronized.  

 

Trial structure. As shown in Figure 1C and D, the task started with the presentation of a 

start cue (black circle) that designated the active screen for the animal. Upon touching 

the cue, and after a 1 s delay, the array onset consisted of the appearance of 4 objects 

presented in a 2 by 2 grid on a background scene providing context specific for that set 

of objects. Selection: If monkeys touched the correct item (‘Target’) - the item associated 

with that screen - a ‘correct’ tone was played and the target reappeared at the center of 

the screen. Confirmation: The subject had to touch the target again to proceed to activate 

https://github.com/HukLab/PLDAPS
https://sciwheel.com/work/citation?ids=6226491&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6226491&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14531562&pre=&suf=&sa=0&dbf=0
http://psychtoolbox.org/
https://sciwheel.com/work/citation?ids=116405,116418&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=116405,116418&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://www.mathworks.com/help/pdf_doc/matlab/matlab_oop.pdf
https://sciwheel.com/work/citation?ids=14531562&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14531562&pre=&suf=&sa=0&dbf=0
https://github.com/HukLab/PLDAPS
https://sciwheel.com/work/citation?ids=6226491&pre=&suf=&sa=0&dbf=0
https://github.com/iandol/opticka
https://sciwheel.com/work/citation?ids=14645392&pre=&suf=&sa=0&dbf=0
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the next screen. If, instead, she selected one of the 3 non-target objects (‘distractors’), an 

‘error’ tone was played along with the disappearance of the stimuli for 2-4 seconds. Then, 

the correct target was shown in isolation in the originally presented location in the 

background context (i.e. Correction). Monkeys had to touch the target in isolation to 

proceed to the confirmation where they had to select the target once again. Occasionally, 

only the target was displayed, with no distractors, to help maintain motivation. These were 

equally likely across screens, and were excluded from all learning analyses.  As shown 

in Figure 3D, subjects proceeded through the trial sequence on all 4 screens, in order, 

before receiving fluid reward. For Subject W, the total reward was calculated based on 

the performance of the animal within a trial (e.g. 2 drops of juice per correct selection and 

0 drops for incorrect touched) and delivered at the reward receptacle. For subject F, a 

fixed reward amount was delivered, but the reward type (flavor) was switched in the 

middle of the session to maintain motivation. For the presented data, both subjects always 

traversed an identical sequence starting with screen 1 (upper left) to screen 4 (lower right) 

on one corner of the environment.  

 

Session design. Although a given stimulus set was restricted to one corner of the 

apparatus, sets could be assigned to either of the two touchscreen corners. Within a given 

session, monkeys were trained on both corners of the apparatus, using different sets of 

stimuli, in an alternating block design of 2 repetitions. For monkey W, only one corner 

contained a new set; the other corner contained a set that had been learned previously. 

Presentation of new sets was staggered across corners in this way. For monkey F, earlier 

sessions consisted of two new sets on opposite sides of the apparatus, but later sessions 

were similar in setting to monkey W. We continued training on the same sets across days 

until monkeys learned the novel sets and then introduced new different sets. For the 

current study, we only used learning on the novel sets. 

Visual stimuli. Objects and background images were chosen from colored photorealistic 

fruits/vegetables and natural scenes, respectively. The isolated object images were 

scaled to approximately the same size and placed on a black circle background of 73 mm 

diameter with a gray ring of 117 mm diameter around it, to make objects distinct from the 
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screen background image (Figure 1). Different types of fruits/vegetables were included in 

any a set of four objects, and images were never reused across sets. 

 

2.7.5 Experimental subject pretraining  

 

First, the monkeys were pretrained to use touch screens. Subject W was then required to 

select by touching a correct synthetic object paired with a specific scene background in 

the booth setup, while seated in a transport chair. Subject F was required to touch one of 

two possible item colors, or one of two spatial positions as a function of the screen location 

screen in the treehouse. When training started in the Treehouse, both monkeys were 

therefore naïve to screen-contingent object association tasks, but were familiar with 

learning selection rules on touchscreens. After the animals learned the location of all the 

reward spouts, we introduced an operant cue touch on a single screen for reward, 

followed by selection from among an increasing number of items in an array. Finally, we 

increased the number of active screens in which the animal had to perform the same 

actions, but across the multiple screens in a predetermined order before receiving reward 

until a sequence of all 4 screens from a given corner was achieved. 

 

2.7.6 Behavioral analysis  

 

Learning assessment. We concatenated all completed trials per stimulus set, including 

all responses in which the animals selected from among the 4 objects in the array. We 

then used a latent-process model to calculate individual learning curves for each screen 

of each set, by subject (Smith et al. 2004). The process includes a 2-step state-space 

filtering followed by a smoothing algorithm to estimate the learning curve and its 

confidence intervals. The estimation used an Expectation Maximization algorithm with an 

initial background probability of 0.25 and convergence criterion of 1e-8. The maximum 

number of steps was set to 5000, and a significant epsilon (square root of the variance of 

the learning state process) of 0.005 was used. The initial conditions were fixed, and the 

https://sciwheel.com/work/citation?ids=296555&pre=&suf=&sa=0&dbf=0
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learning trial was defined for each animal as the first trial where the 95% confidence 

interval of the estimated probability of correct performance exceeded and remained 

above chance. To estimate changes in learning rate across sets (i.e. over time) for each 

animal, we fit a linear regression to the learning rate of each screen of each set, according 

to the ordinal position of the set.  

 

Markerless pose labeling of videos. For 3D movement reconstruction, we used JARVIS 

(https://jarvis-mocap.github.io/jarvis-docs/). In the first step, we used a 7x4 checkerboard 

to record one calibration video for each camera. 20 frames per camera were used to 

compute all the camera-specific parameters that were used for 3D reconstruction 

including focal length, principal point offset, and distortion parameters. Next, we used 

JARVIS annotation tool to annotate 26 points on the animal’s body in the apparatus which 

included the center shoulder, tailbone, tail tip, nose tip, joints such as elbow, wrist, 

fingertip, knee, ankle on both sides, and 2 LEDs on the recording cover, and the headpost. 

Initially, a subset of frames was uniformly extracted for manual labeling, followed by 

training and testing the model. We improved the model’s performance by replacing faulty 

frames where the model did not work well with similar frames. We trained separate 

models based on the camera views of each two active corners of the apparatus. The 

model for each corner was trained on frames from 3 cameras that maximized the 

projection of the animal for that corner. For each camera, 500 frames were labeled. For 

both models, we used HybridNet with 3D-CNN (convolution neural network) based 

network architecture containing 88 layers (medium size). HybridNet models achieved an 

accuracy of 29mm on the training set and 32mm on the test set. After initial reconstruction, 

we applied a 3D median filtering with a window length of 7 frames for smoothing. In 

addition, for illustration purposes, we applied a second Savitzky-Golay filter with a window 

length of 30 frames and polynomial order of 1. 

  

IMU tracking. The IMU data tracked the linear acceleration and angular velocity of head 

movement. Angular velocity measures roll, pitch, and yaw, and linear acceleration 

measures linear movements. These data can augment behavioral assessments by 

https://jarvis-mocap.github.io/jarvis-docs/
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providing higher temporal resolution (3000 Hz) than video markerless tracking (33 Hz). 

Our interest was in the relative movement of the head at different learning points. To 

analyze head movement differences with learning, we extracted and rectified IMU data, 

in microvolts, from the choice epoch of each trial, (I.e. the onset of choice array 

appearance to selection). During this time, the animals need to choose among four 

options, and this choice is the target of learning in the present experiments. The resulting 

average movement value per trial was grouped according to learning (pre-learning point 

and the final trials, after the learning point), for each set. Because of the different 

placement and orientation of the IMU on the animal, we are showing the angular velocity 

for one animal and the linear acceleration of the other. For the cumulative distribution 

functions, we bootstrapped the data over 1000 trials, taking out 40 samples per trial, to 

generate a 95% confidence interval. A 2-tailed Mann-Whitney U test was used to compare 

the early and late learning movement distributions of each animal.  
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Figure 2-3. Sequential object-in-context association task in the 3-D ‘Treehouse’ enclosure. 

(A, B) renderings of the enclosure, including a schematic of peripheral devices that enabled timed stimulus delivery and behavioral 

measurements. (A) overhead view of the task environment. Black squares depict touchscreens, white squares show the monkey 

entrance, blue rectangles show reward dispenser locations, and pink rectangles show the camera positions. (B) One corner of the 

enclosure, revealing the four stations comprising one trial (stations are numbered in presentation order). The opposite corner has 

been hidden for visibility.  (C)Trial sequence depicted for the first screen in the sequence. Bold black = active screen; green ring = 

correct target; red ring = incorrect distractor. Following completion of one screen’s association, the trial continues to the next screen 

in the sequence. (D) Objects and their location on the screen in an example trial. Green rings indicate associated targets of screens. 

The position of the 4 objects in the 2 x 2 array is randomized across screens and trials, and the background image was simplified for 

the purpose of illustration.  
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3. Chapter 2: Theta- and gamma-band oscillatory uncoupling in the macaque 

hippocampus2 

 

3.1 Abstract 

 

Nested hippocampal oscillations in the rodent give rise to temporal dynamics that may 

underlie learning, memory, and decision making. Although theta/gamma coupling in 

rodent CA1 occurs during exploration and sharp-wave ripples emerge in quiescence, it is 

less clear that these oscillatory regimes extend to primates. We therefore sought to 

identify correspondences in frequency bands, nesting, and behavioral coupling of 

oscillations taken from macaque hippocampus. We found that, in contrast to rodent 

oscillations, theta and gamma frequency bands in macaque CA1 were segregated by 

behavioral states. In both stationary and freely-moving designs, beta2/gamma (15-70 Hz) 

had greater power during visual search whereas the theta band (3-10 Hz; peak ~8 Hz) 

dominated during quiescence and early sleep. Moreover, theta band amplitude was 

strongest when beta2/slow gamma (20-35 Hz) amplitude was weakest, instead occurring 

along with higher frequencies (60-150 Hz). Spike-field coherence was most frequently 

seen in these three bands, (3-10 Hz, 20-35 Hz and 60-150 Hz); however, the theta-band 

coherence was largely due to spurious coupling during sharp-wave ripples. Accordingly, 

no intrinsic theta spiking rhythmicity was apparent. These results support a role for 

beta2/slow gamma modulation in CA1 during active exploration in the primate that is 

decoupled from theta oscillations. The apparent difference to the rodent oscillatory canon 

calls for a shift in focus of frequency when considering the primate hippocampus. 

 

3.2 Introduction 

 

Hippocampal oscillations are heralded as canonical examples of how oscillations support 

cognition by coordinating neural circuit dynamics (Klausberger and Somogyi 2008; Colgin 

 
2 This chapter is adapted from Theta-and gamma-band oscillatory uncoupling in the macaque hippocampus published in eLife and 

has been reproduced with the permission of the publisher and my co-authors AT Hussin, KL Hoffman. 

https://sciwheel.com/work/citation?ids=605458,1310728,223332,6151069&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
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2016; György Buzsáki and Draguhn 2004; Hahn et al. 2019). In turn, behavioral states 

constrain and entrain specific neural oscillations.  In rodents, locomotion and other 

exploratory movements elicit an ~8 Hz theta oscillation in hippocampal CA1, (Whishaw 

and Vanderwolf 1973; Kramis, Vanderwolf, and Bland 1975; Vanderwolf 1969; György 

Buzsáki 2002) and a faster gamma oscillation (25-100 Hz) that nests within theta (Colgin 

2016; Colgin and Moser 2010; Bragin, Jandó, Nádasdy, van Landeghem, et al. 1995; 

Jozsef Csicsvari et al. 2003; I Soltesz and Deschênes 1993). In contrast, during 

quiescent states, theta and gamma oscillations are suppressed and sharp-wave ripple 

complexes emerge, the latter consisting of large high-frequency oscillations (150-250 Hz) 

in CA1 that occur within a slower (sharp-wave) deflection (György Buzsáki 2015; Ylinen 

et al. 1995). Although the occurrence of sharp wave ripples during quiescence is highly 

conserved across species (György Buzsáki 2015), its dichotomy with theta is 

questionable (Hussin, Leonard, and Hoffman 2020; Leonard et al. 2015). This may stem 

from differences in how and when theta oscillations appear across phylogenetic order 

(Ulanovsky and Moss 2007; Green and Arduini 1954), particularly among primates, 

including humans (Halgren, Babb, and Crandall 1978; Green and Arduini 1954; Stewart 

and Fox 1991; Tamura et al. 2013; Talakoub et al. 2019; Courellis et al. 2019; Jacobs 

2014; Herweg, Solomon, and Kahana 2020; Mao 2022). Consequently, gamma coupling 

to hippocampal theta (Bragin, Jandó, Nádasdy, Hetke, et al. 1995; Colgin 2016; Lisman 

and Jensen 2013), and the presence – as postulated – of sub-bands of gamma (Colgin 

et al. 2009; Colgin 2016; Jozsef Csicsvari et al. 2003; György Buzsáki and Wang 2012), 

could understandably be affected by the scarcity and/or brevity of theta oscillations in 

monkeys during species-relevant exploration (Talakoub et al. 2019; Leonard et al. 2015; 

Hoffman et al. 2013; Jutras, Fries, and Buffalo 2013; Courellis et al. 2019; Mao et al. 

2021; William E Skaggs et al. 2007). In the present study, we therefore adopted a 

hypothesis-generating (data-driven) approach to identify i. which oscillatory bands 

emerge in macaque hippocampal CA1 as a function of the behavioral state; ii. whether 

these oscillations coalesce or compete, and iii. to what extent local single units are 

modulated at these rhythms.  
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3.3 Results 

3.3.1 Spectral analysis of hippocampal LFP during active visual search and 

quiescence 

 

We recorded 42 sessions (M1: 26 sessions, M2: 16 sessions) in the hippocampal CA1 

subfield of two macaques (Figure 1; Figure 1- figure supplement 1) during active visual 

search and quiescence (henceforth: ‘rest’). As a control for the effects of the stationary 

animal, we recorded from one of the above animals (M2) and a third animal (M3) in freely 

moving and overnight sleep conditions (Figure 1 – figure supplement 2). Consistent with 

previous reports (Leonard et al. 2015; Leonard and Hoffman 2017), we observed bouts of 

roughly 20-30 Hz oscillations predominantly during search, and slower-frequency, larger-

amplitude local field potentials (LFPs) during rest (Figure 1A, C). To visualize the 

relationship between spectral power across frequency bands, we sorted quantiles of ~1 

s segments based on their average power in the 20-30  Hz frequency band, revealing an 

antagonistic relationship between 20-30 Hz and <10 Hz frequencies (Figure 1B) i.e. when 

power at 20-30 Hz was greatest, <10 Hz power was qualitatively weakest. In contrast, 

stronger power at <10 Hz was accompanied by stronger power at > 80 Hz. To determine 

whether the spectrum varies with behavioral epoch, as it does in rodents (G Buzsáki 

1996; Whishaw and Vanderwolf 1973), we calculated the power spectrum for each 

behavioral state (Figure. 1D). To identify power beyond the 1/f background, we used the 

aperiodic-adjusted power spectrum (Demanuele, James, and Sonuga‑Barke 2007; 

Donoghue et al. 2020). We found stronger 7-10 Hz power during rest compared to active 

search (Figure. 1D, Middle). In contrast, power in the higher frequencies from 15-70 Hz 

was stronger during active search compared to rest, with a peak in the 20-30 Hz range 

(both, p<0.05 Wilcoxon signed rank test with FDR correction). In most non-rodent species 

examined, including humans, hippocampal theta band oscillations during alert 

wakefulness are described as occurring intermittently, in short-lived bouts, unlike the 

protracted and predictable trains of theta oscillations seen in the rodent hippocampus 

(Jutras, Fries, and Buffalo 2013; Talakoub et al. 2019; M Aghajan et al. 2017; Watrous et 

al. 2013; Jacobs 2014; Ulanovsky and Moss 2007; Green and Arduini 1954). To identify 

oscillations that are rare and short-lived, and to allow for a more direct comparison to 
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conventions used in human iEEG/macroelectrode studies, we used the BOSC method 

(Hughes et al. 2012; Caplan et al. 2001; M Aghajan et al. 2017). This method quantifies 

the fraction of time that band-limited power exceeds amplitude and duration thresholds. 

The amplitude threshold is set after fitting the signal to a log-log linear regression to 

account for the spectral tilt (1/fx) of the distribution under consideration and accepting only 

residuals with at least 3 cycles exceeding 95% of the χ2 distribution. This classifies the 

graded power spectral measure into discrete ‘hits’ and ‘misses’ across time. Consistent 

with continuous power spectral results, we found that theta bouts (‘hits’) were more 

prevalent during rest/sleep compared to online active behavioral states. The pattern was 

the opposite for beta2/gamma frequencies, which were more prevalent during active 

states (Figure 1-figure supplement 2, p<0.05 Wilcoxon signed rank test with FDR 

correction).  

In rodents, the frequency and the amplitude of theta oscillation are related to the speed 

of locomotion (McFarland, Teitelbaum, and Hedges 1975; Fuhrmann et al. 2015; György 

Buzsáki 2002; Sheremet, Burke, and Maurer 2016) although theta activity is also 

observed during awake immobile states of alertness (Sainsbury 1998; Tai et al. 2012; 

Vanderwolf 1969; Kramis, Vanderwolf, and Bland 1975). Theta-movement correlates 

raise the concern that the scarcity of theta during active behaviors in the present study 

might be attributed to the animals’ immobility. To address this concern, we recorded 

wirelessly from the hippocampal CA1 of the second monkey (M2) and a third adult female 

macaque (M3) during freely-moving active states including immersive visual search and 

during overnight rest/sleep (M3: 15 sessions, M2: 3 sessions). The results match those 

of the previous experiment, thereby demonstrating that the decrease in theta-band power 

and the increase in gamma power during active behaviors generalize, i.e. they were not 

merely due to the immobile state of the animals (Figure 1-figure supplement 3, Video 1). 

Furthermore, the duration and consistency of theta bouts during early sleep indicate that 

these methods (recording sites, electrode signal, and states) are capable of detecting 

theta oscillations, but that they appear during different epochs than those for recordings 

in rats and mice, (Figure 1-figure supplement 3, Video 1, Figure 1-figure Supplement 4).  
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3.3.2 Hippocampal cross-frequency coupling 

 

To assess the coupling of theta and gamma oscillations at a finer temporal scale, we 

computed the cross-frequency power correlations across the spectrum. Consistent with 

the qualitative pattern shown in Figure 1B, power at 3-8 Hz and 20-35 Hz were negatively 

correlated (Fig. 1E, p<0.05, using a cluster-based permutation test corrected for multiple 

comparisons). In addition, power in the slower, 3-8 Hz band was positively correlated with 

that of a much faster, 80-150 Hz band. We next applied a complementary approach, 

comparing the amplitude envelopes of these two bands (theta and slow gamma) over 

time, to track the finer temporal structure of power correlations. The results supported the 

epoched-data results (Figure 1-figure supplement 2).  

To estimate phase-amplitude coupling in the LFP, we performed bicoherence analysis 

(Kovach, Oya, and Kawasaki 2018; Hyafil 2015; Giehl, Noury, and Siegel 2021), 

revealing a peak cluster around the 25 Hz frequency range which confirms an interaction 

between the activity at this frequency and its second harmonic. In addition, the 3-8 Hz 

band was coupled to high frequencies of 95-150 Hz (p<0.05, cluster-based Monte Carlo 

statistical test). This is consistent with the cross-frequency amplitude coupling results and 

indicates that the correlated envelopes in Fig. 1E are driven by the phase-specific 

coupling of the high frequencies (Figure 1B). In contrast, our bicoherence results showed 

no significant phase-amplitude coupling between theta and gamma frequency ranges. 
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Figure 3-1. Oscillatory decoupling in CA1 field potentials. 

A. Example traces of broadband LFP in CA1 during search. Data segments were taken from epochs with characteristic high 20-3 0 Hz 

power, shown in B (traces were linearly detrended for visualization). B. Spectral density sorted by 20-30 Hz power. The surface plot 

shows data segments sorted into quantiles according to 20-30 Hz power, revealing an apparent increase in 5-10 Hz power when 20-

30 Hz power is weakest. See Methods for details. C. Example traces of wideband LFP in CA1 during the rest epoch showing 

characteristic interactions between <10 Hz and >60 Hz oscillations. Conventions as in A. D. Top. Mean power spectral density during 

search (red), and rest (blue). Inset: mean power for low frequencies of the main plot, with shaded 95% bootstrap confidence interval 

(N=42 sessions). Middle. Power spectral density after fitting and subtracting the aperiodic 1/f component during search and rest, with 

shaded 95% bootstrap confidence intervals. Gray areas show significant differences in power across behavioral epochs (p<0.05, 

Wilcoxon signed rank test, FDR corrected) Bottom. Power difference between search and rest. E. Average cross-frequency power 

comodulogram (N=42 sessions). Dark outline represents areas that were significant in at least 80% of samples (p < 0.05, cluster-

based permutation test corrected for multiple comparisons). F. Average bicoherence of the CA1 LFP (N=42 sessions). The dark outline 

represents areas that were significant in at least 80% of sessions (p < 0.05, Monte Carlo test corrected for multiple comparisons). The 

decoupling is preserved when applying analysis methods sensitive to transient oscillations (Figure 1-figure supplement 2), and when 

analyzing CA1 LFPs from an additional monkey who moved freely in a search task, and during night-time rest (Figure 1-figure 

supplement 3).  
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Figure 3-2 (Video) Oscillatory dynamics in monkey CA1 during sleep and waking states 

(Top) Two-second segments of broadband LFP during sleep (blue), and free movement in an enclosure during a search task (red), 

the 4-8 Hz bandpass filtered LFP, and the 25-50 Hz LFP, shown top to bottom, respectively. Detected bouts in each frequency band 

are highlighted with blue (sleep) and red (waking). The black vertical line shows 3 S.D. above the mean. (Bottom) Left: Movement, 

expressed as the vector norm of angular velocity. The grey horizontal line shows the threshold for movement. Middle: The envelope 

peak of detected theta (4-8 Hz) bouts plotted as a function of the gamma (25-50 Hz) peaks. Right: 1/f corrected (fitted residual) power 

spectrum. The distribution of power shifts to higher frequencies during awake compared to sleep.  

 

3.3.3 Oscillatory modulation of spiking activity 

 

Peaks in spectral power do not necessarily indicate the presence of oscillations in the 

underlying neural activity (Buzsáki and Wang 2012; Pesaran et al. 2018; Herweg et al. 

2020; Jones 2016). If oscillations are present in the local neural population, regular 

comodulation between spikes and local field oscillation phases should occur. We 

measured the spike-field coherence for the whole duration of the sessions by calculating 

pairwise phase consistency (Vinck et al. 2010) for well-isolated units (N=404). Individual 

cells phase locked to multiple frequencies (Figure 2A; p<0.05, permutation test and 

Rayleigh test p<0.05), with the population showing the full range of spike preferred 

frequencies of modulation (Figure 2C).  

One of the caveats of spike-field coherence measures is that they can be sensitive to 

large amplitude non-periodic deflections. Sharp-wave ripples (SWRs) have a non-
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oscillatory amplitude envelope within the frequency range of 0.1 to 10Hz in rodents and 

non-human primates (Maier, Nimmrich, and Draguhn 2003; Rex et al. 2009; Leonard et 

al. 2015; Hussin, Leonard, and Hoffman 2020; William E Skaggs et al. 2007). 

Furthermore, we previously observed that SWRs occur in primates during active visual 

exploration (Leonard et al. 2015; Leonard and Hoffman 2017) and that the probability of 

firing of cells increases during these events, for putative pyramidal and inhibitory cells 

alike (Hussin, Leonard, and Hoffman 2020; Leonard et al. 2015; William E Skaggs et al. 

2007). Given the limitations of spike-field coherence, the frequency characteristics of 

SWRs, spiking activity profile of neurons around these events, weaker power at 7-10 Hz 

during active search, and the strong coupling between bands matching the SWR events 

(3-8 Hz and >95 Hz), we hypothesized that spike-LFP coherence at low frequencies might 

be partly produced as a byproduct of the slow deflection of sharp-wave ripples (Hussin, 

Leonard, and Hoffman 2020) rather than via harmonic oscillations. To test this, we 

extracted peri-SWR spikes, computed PPC only for these spikes in each cell [PPCswr], 

and then compared this to the PPC for spikes outside the SWR windows [PPCresidual]. 

Figure 2B shows an example cell that exhibits stronger spike-LFP coherence at 8 Hz 

during SWR than outside the SWR window (p<0.05, permutation test with FDR 

correction). At the population level, coherence at lower frequencies (2-10 Hz) was greater 

during SWR than in the SWR-removed distributions. In contrast, the higher frequencies 

(10-200Hz) maintained a greater coherence outside of the SWR time window (Figure 2D). 

This led to weaker mean spike-field coherence restricted to the < 10 Hz range, after 

removing the influence of SWRs, suggesting a contribution of the non-oscillatory slow 

deflections in the SWR complex to the apparent cross-frequency interactions. 
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Figure 3-3. Spike-field coherence and its influence by sharp-wave ripples. 

A. Spike-LFP Pairwise phase consistency (PPC) spectra for an example unit. Shaded gray shows significant values (p<0.05, 

permutation test, and Rayleigh test p<0.05). B. Spike-LFP coherence for spikes during detected SWRs (dark gray) and for spikes 

remaining after extracting the SWR epochs (‘residual’, red).   Light gray shading shows a significant difference at p < 0.05 in the FDR-

corrected permutation test for the SWR group. Inset: Normalized histogram of the phase values at 8 Hz, obtained from the spike-LFP 

coherence analysis shown in A. C. Probability distribution of observing significant PPC values across all frequencies (solid black line), 

and only for preferred frequency (frequency with maximum PPC value) before adjusting for SWRs (N = 404 units). D. Difference in 

the proportion of cells with greater spike-LFP coherence for SWR (grey) and SWR-removed residual (red), for 6 frequency bands 

(N=185 units). E. SWR-residual difference of mean Spike-LFP coherence. Shading shows 95% bootstrapped confidence interval. 

Positive values indicating greater PPC for residual than SWR groups are shown in red, negative values (SWR>residual) in dark gray.  

 

To ensure that oscillations were local and to avoid the influence of aperiodic deflections, 

we generated spike autocorrelograms. Periodic peaks of the spike autocorrelograms 

demonstrate theta rhythmicity in rat and mouse CA1 (Cacucci et al. 2004; Royer et al. 

2010; J O’Keefe and Recce 1993). To directly compare theta rhythmicity in our cell 

population with observations in the rodent, we computed the autocorrelogram for a 

complete population of well-isolated cells with at least 100 spikes for the whole session 

and for the complete cell population from homologous subregions of CA1 in rodents, also 

across the whole session. Figure 3A shows an autocorrelogram of the theta spike-field 

coupled cell in Figure 2A (black, monkey) overlaid onto a theta-rhythmic cell from the 

homologous CA1 region of a rat (i.e. temporal CA1) shown in gray. To quantify theta 
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autocorrelogram rhythmicity, we calculated the theta modulation index (52). Compared to 

modulations seen in the rat (Figure 3B in gray), monkey cells typically showed near zero 

index values i.e. were not modulated (Figure 3B in black), which was also evident in the 

sorted-cell and mean population autocorrelogram (Figure 3C, inset shows rat 

distribution). For a given firing rate, higher frequencies are less likely to demonstrate 

cycle-by-cycle periodicity due to their shorter periods; nevertheless, we observed a few 

examples of >20 Hz spike modulation in the spike-triggered averages and 

autocorrelograms of several cells (Figure 4). 

 

 

Figure 3-4. Examining spiking periodicity for theta modulation in macaque hippocampus. 

A. Autocorrelogram of an example “theta” unit from Figure 2A (black, N= 945 total spikes) and a theta-modulated unit from the rat 

(grey, N= 5655 total spikes). B. Distribution of the theta index in CA1 units from this study (black, N=240 units), and CA1 units of rat 

(gray, N=197 units). Dashed lines show mean values, color-coded by species. C. Sorted autocorrelograms of CA1 units, with mean 

population ACG shown as a white trace. Inset: same as the main plot but for rats. 
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Figure 3-5. Spike-LFP coherence of the slow gamma oscillation in macaque hippocampus. 

A. Average spike-LFP coherence in gamma frequency range. Shading shows 95% bootstrap confidence interval. B. Spike-LFP 

coherence for a representative gamma-locked unit. This unit had a significant peak at 30Hz (p<0.05, permutation test and Rayleigh 

test p<0.05). C. Top: Spike-triggered average LFP of the unit in B. Bottom: Autocorrelogram of the same unit. 

 

3.4 Discussion 

 

In this study we evaluated the oscillatory dynamics of primate hippocampus during two 

general behavioral states: first, during ‘online’ states of awake active behavior and 

second, during offline states. The waking-behavior recordings included stationary 

monkeys who were engaged in memory-guided visual exploration, and freely-moving 

monkeys exploring their environment. The offline-state recordings included post-task 

quiescent states in the darkened booth, and the early stages of overnight sleep, 

respectively. The most prominent oscillation in amplitude and prevalence during alert 

active behavior was in the beta2 / slow gamma band (~20-35 Hz for stationary search 

and ~20-50Hz in freely-moving subjects). In contrast, theta-band (3-10 Hz, peak at ~8 

Hz) amplitude and bout prevalence were greater during offline states of rest and sleep 

than during online active states. This bimodal oscillatory profile was also evident in finer 

temporal scales. Theta and beta2/gamma bands were decorrelated in the cross-

frequency amplitude coupling, and in phase-amplitude bicoherence, quite unlike that 

observed in rodents (Zhou et al. 2019). Spike modulation by LFP frequency was seen in 

both bands; however, only the theta band effect appeared to be partially due to non-

https://sciwheel.com/work/citation?ids=7214857&pre=&suf=&sa=0&dbf=0
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oscillatory field events, such as the sharp-wave ripple. Despite longer and more prevalent 

theta oscillations in rest, overall, we found no clear evidence of theta-periodic modulation. 

This contrasts with the strong and prevalent modulation seen using the same analysis 

methods applied to signal from the rat in homologous regions of CA1. Across several 

measures we found consistent or compatible results in the coalescence among frequency 

bands, and between bands and behavioral states within this study. These patterns differ 

from well-established spectral-behavioral coupling in rodents.  

 

3.4.4 Dormant theta 

 

In rat and mouse hippocampal LFPs, theta activity (centered at 6-9 Hz) is most 

consistently present during activated cortical states, i.e., during alert aroused behaviors 

and REM sleep (György Buzsáki 2002; Vanderwolf 1969; Colgin 2013; Nuñez and Buño 

2021). In contrast, theta gives way to sharp-wave ripples and irregular slow activity during 

quiescence and NREM sleep (G Buzsáki 1989; György Buzsáki 2015). Further, theta 

‘nests’ different frequencies of gamma in a phase-specific manner during these ‘active’ 

cortical states(Lasztóczi and Klausberger 2014; Lisman and Jensen 2013; Colgin and 

Moser 2010; Colgin 2016). And finally, most classes of cells in CA1 are modulated by the 

theta rhythm(Klausberger et al. 2003; Klausberger and Somogyi 2008; Royer et al. 

2010). Indeed, theta is so reliably present and so spectrally dominant in fields, spikes, 

and intracellular currents during the active states when gamma occurs, that studies of 

hippocampal gamma oscillations and spikes are commonly conditioned on them.  

Monkey CA1 LFPs also show reliable, durable theta oscillations with peak frequencies at 

6-9 Hz; however, where measured across states, they do not demonstrate the above 

characteristics of theta. Instead, they show divergent brain-behavior coupling to that seen 

in rodents. Much of the literature in humans and monkeys has focused on brief epochs of 

alert, goal-directed behaviors within stationary visual and visuospatial tasks and may 

therefore be suboptimal for detecting theta oscillations. Yet where rest or sleep have been 

measured, stronger, more durable theta field-potential oscillations appear during 

quiescence and NREM sleep (or anesthetized states (Kleen et al. 2021)) than during 
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alert/task-on states or REM sleep (Bódizs et al. 2001; Moroni et al. 2007; Tamura et al. 

2013; Uchida et al. 2001; Cox et al. 2019). Whereas these behavioral-state correlates of 

field potential oscillations apparently differ by species, local control of unit activity may 

nevertheless reveal strong underlying rhythmic motifs. 

To better understand local modulation, we measured CA1 spiking activity as a function of 

LFP oscillatory phase. All tested frequencies had at least some units that were 

preferentially phase locked to them, but the most common preferred frequencies were 

roughly matching the 3-10 Hz, 20-30 Hz, and 60-150 Hz bands. The lowest band would 

be consistent with theta modulation of local spiking, which has been reported using a few 

different methods in humans and macaques. Spike-field coherence in the theta frequency 

range was seen for microelectrode bundles including microwires in unspecified 

subregions of the human hippocampus (Rutishauser et al. 2010), and for recording sites 

estimated to be within the hippocampus proper of the freely-moving macaque (Mao et al. 

2021), though in the latter case, the higher gamma bands and delta bands were several 

times more likely to show SFC. Within the theta band, spurious coherence may arise in 

response to nonrhythmic deflections (de Cheveigné and Nelken 2019; Aru et al. 2015; 

Jones 2016; Vinck, Uran, and Schneider 2022), such as the slow components of the 

SWR which is especially prominent in macaques and human (Hussin, Leonard, and 

Hoffman 2020; A. A. Liu et al. 2022). Indeed, we found that SWRs (Figure 2-figure 

supplement 1) disproportionally influenced the 2-10 Hz band (Figure 2B, D, E), whereas 

the gamma frequency range was largely unaffected. Because SWRs occur infrequently, 

it was somewhat surprising that SWR removal affected the overall results; however, the 

population activity during ripples typically includes 2-10x firing rate increases in nearly all 

cell types (György Buzsáki 2015; Hussin, Leonard, and Hoffman 2020; William E Skaggs 

et al. 2007; Leonard et al. 2015). As such, each ripple is likely contributing 

disproportionately to the spike-locked activity. In addition, we know that visual (Katz et al. 

2020; Rey, Fried, and Quian Quiroga 2014; Roux et al. 2022) and saccade-elicited 

(‘ERP-like’) responses in the hippocampus (Hoffman et al. 2013; Jutras, Fries, and 

Buffalo 2009; Katz et al. 2022) increase theta-band power without necessarily producing 

harmonic oscillations. This would presumably only affect the segments from search, not 

sleep. Future human and monkey hippocampal studies should factor out the contributions 
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of SWRs and to the same end stimulus-locked transients, when evaluating low-frequency 

(<10 Hz) oscillations for non-stationary signals and when using methods that do not 

discriminate oscillations from transient deflections, as with spike-field coherence. The 

present results found residual coherence, and in addition, the typical duration of sleep 

theta bouts would well exceed the SWR envelope, (as shown in Video 1 and Figure 1-

figure Supplement 4), therefore we consider the observed spectral peaks during rest likely 

reflect true oscillations and not simply collections of evoked transients.   

The spike autocorrelogram is a more stringent measure of oscillatory modulation, not 

susceptible to LFP spectral analysis artifacts. The <10 Hz range including the theta band 

failed to show clear examples of theta modulation (Figure 2 supplement 2). This was not 

simply due to low firing rates: even high firing rate cells, which should include ‘theta-on’ 

interneurons, failed to show theta modulation. Indeed, the same analysis applied to units 

from a homologous region of rat CA1 (Royer et al. 2010) showed a predominance of theta 

modulation (even after pooling functional cell types).  In light of our rest-related theta 

power and SWR-removed spike-field coherence, this was somewhat surprising, but 

consistent with the results in free-flying bats (Yartsev, Witter, and Ulanovsky 2011), 

monkeys (Courellis et al. 2019; Mao et al. 2021) and humans (Qasim, Fried, and Jacobs 

2021). In such cases, to observe spike timing regularity to field potentials, the aperiodic 

– i.e. non oscillatory – slow fluctuations in the LFP must first be warped to ‘fit’ one another, 

to create a pseudo-oscillation (Eliav et al. 2018; Mao et al. 2021; Qasim, Fried, and 

Jacobs 2021; Bush and Burgess 2020). Due to the different criteria used, compared to 

the theta-rhythmic spiking reported in rodents, the theoretical or computational roles 

ascribed to the theta oscillations may need to be re-evaluated, or, more precisely defined 

in terms that do not depend on periodicity.    

Slower oscillations, or irregular low frequency components at 1-4 Hz ‘delta’ band, are 

more frequently correlated with spatial or associative memory effects (Goyal et al. 2020; 

Watrous et al. 2013; Vivekananda et al. 2021), leading to the supposition that rodent 

hippocampal theta is simply faster than in primates (Mao 2022; Jacobs 2014). If our 

present results were based on two distinct oscillations – the faster ‘offline’ theta and the 

slower ‘online/memory’ delta band – we would have predicted anti-correlations or 
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segmentation in the power plots into sub-bands. We have yet to see such a segmentation, 

but we would stress that this remains a candidate for closer inspection. Finer task 

behaviors might help to uncover this possible alert-behavior correlate. Even if this proves 

to be the case, it would raise further questions about which bands become considered 

homologous across species. If 1-4 Hz is envisaged as relating to septal-cholinergic theta 

in rats, what is the equivalent of the classic 8-Hz theta band in rats? Compounding this 

problem is a separate 1-4 Hz oscillation that was observed in rat hippocampus (Jesse 

Jackson et al. 2014; Schultheiss et al. 2020). When trying to consider homology across 

species, the LFP signals are only proxies for the underlying circuit activity. Identifying the 

local circuit motif, including receptor-specific neuromodulation in primates (Stewart and 

Fox 1991) may help differentiate among various low-frequency oscillations and their 

functional roles across species. 

 

3.4.5 Decoupled gamma 

 

Gamma oscillations in rat and mouse CA1 comprise a wide high-frequency band (initially 

40 -100 Hz but more recently 20 or 30 – 100 Hz) known for tight coupling within the theta 

oscillation (G Buzsáki, Leung, and Vanderwolf 1983; Bragin, Jandó, Nádasdy, Hetke, et 

al. 1995; Tort et al. 2008; Colgin et al. 2009; Colgin and Moser 2010; I Soltesz and 

Deschênes 1993). In line with this coupling, gamma shares behavioral state correlates 

with theta: waking exploratory states and REM sleep. We found that the slower part of 

the gamma range (<~70 Hz) is decoupled from theta. Consistent with this finding, gamma 

power is seen as a relatively strong oscillation in monkeys and humans during REM sleep 

(Cantero et al. 2003; Takeuchi et al. 2015; Tamura et al. 2013; Uchida et al. 2001), as in 

rodents. Gamma oscillations, when measured, are often associated with hippocampal 

processing (e.g. memory-guided search (Leonard et al. 2015; Montefusco‑Siegmund, 

Leonard, and Hoffman 2017), and retrieval (Montefusco‑Siegmund, Leonard, and Hoffman 

2017) or subsequent memory effects (Jutras, Fries, and Buffalo 2009) in monkeys, or 

spatial coding and memory in rodents. In addition, a band-limited 20-40 Hz oscillation is 

seen in rodent CA1 (and is synchronized with LEC (Igarashi et al. 2014)) during discrete 
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item cueing or retrieval such as in olfactory associative place and sequence learning 

(Allen et al. 2016; França et al. 2014; Lansink et al. 2016; Lopes‑Dos-Santos et al. 2018), 

and when exploring novel environments (França et al. 2021; Trimper et al. 2017). This 

frequency band is associated with activation of the trisynaptic pathway (DG and CA3, 

(Lara M Rangel, Chiba, and Quinn 2015; Hsiao, Zheng, and Colgin 2016; Colgin 2016; 

Fernández‑Ruiz et al. 2021)), but is also seen in coherent oscillations between CA1 and 

LEC (Igarashi et al. 2014) implicating direct, temporoammonic pathways, thus the origin 

of the observed gamma oscillations in primates will be an important topic for future 

research.  

 

3.4.6 Gamma and theta coupling 

 

The results of the current study show that theta oscillations are not prominent during 

awake behavior and do not couple with gamma, and thus, are not a good candidate for 

structuring possible gamma sub-bands. Although most studies in humans focus on 

coupling via slower or faster bands outside this range, we note two exceptions that 

ostensibly find increases in hippocampal theta-gamma coupling associated with active 

processing in the theta band  (Axmacher et al. 2010; Stangl et al. 2021) and a third that 

included 5-11 Hz, for which the low-frequency-granting signal may have included the 

alpha band (Roux et al. 2022). Both of the former studies use macro-electrode iEEG with 

>1 mm contacts and 3-10mm spacing between contacts, along with MR/CT 

coregistration, which are estimated to be in some regions of the hippocampus proper in 

only a subset of participants. Thus, any apparent discrepancies to the present findings 

may involve the inclusion of extra-hippocampal signals, though this would still be 

interesting to understand. Signal localization notwithstanding, the first study of working 

memory reported that 6-10 Hz medial temporal lobe theta phase was coupled with 

gamma oscillations (Axmacher et al. 2010). Although modulation strength was not 

associated with performance, modulation width predicted reaction time. Pertinent to the 

state correlates of theta, they show that the intertrial interval - i.e. a potentially offline state 

- shared a strong modulation, similar to that seen during the memory epoch, except at the 
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onset of the WM epoch, where intertrial coherence was strongest. In the second study, 

recording MTL iEEG in ambulating patients, theta power did not increase with movement 

speed (if anything, it nominally decreased), and search during movement was associated 

with weaker theta; however, when stationary, some theta modulation was seen and in 

addition, general theta-gamma coupling was reported between 6-10 Hz and high gamma 

during movement and 6-10 Hz and a slower gamma when stationary and observing 

others (Stangl et al. 2021). The effects of eye movement evoked responses on this theta 

were not reported but saccade-locked increases in reported theta power, thus, it remains 

unclear what effect saccadic responses may have had on the reported theta gamma 

coupling. In the third study, using microwires, the most applicable measures to our study 

produced generally consistent results, including decreased theta and increased gamma 

power associated with successful associative memory, and no difference in low-

frequency spike field coherence for locally measured fields and spikes (Roux et al. 2022). 

Here, unlike the first study (Axmacher et al. 2010), the modulation of gamma power by 

peak 5-11 Hz phase was greater with successful memory (hits vs. misses). This might 

suggest that a theta or alpha oscillation is regulating gamma magnitude; however, the MI 

measure of phase-amplitude coupling does not require a strong or periodic phase-

granting signal to cluster gamma (Tort et al. 2010). Future studies may help to 

disentangle the role of periodic theta in contrast to saccadic or other evoked response 

waves, in clustering gamma oscillations during active behaviors. At present, we suggest 

that gamma oscillations – across species - can nevertheless work as a standalone 

rhythmic activity to select among inputs by virtue of laminar specificity, including those of 

other hippocampal fields (e.g. CA3-dentate gyrus) or extrahippocampal areas (e.g. 

entorhinal cortex).  

Our findings offer a hypothesis-generating framework for future analysis in (human and 

non-human) primate hippocampal physiology. The present results suggest that theta 

oscillations were not prevalent during search in primates and did not consistently 

modulate single unit activity, but rather form the strongest oscillatory marker of offline or 

quiescent states. Instead, beta2/slow gamma oscillations constitute the chief, self-

contained oscillation that arises during active exploration in the primate hippocampus and 

stands as the most likely oscillation for organizing local dynamics during exploration. 
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Aside from understanding the nature of these cross-species differences, future work may 

focus on the better-conserved aspects of CA1 activity, including gamma synchrony during 

exploration, locking of spiking to exploratory movements, and aperiodic spike timing 

measures that don’t require autocoherent oscillations. Despite several surface 

differences in hippocampal-behavioral coupling across phylogenetic orders, the 

underlying neural-circuit activity giving rise to these oscillations may yet reveal 

fundamentally conserved mechanisms. 
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3.5 Methods 

3.5.7 Subjects and task  

 

Two adult female macaques (Macaca mulatta, ‘M1, M2’) were used in the main, 

visuospatial search experiments whose results are shown in all figures except those of 

the control task/recordings from Figure 1-figure supplements 3. Data from M1 and M2 

have been reported previously (Leonard and Hoffman 2017; Leonard et al. 2015; Hussin, 

Leonard, and Hoffman 2020). The apparatus, training procedure, and task have also 

been described previously (Leonard et al. 2015; Leonard and Hoffman 2017), and are 

summarized briefly here. During search, animals performed a hippocampally-dependent 

visual target-detection task. In the task, seated, head-fixed monkeys were placed in front 

of a monitor and were required to identify a target object from nontargets in unique visual 

scenes presented on a monitor positioned in front of them, and report their selection of 

scene-unique target objects by holding their gaze on the target region for a prolonged 

(≥800 ms) duration. Target objects were defined as a changing item in a natural scene 

image, where the original and changed images were presented in alternation, each lasting 

500 ms, with a brief grey screen (50 ms) shown between image presentations. An inter-

trial interval (ITI) of 2–20 s followed each trial. The daily sessions began and ended with 

a period of at least 10 min when no stimulus was presented within the darkened booth 

and animals could sleep or sit quietly (‘rest’). All procedures associated with this task were 

conducted with approval from the local ethics and animal care authorities (Animal Care 

Committee, Canadian Council on Animal Care). Two adult female monkeys (Macaca 

mulatta, ‘M2’ and ‘M3’) were used in a separate experiment to extend the analysis to 

include freely-behaving conditions. The search epochs of M2 were observational 

(identified post-hoc) and of M3 were experimentally controlled. M2 was placed in an 

enriched environment where she could actively forage, play with toys (manipulanda), 

walk, climb, self-groom, and groom another animal. Blind raters denoted the times of 

foraging, walking, and exploratory ‘search’ behaviors. M3 was placed in a testing 

enclosure equipped with multiple touchscreens around the periphery that presented 

spatially distributed arrays of objects. To obtain fluid reward the monkey was required to 

locate and select (touch) designated objects in a global spatial sequence across the 

https://sciwheel.com/work/citation?ids=2928412,1930131,5998962&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=2928412,1930131,5998962&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1930131,2928412&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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enclosure, thereby requiring visual search, reaches, and walking/climbing during a trial. 

For M3 search data analysis, we extracted the trial sequence duration + 2 seconds 

beyond the first/last touches of the sequence which included goal-directed walking but 

excluded the intertrial intervals containing reward consumption or idle time prior to the 

animal’s approach and trial initiation. For both M2 and M3, rest epochs consisted of 40 

minutes of recordings in the housing area during the start of the “night” cycle of the room’s 

automatic lighting system. A total of 18 sessions (M3: 15, M2: 3) were analyzed for both 

task and rest epochs. All procedures for M3 were conducted in accordance with the 

approved protocols and authorized procedures under the local animal care authorities 

(Institutional Animal Care and Use Committee). 

 

3.5.8 Electrophysiological and movement recordings 

 

For monkeys M1, and M2, indwelling bundles of moveable platinum/tungsten multicore 

tetrodes (96 μm outer diameter; Thomas Recordings) were implanted into the anterior 

half of the hippocampus and lowered into CA1. In M3 we recorded from an indwelling 

active multichannel probe on an adjustable microdrive (‘Deep Array’ probe, beta-test 

design, Diagnostic Biochips, Inc.). Recording sites were verified with postoperative CT 

co-registered to pre-operative MRI and using functional landmarks that changed with 

lowering depth, including the emergence of depth-specific sharp-wave ripples in a unit-

dense layer, as described in the previous studies (Figure 1-figure supplement 1, Figure 

2-figure supplement 1). Post-explant MRI verified the electrode locations in M1 (Leonard 

et al. 2015). For the current study, we detected channels within the pyramidal layer based 

on the strongest amplitude of ripples during SWRs and single unit activity and only used 

these channels for unit and local field potential (LFP) analyses. LFPs were digitally 

sampled at 32 kHz using a Digital Lynx acquisition system (Neuralynx, Inc.) and filtered 

between 0.5 Hz and 2 kHz for M1 and M2. LFPs for M2 and M3 that were used for results 

shown in Figure 1-figure supplement 2 were sampled at 30kHz using a Cube/Freelynx 

wireless recording system (Neuralynx, Inc.) to SD card (for rest) or using wireless 

transmission to the Cheetah acquisition system (for the task). Single-unit activity was 

https://sciwheel.com/work/citation?ids=1930131&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1930131&pre=&suf=&sa=0&dbf=0
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filtered between 600 Hz and 6 kHz, recording the waveform for 1 ms around a threshold-

triggered spike event. Spike sorting was performed semi-automatically using KlustaKwik 

based on wave shape, principal components, energy, and peak/valley across channels. 

This was followed by manual curation of clusters in MClust (A.D. Redish). We used the 

3D accelerometer in Freelynx data acquisition system to record the movement of freely-

behaving animal subjects during active search and rest. Angular velocity (AV) traces were 

recorded at 3kHz and samples were synchronized with the neural recording. For 

movement detection, we first calculated the vector norm of the 3 AV axes using vecnorm 

function in MATLAB. Then we thresholded the vector norm to find periods of time when 

the animal was moving. The threshold was calculated based on the vector norm of AV 

recordings when Freelynx was placed statically on a flat surface. In addition to the 

accelerometer data, we used recorded videos to detect animal behavioral states (e.g. 

sleep). 

 

3.5.9 Sharp wave ripple detection 

 

Sharp wave ripple (SWR) detection was performed on the tetrode channels of M1 and 

M2 with the most visibly apparent ripple activity using the previously described method 

(Leonard et al. 2015). Raw LFPs recorded from the tetrode channel were filtered between 

100-250 Hz. To determine the SWR envelope, filtered LFPs were transformed into z-

scores and rectified, and subjected to a secondary band-pass filter between 1-20 Hz. 

Events with a minimum amplitude exceeding 3 SDs above the mean with a minimum 

duration of 50 ms, beginning and ending at 1 SD were designated as potential ripples. 

High-frequency energy is present for non-SWR events such as EMG and other non-

biological noise, though these artifacts are distinct from ripples because the latter are 

restricted to the regions near the pyramidal layer. For artifact (non-ripple-event) rejection, 

a distant tetrode channel was selected as a ‘noise detecting’ channel (Talakoub et al. 

2016). Events that were concurrently detected on the noise channel and the ‘ripple-layer’ 

channel were removed from the ripple pool. High gamma (80-120 Hz) and high-frequency 

oscillations (HFO, 110-160Hz) events were similarly identified, but with the filter criterion 

https://sciwheel.com/work/citation?ids=1930131&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2060482&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2060482&pre=&suf=&sa=0&dbf=0
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set at 80 –120 and 110 –160 Hz, respectively, and in both cases identifying peaks as 

those > 1 SD. Duplicate High gamma/HFO and SWR events were labeled as SWRs. 

Events with a repetition rate <125 ms were considered a single event. 

 

3.5.10 Power Spectral Parametrization and Fitting 

 

To compare the spectral content during search and rest, we selected successfully 

completed trials lasting longer than 1 second. For rest segments in M1 and M2, we 

extracted the LFP signals that were recorded before the start of the task and after the end 

of the task when the animal was in a dark environment in a quiescent or inactive state. 

For rest segments in M3, we extracted LFP signals recorded during the evening after the 

task, during the dark cycle of the housing area. We used Welch’s method with a 50%-

overlapping 1024-sample sliding Hanning window to estimate power spectra for the 

frequency range of 1 to 150 Hz with a frequency resolution of 0.25 Hz. 

To identify spectral peaks and compare between search and rest states, we 

parameterized power spectra using the method described by Donoghue et al. (2020). 

This method models power spectra as a combination of the 1/f frequency components 

(aperiodic) in addition to a series of Gaussians that capture the presence of peaks 

(periodic components). The model was fit to a frequency range between 1 to 200 Hz with 

a frequency resolution of 0.5 Hz. Settings for the algorithm were set as: peak width 

limits: (0.5, 12); max number of peaks: infinite; minimum peak height: 0; peak 

threshold: 2.0; and aperiodic mode: ‘Fixed’. 

To assess the statistical significance of the difference in parametrized spectra at each 

frequency, we used Wilcoxon signed rank test at p < 0.05 with FDR correction for multiple 

comparisons. 

 

3.5.11 20-30 Hz sorted spectral density map: 

 

https://sciwheel.com/work/citation?ids=10090013&pre=&suf=&sa=0&dbf=1
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We estimated the power spectral density using Welch’s method described in the previous 

section to obtain (frequency * PSD segments) matrix. We then sorted the PSD segments 

based on the mean power in the 20-30 Hz frequency range and normalized each segment 

by dividing it by its median. We clustered all sorted segments into 50 total segments of 

equal size (frequency * 50 segments) by averaging original PSD sorted segments. We 

repeated this procedure across sessions and animals separately.      

 

3.5.12 Cross-frequency Power Correlation 

 

On continuous LFP time-series data, Welch’s method with a 50%-overlapping 1024-

sample sliding Hanning window was used to estimate the spectrogram for the frequency 

range of 1 to 150 Hz with a frequency resolution of 0.25 Hz.  

We computed the pairwise correlation between cross-frequency power using the following 

formula (Masimore, Kakalios, and Redish 2004): 

𝑐𝑜𝑟𝑟𝑖𝑗 =
∑ (𝑆𝑘 𝑘

(𝑓𝑖) − 𝑆(𝑓𝑖)̅̅ ̅̅ ̅̅ )(𝑆𝑘(𝑓𝑗) − 𝑆(𝑓𝑗)̅̅ ̅̅ ̅̅ ̅)

𝜎𝑖𝜎𝑗
 

where 𝑆𝑘(𝑓𝑖) is the PSD at the frequency 𝑓𝑖 in time-window 𝑘, 𝑆(𝑓𝑖)̅̅ ̅̅ ̅̅  the averaged PSD at 

the frequency 𝑓𝑖 overall sliding window, 𝜎𝑖 the standard deviation of the PSD at the 

frequency 𝑓𝑖, and 𝑘 ranges over all sliding windows. In M3 this procedure was applied to 

the data segments extracted during task performance. 

To test the null hypothesis that the power spectral time series of two different frequencies, 

𝑓𝑖 and 𝑓𝑗 , are not coupled in the data, we performed a non-parametric surrogate data 

method with cluster-based multiple comparison correction (Thammasan and Miyakoshi 

2020). This method preserves the original data’s statistical properties while generating 

time series that are randomized such that any possible nonlinear coupling is removed. In 

this method, we randomized time-window 𝑘 differently for each frequency bin to build 

surrogate time-frequency time series’ and computed the surrogate cross-frequency 

power correlation. This process was repeated 5000 times to produce distributions for the 

https://sciwheel.com/work/citation?ids=5446840&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10906333&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10906333&pre=&suf=&sa=0&dbf=0


87 
 

dataset in which the null hypothesis holds. The original, non-permuted data are then 

compared to the surrogate distribution to obtain uncorrected p-values. The significance 

threshold was selected to be 0.05. For cluster-based multiple comparison correction, all 

samples were selected whose p-value was smaller than 0.05. Selected samples were 

then clustered in connected sets based on their adjacency and the cluster size was 

calculated. This procedure was performed 5000 times to produce the distribution of 

cluster sizes. If cluster sizes in the original correlation matrix were larger than the cluster 

threshold at 95-th quantile, they were reported as significant. We performed this statistical 

procedure at the level of single channels per animal. We consider as robust significance 

those areas that were significant for at least 80% of all samples.  

 

3.5.13 Hilbert amplitude envelope correlation 

 

We applied a 3rd order Butterworth filter at each frequency of the LFP with a 2Hz 

bandwidth. We then Hilbert transformed the bandpass-filtered LFP and estimated the 

continuous amplitude envelope. We computed the pairwise correlation between cross-

frequency amplitude envelope using previously described correlation method. 

 

3.5.14 Bicoherence 

 

For Bicoherence, we used the HOSA toolbox. Bicoherence was estimated for frequencies 

𝑓1 (1 to 75 Hz) and 𝑓2 (1 -150 Hz) in steps of 1 Hz according to the following formula 

(Bullock et al. 1997): 

𝐵(𝑓1, 𝑓2) =
|〈𝐹𝑡(𝑓1)𝐹𝑡(𝑓2)𝐹𝑡

∗(𝑓1 + 𝑓2)〉𝑡|

〈|𝐹𝑡(𝑓1)𝐹𝑡(𝑓2)𝐹𝑡
∗(𝑓1 + 𝑓2)|〉𝑡

 

Where 𝐹𝑡(𝑓) is the signal’s time-frequency transformation at time t, | | represents the 

absolute value, and 〈 〉 is the average over time. We set the segment length to 1024 

samples for this analysis.  

https://sciwheel.com/work/citation?ids=11030899&pre=&suf=&sa=0&dbf=0
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Bicoherence has a higher spectral resolution for disentangling harmonic from non-

harmonic cross-frequency coupling. Additionally, bicoherence relaxes the artificial 

spectral constraints introduced by conventional PAC, corrects for its poor biases, and 

accounts for asymmetry in the rhythms (Sheremet, Burke, and Maurer 2016; Kovach, 

Oya, and Kawasaki 2018; Giehl, Noury, and Siegel 2021). 

Theoretically, the bispectrum is statistically zero for linear systems with mutually 

independent Fourier coefficients. For nonlinear systems, the bispectrum will exhibit peaks 

at triads (𝑓𝑛, 𝑓𝑚, 𝑓𝑛+𝑚) that are phase correlated, measuring the degree of three-wave 

coupling (Sheremet, Burke, and Maurer 2016). In practice, however, bicoherence has a 

positive bias The background activity of LFP signals can be estimated by properties of 

red noise which can then be used for significance testing (Torrence and Compo 1998; 

Bédard and Destexhe 2009). To calculate the statistical significance of the local 

autobicoherence, we generated red noise with the same length of our original signals and 

computed Bicoherence for the red noise sample. We repeated this procedure 5000 times 

to obtain the null distribution. We then compared the original data to the null distribution 

to obtain uncorrected p-values, thresholded for significance at 0.05. We then performed 

cluster-based multiple comparison correction as described in the Cross-frequency Power 

Correlation section. 

 

3.5.15 Detection and prevalence of transient oscillatory events 

 

We used the BOSC algorithm (Hughes et al. 2012; Caplan et al. 2001)  to detect transient 

bouts of heightened frequency-specific power using a joint amplitude and duration 

thresholding procedure. A specific concern we wished to address was that the 1-s 

windowed power spectral method may result in false negatives (i.e. missing brief theta 

epochs) therefore we set a maximally-permissive duration threshold of three cycles, and 

an amplitude threshold using 6th order wavelets passing the 95th percentile of model fit 

distributions. From these detected events, we computed the occupancy rate using the 

formula: 

https://sciwheel.com/work/citation?ids=3166554,7532117,11030922&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3166554,7532117,11030922&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3166554&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3309566,376433&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3309566,376433&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5052614,4376762&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑟𝑎𝑡𝑒 (%) =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙
× 100 

Occupancy rate is a measure of prevalence, showing the percentage of time spent in an 

oscillatory event of a specific frequency, also referred to as Pepisode(f). 

The BOSC algorithm provides a logical matrix of the form [number of frequencies * 

timepoint] where values are 1 when an event was detected and 0 otherwise. For bout 

duration distributions we summed values across frequency ranges of interest and then 

performed the logical operation larger than 1, thus in MATLAB it will be, where detected is 

the BOSC output: 

thresholded = sum(detected(ThetaRange,:))>=1; 

 

We found start (thresholded switches from 0 to 1) and stop (thresholded switches from 1 

to 0) of events and removed events that were incomplete, only had one start or stop, and 

computed duration.  We then fitted a kernel probability distribution to the duration values 

using fitdist function in MATLAB. We used bandwidths of 50 and 10 for theta and gamma 

oscillations respectively. 

 

3.5.16 Spike-Field Synchronization 

 

To quantify spike-field synchronization, we used fieldtrip toolbox (MATLAB) to compute 

pairwise phase consistency (PPC) which is unbiased by the number of spikes (Vinck et 

al. 2010). Raw continuous recordings were resampled with a 1000 Hz sampling rate. The 

spectral content was estimated with a frequency-dependent Hanning window with 5 

cycles per frequency and a frequency resolution of 1Hz. All detected spikes of a unit 

during the session were included. To assess the statistical significance of spike-field 

synchronization, we first used a non-parametric permutation test with minimal 

assumptions. In this procedure, the distribution of PPC values was estimated from 1000 

iterations of shuffled spike times of each cell. We used the PPC distribution of shuffles to 

compute the PPC threshold for significance at each frequency. We applied a threshold of 

uncorrected p < 0.05 to determine the significant synchronization at each frequency. Only 

https://sciwheel.com/work/citation?ids=83076&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=83076&pre=&suf=&sa=0&dbf=0
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PPC values that exceeded the statistical threshold and had a Rayleigh test p<0.05 and a 

minimum peak and peak prominence of 0.005 were reported as significant. To obtain the 

probability distribution of observing significant PPC values at a frequency, we fitted a 

kernel probability distribution to significant frequency values using fitdist function in 

MATLAB. We used a bandwidth of 4. 

To compare spike-field synchronization during SWRs, we extracted spikes inside a 

600ms window centered around the SWR events and computed PPC [PPCSWR]. These 

spikes were then excluded from the unit spike timestamps and PPC was calculated for 

the remaining ‘residual’ spikes [PPCresidual]. PPCSWR was then compared with 

PPCresidual. Only cells with at least 20 spikes during ripple time windows were included 

in this analysis. 

To test the significance of differences in spike-field coupling within SWR epochs or 

excluding them, on a per-unit basis, spikes were randomly selected and assigned to SWR 

and residual conditions. In this random selection, spike counts were controlled to 

correspond to the original condition. We performed the random selection 1000 times and 

measured the difference between PPC in each iteration to obtain the null distribution. 

Then, we grouped frequencies into 5 bands 2-3, 4-10, 11-20, 21-40, 41-100, 101-200 Hz. 

In each frequency band, we found the peak frequency at which the absolute PPC 

difference was largest and only tested these for significance. If the p-value of the PPC 

difference was less than 0.05 (two-tailed) after FDR correction, it was labeled as 

significant. 

 

3.5.17 Theta modulation index (TMI) Estimation 

 

We used the method described by Royer et al. (2010) to quantify the degree of theta 

modulation in single units. For all units, we first computed the autocorrelogram of the cell, 

in 10 ms bins from -500 to +500 ms, normalized to the maximum value between 100 and 

150 ms (corresponding to theta modulation), and clipped all values above 1. We only 

https://sciwheel.com/work/citation?ids=1456898&pre=&suf=&sa=0&dbf=1
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included autocorrelograms with at least 100 counts for further steps (N=240 units). We 

then fit each autocorrelogram with the following function: 

𝑦(𝑡) = [𝑎(𝑠𝑖𝑛(𝜔𝑡) + 1) + 𝑏]  ∗  e−|𝑡|/𝜏1 + 𝑐 ∗  e−𝑡2∕𝜏2
2
 

Where 𝑡 is the autocorrelogram time lag from -700 to 700ms, and 𝑎 − 𝑐, 𝜔, and 𝜏1−2 were 

fit using the 𝑓𝑚𝑖𝑛𝑠𝑒𝑎𝑟𝑐ℎ optimization function in MATLAB. The theta indexes were 

defined as the ratio of the fit parameters 𝑎/𝑏. For best-fitting performance, we restricted 

possible values for 𝜔 to (4, 10), for 𝑎 and 𝑏 to non-negative values, for 𝑐 to (0, 0.2), and 

for 𝜏2 to (0, 0.05). 

 

3.5.18 Additional single unit datasets 

 

To generate example plots of theta rhythmic cells (Figure 3), recordings from the Buzsáki 

laboratory were included (https://buzsakilab.nyumc.org/datasets/). 
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Figure 3-6. Supplement 1. Electrode localization. 

A. Coronal MR and CT images of hippocampal electrode trajectories. CT image of implanted electrode bundle (top) shows the 

electrode tracts (white puff, red arrow) with deepest electrodes targeting CA1, confirmed in post-explant MR and via functional 

localization to the pyramidal layer (middle, M1). Red asterisk shown laterally displaced at the depth of probe tip, for visibility. Bottom 

shows the location of the electrode tip from the CT image placed in a coronal plane of the coregistered MR image for M2. B. Coronal 

view of CT-MR coregistered image showing the location of the electrode for M3. C. Schematic coronal slice showing the location of 

the CA1 subfield in the hippocampus (pink) with M1, M2, and M3 probe locations from right to left, collapsing across the coronal slab 

for visualization. Features were adapted from the Saleem and Logothetis atlas (2012). All electrodes used in this study were chronically 

implanted and individually micro-adjusted in depth to the pyramidal layer.  
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Figure 3-7. Supplement 2. Spectral strength and coupling using alternate analysis methods. 

 A. Cross-frequency pairwise correlation of Hilbert (amplitude) envelope (N = 42 sessions), which is sensitive to finer temporal coupling 

resolution than that of the methods used in the main Figure 1. The spectral correlation structure is preserved even at finer temporal 

resolution.  B. Prevalence of frequency-specific bouts during search (red), and rest (blue) with shaded 95% bootstrap confidence 

intervals (N = 42 sessions, p<0.05, Wilcoxon signed rank test, FDR corrected). Occupancy rate is the percent time spent in a detected 

bout of the specified frequency (also called ‘Pepisode’). 
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Figure 3-8. Supplement 3. Oscillatory decoupling in CA1 of freely-behaving monkeys 

A. Example detected oscillations in 4-8 Hz and 25-40 Hz frequency bands during awake, free behavior (red), and sleep (blue) shown 

on the wideband LFP in CA1. B. Prevalence of frequency-specific bouts during search (red), and rest (blue) with shaded 95% bootstrap 

confidence intervals (N = 18 sessions, p<0.05, Wilcoxon signed rank test, FDR corrected). C. Top. Mean power spectral density during 

search (red), and rest (blue). Inset: mean power for low frequencies of the main plot, with shaded 95% bootstrap confidence interval 

(N=18 sessions). Middle. Power spectral density after fitting and subtracting the aperiodic 1/f component during search and rest, with 

shaded 95% bootstrap confidence intervals. Gray areas show significant differences in power across behavioral epochs (p<0.05, 

Wilcoxon signed rank test, FDR corrected) Bottom. Power difference between search and rest. D. Average cross-frequency power 
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comodulogram (N=18 sessions). Dark outline represents areas that were significant in at least 80% of samples (p < 0.05, cluster-

based permutation test corrected for multiple comparisons). 

 

 

Figure 3-9. Supplement 4. Relative probability distribution of bout durations. 

Left Distribution of detected bout durations for theta (6-9 Hz) oscillation. Red, and blue show distribution for detected bouts during 

active search and offline behavioral states respectively (p<0.05, Wilcoxon signed-rank test). For reference, the black dotted line 

indicates 800ms, which reflects ~3-6 cycles at 4-8 Hz and is more than twice the duration of the slow SWR components (see Figure 

2-figure supplement 1).  Right same as the left plots but for gamma oscillations (20-50 Hz). The black dotted line indicates 300ms, 

indicating durations that would exceed two typical 8-Hz cycles. The lower end of the duration distribution is bounded by the duration 

threshold in the BOSC algorithm. 
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Figure 3-10. Supplement 5. Examples of detected ripple events. 

For each example, the first row shows 6 seconds of z-normalized broadband signal centered at a ripple peak. The second row 

illustrates the zoomed-in (400 ms) broadband LFP locked to the ripple peak and the narrow-band (<10 Hz) filtered signal. Note this 

large amplitude deflection accompanying ripples contains aperiodic spectral energy in the theta band. The third row shows a bandpass 

(100-250 Hz) filtered trace of the ripple (black) and of a simultaneously-recorded signal from a hippocampal channel outside the layer 

(red), revealing the spatial localization of the ripples. The distant channels were used during ripple detection, to selectively remove 

high-frequency noise that shares the ripple  frequency band, but that are apparent across channels due to volume conduction. 
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Figure 3-11. Supplement 6. Spike-train autocorrelograms of example hippocampal cells. 

Examples were selected to represent different baseline firing rates. Note the absence of any clear temporal modulation in the theta 

range, including higher firing rate cells that are predicted to show the strongest modulation. Bin size = 1 ms.  



98 
 

4. Chapter 3: State-dependent circuit dynamics of superficial and deep CA1 

pyramidal cells in macaques3 

 

4.1 Abstract: 

A great diversity of neuron classes in CA1 has been identified through their 

heterogeneous cellular/molecular composition. It is unclear how this cellular diversity 

relates to the hippocampal network dynamics that support behavior in primates. Here we 

report a range of functional cell groups in macaque CA1 with distinct firing profiles relative 

to the spectral phase preferences of pyramidal cells. Within the pyramidal cell layer, 

superficial and deep pyramidal cells showed robust differences in their firing rate, 

burstiness, and sharp-wave ripple associated firing. Most notably, these subtypes of 

pyramidal cells have differential interactions with the inhibitory cell groups. Furthermore, 

we detected cell assemblies in the macaque hippocampus for the first time and show that 

the laminar position of pyramidal cells is a major organizing principle of CA1 assembly 

dynamics. These results suggest a sublayer-specific circuit organization in the macaque 

hippocampal CA1 that may support dissociable contributions across cognitive and 

behavioral processes in the primate. 

 

4.2 Introduction 

 

Circuit dynamics specific to the hippocampus govern its role in navigation, memory, and 

social/motivational behaviors across species (H Eichenbaum et al. 1999; Colgin 2016; 

Michael E Hasselmo 2005; Oliva, Fernandez‑Ruiz, and Karaba 2023; He, Wang, and 

McHugh 2023; G Buzsáki, Leung, and Vanderwolf 1983; György Buzsáki and Moser 

2013). Based on studies in rats and mice, these dynamics arise from a well-described 

and diverse range of cell classes (Harris et al. 2018; Franjic et al. 2022; T F Freund and 

Buzsáki 1996; Klausberger et al. 2003). For example, the pyramidal cell layer is 

organized into radial strata (Slomianka et al. 2011), each receiving distinct afferents 

 
3 This chapter is adapted from State-dependent circuit dynamics of superficial and deep CA1 pyramidal cells in macaques available 

on bioRxiv and has been reproduced with the permission of my co-authors KL Hoffman. 

https://sciwheel.com/work/citation?ids=313009,1310728,281200,14602075,14433897,276382,339413&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=313009,1310728,281200,14602075,14433897,276382,339413&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=313009,1310728,281200,14602075,14433897,276382,339413&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=313009,1310728,281200,14602075,14433897,276382,339413&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5486996,12035089,880688,283225&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5486996,12035089,880688,283225&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=984287&pre=&suf=&sa=0&dbf=0
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(S.‑H. Lee et al. 2014; Masurkar et al. 2017; Valero et al. 2015; Kohara et al. 2014), 

bearing different intrinsic and task-related response characteristics (Mizuseki et al. 2011; 

Valero et al. 2015; Geiller et al. 2017; Sharif et al. 2021; Danielson et al. 2016; Gu et al. 

2023; Harvey et al. 2023; Berndt et al. 2022), and projecting to different target structures 

(Harvey et al. 2023; Slomianka et al. 2011). The dynamics of these pyramidal cells are 

precisely regulated by inhibitory cell classes (Klausberger and Somogyi 2008; Pelkey et 

al. 2017; T F Freund and Buzsáki 1996) that differ from each other in their behaviorally-

specific firing patterns and roles in shaping network oscillations (Klausberger et al. 2003, 

2005; Lasztóczi and Klausberger 2014; C. Varga, Golshani, and Soltesz 2012; Dudok, 

Klein, et al. 2021; Forro and Klausberger 2023). Because these cell classes differently 

segregate pyramidal cell assembly patterns in space and time (Dudok, Klein, et al. 2021; 

Dupret, O’Neill, and Csicsvari 2013; McKenzie 2018) they may be fundamental 

determinants of the role of these assemblies in memory and navigation. 

Although many aspects of hippocampal physiology are conserved between rodents and 

primates, differences in oscillatory dynamics (Abbaspoor, Hussin, and Hoffman 2023; 

Talakoub et al. 2019; Leonard et al. 2015; Green and Arduini 1954; Tamura et al. 2013; 

Bódizs et al. 2001) and behavior-specific modulation (Mao et al. 2021; Gulli et al. 2020; 

Courellis et al. 2019; Rolls 1999; Ringo et al. 1994; “Unable to Find Information for 

13050334,” n.d.) suggest there may be phylogenetic specializations that an 

understanding of the underlying functional cell composition may uncover. A first-pass 

bisection of hippocampal (and medial temporal lobe) cells in primates into putative 

inhibitory and excitatory classes (or four groups: (Hussin, Leonard, and Hoffman 2020)) 

reveals characteristic responses at both the circuit-level (William E Skaggs et al. 2007; 

Leonard et al. 2015; Le Van Quyen et al. 2008) and cognitive/behavioral levels (Katz et 

al. 2022; Ison et al. 2011). Yet a more fulsome description of primate CA1 functional cell 

types, that can bridge what is known from anatomy and rodent physiology to circuit 

function and behavior, remains lacking. To gain a better understanding of the degree of 

functional conservation in the hippocampal CA1 region, we sought to identify potential 

functional cell types, delineating their characteristic laminar and spectral profiles during 

active wakefulness and sleep. Additionally, we describe CA1 pyramidal cell activity in 

primates along their previously-unexplored superficial and deep strata, including basic 

https://sciwheel.com/work/citation?ids=996571,7904231,1591902,142014&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,1591902,4214148,10063698,4453986,14440149,14844728,14875374&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,1591902,4214148,10063698,4453986,14440149,14844728,14875374&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,1591902,4214148,10063698,4453986,14440149,14844728,14875374&pre=&pre=&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14844728,984287&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=605458,4344847,880688&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=605458,4344847,880688&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=283225,714827,890716,83633,10393025,14936414&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=283225,714827,890716,83633,10393025,14936414&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=283225,714827,890716,83633,10393025,14936414&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10393025,237588,13718165&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=10393025,237588,13718165&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15512682,6898610,1930131,3561923,718120,4278344&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15512682,6898610,1930131,3561923,718120,4278344&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=15512682,6898610,1930131,3561923,718120,4278344&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11893337,8001905,7918536,13770051,15552866,13050334&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11893337,8001905,7918536,13770051,15552866,13050334&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11893337,8001905,7918536,13770051,15552866,13050334&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5998962&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=296152,1930131,4376690&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=296152,1930131,4376690&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13983881,1263054&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13983881,1263054&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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physiological responses, pairwise activity among the pyramidal groups and relative to 

putative inhibitory cell groups, and finally, in relation to network properties including 

oscillations and synchronized assemblies of activity.  

 

 

4.3 Results 

 

4.3.1 Identification of functional cell groups in laminar recordings of freely-

behaving macaque CA1 

 

We recorded from hippocampal CA1 layers in two freely-behaving macaques, as they 

performed a sequential memory task and during rest/sleep (Figure 1, A and B). Across 35 

daily sessions (M1: 17 sessions, M2: 18 sessions) we measured the local field potentials 

and activity in ensembles of units. To align recording depths across these sessions and 

animals, we calculated for each session the current source density (CSD) during sharp-

wave ripple (SWR) events. SWRs are known to evoke sinks in the Stratum Radiatum and 

sources in the Stratum Pyramidale layers of CA1 ((A. A. Liu et al. 2022); Figure 1C). 

Within this region, we found the slope of the slow component of sharp-wave ripples, which 

crossed zero across all sessions and animals, and we aligned to that zero-crossing. To 

validate that alignment, we measured ripple power, which peaks within the central region 

of the pyramidal layer. We found maximal power just below the zero crossing, consistent 

with the anatomy of the pyramidal cell layer in macaques (Figure 1C). After identifying 

single unit activity typically consisting of waveforms across several adjacent channels 

(Figure 1B), we selected the electrode contact with the largest spike amplitude for each 

unit as the best estimate of the location of the cell body. This reduced some of the known 

within-cell variability in waveshape. The regular linear distribution of these recording sites 

on the probe shanks allowed us to determine the relative depths of the cell bodies of the 

simultaneously-recorded neurons (Figure 1D).  

https://sciwheel.com/work/citation?ids=13756278&pre=&suf=&sa=0&dbf=0
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We classified various cell groups with a semi-supervised approach according to their 

normalized waveform (E. K. Lee et al. 2021; Trainito et al. 2019) and their interspike 

interval (ISI) distributions, to capture several of the principal intrinsic physiological 

characteristics that differ by cell type. This led to 10 separate cell groups (Figure 1D, see 

Methods; overall between-group distances exceeded within-group distances: p < 0.001, 

Kruskal-Wallis, Figure S1A). We use the term “cell groups” throughout to refer to these 

10 clusters, and note that these groups are clustered based on extracellular physiological 

features only, and thus may differ from the formal “cell classes” or “cell types” as identified 

through molecular/immunohistochemical methods or cytoarchitectonics.  

The incorporation of the ISI distributions as features along with spike waveforms, 

qualitatively drew out cells with bursting activity, low-firing rates, and broad waveforms, 

characteristic of pyramidal cells (J Csicsvari et al. 1999a; Ranck 1973). These comprised 

the first cell group (Figure 1D, far left, black, notably well-localized to the ripple layer i.e. 

Stratum Pyramidale). The other negative-deflecting groups were therefore considered 

putative inhibitory cells, because pyramidal cells are the only excitatory cell class in CA1. 

As expected from these features, firing rates of these cell groups differed (p<0.001, 

Kruskal-Wallis, Fig. 1D, Figure 1D and S1C inset); and in addition, 3 neuron types 

selectively decreased firing during sleep compared to waking behavior (p<0.001, 

permutation test, Figure S1B). The ISI-conditioned coefficient of variation, CV2, measures 

the intrinsic variability of local spiking intervals, irrespective of global firing rate changes 

like those seen across behavioral epochs (Holt et al. 1996). As expected, cell groups also 

showed differences in CV2 (p<0.01, Kruskal-Wallis test with post-hoc permutation test 

FDR corrected, Figure S1C), leading to distinct, cell group-characteristic joint ISI 

histograms (Figure S1D).   

 

 

https://sciwheel.com/work/citation?ids=11529699,9500290&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=554186,4572924&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=243618&pre=&suf=&sa=0&dbf=0
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Figure 4-1. Single units from macaque CA1 characterized by depth and physiological  parameters. 

(A) Top: schematic rendering of the electrode arrays localized to anterior hippocampal CA1. Dark purple: CA1. Bottom: Coronal view 

of the CT coregistered to MR for one electrode trajectory, targeting the hippocampal CA1, and schematic of hippocampal CA1 

layers. 

(B) Top: LFP traces across 64 of 128 recorded channels (40 micron spacing) spanning different layers of hippocampal CA1. Middle: 

Spike raster of simultaneously recorded neurons (N = 48). Bottom: Example spike waveforms for selected units from this 

recording.   

(C) Top, left: Ripple slope reversal (black) and ripple power (light gray) across channels (depth). Top, right: Current source density 

of average ripple LFP (blue: sink, red: source). Bottom: The same as top but for the 2nd animal. 

(D) 1st Row: Mean (colored) and individual (gray) waveforms (1.5 ms) for different cell groups. 2nd Row: Mean (colored) and individual 

(gray) ISI distributions (0-10 s) for different cell groups. 3rd Row: Estimated depth of units aligned to ripple reversal (0 µm, p < 

0.001, Kruskal-Wallis) and superficial-deep pyramidal split (black horizontal line, -330 µm). N= number of units per group. 4th 

Row: Distribution of overall firing rates (Hz; p < 0.001, Kruskal-Wallis), dashed line at 1Hz. 
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4.3.2 Spectrolaminar profiles and spike-phase coupling by cell group 

 

To better understand oscillatory composition across layers, we computed aperiodic-

corrected power spectra (Figure 2A). Despite inter-subject differences in absolute peak 

frequencies across the spectrum, both subjects showed reduced theta-band power (5-10 

Hz) during active wakefulness in comparison to rest or early sleep overnight, across all 

recorded channels (Figure 2A, p<0.05, cluster-based permutation test), in line with 

previous studies (Talakoub et al. 2019; Abbaspoor, Hussin, and Hoffman 2023; Leonard 

et al. 2015). Furthermore, the contrast with active wakeful states showed increases 

peaking in the pyramidal layer in the mid frequencies of 15-40 Hz (Figure 2A), and each 

animal had a preferred higher gamma band apparent during active waking (Figure S2A). 

These general profiles were also evident in the spike-phase coupling across units, 

measured as the pairwise phase consistency (PPC; Figure 2B and Figure S2B). 

Comparing across states, spike-field coherence within the theta frequency range (5-10 

Hz) was greater during sleep (p<0.05, two-sample permutation test) seen across all cell 

groups (Figure S3B). Conversely, spike-field coherence in the slow (25-35 Hz) and higher 

(50-75 Hz) gamma ranges were significantly higher during wakefulness (Figure 2B, 

p<0.05, two-sample permutation test), across cell groups, though with differing gamma-

band peaks (Figure S3B). 

Focusing only within band-limited bouts of high power, cells showed a generally large 

bandwidth, showing significant phase-locking to, on average, 4.4 of the 8 frequency 

bands. The grand mean phase angle per cell group revealed that these groups typically 

clustered within a limited range of preferred phases (~90 degrees) that shifted by 

frequency (Figure 2C), but nevertheless differed reliably in mean phase-of-firing values 

for all but the lowest frequencies (Figure S3C, except for 1-4Hz, 4-7Hz, and 7-13Hz, p < 

0.001, multi-sample Watson-Williams test). Using the pyramidal cell group as a reference, 

the other cell groups deviated in phase angle as function of frequency and cell group 

(Figure S2C, S2D; p < 0.05, two-sample Watson-Williams). Cells exhibiting significant 

phase locking (p<0.001, Rayleigh test) within each frequency group produced the largest 

https://sciwheel.com/work/citation?ids=6898610,15512682,1930131&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6898610,15512682,1930131&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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resultant vectors in the following order: 1-4Hz, (100-180Hz and 4-7Hz), 60-90Hz, (30-

60Hz and 20-30Hz), (7-13Hz and 13-20Hz) (p<0.05, Kruskal–Wallis test with Tukey-

Kramer correction); therefore the strongest global spectral peaks were not necessarily 

those yielding the strongest phase-locking during band-limited bouts.  

 

4.3.3 Cell type-specific ripple-associated activity 

 

Most cells increased their firing during ripples, across all cell groups (p<0.05, one-sample 

randomization test, figure S2A) though to differing degrees (ripple ratio, during/baseline 

FR, p<0.001 Kruskal-Wallis test, Figure S3B), and with differences in participation rate 

across ripple events (p<0.001 Kruskal-Wallis test, Figure S2B). The pyramidal cell group 

showed the highest ripple ratios but the lowest participation rate (p<0.001, pairwise 

permutation test, FDR corrected, Figure S2B). Putative inhibitory cell groups showed a 

striking range of participation probability and timing: some groups’ members participated 

in all ripple events (Figure S2B), and some restricted firing to a specific time relative to 

ripple peak (Figure S2C; p < 0.001, Bartlett's test). A small population of cells had 

suppressed activity during the ripple, and these were comprised mainly of the inhibitory 

(non-pyramidal) cell groups (p < 0.05, one-sample randomization test, Figure 2E). 
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Figure 4-2. Local field potential dynamics and spike-field relationships across cell groups. 

(A) Color difference plot of 1/f corrected power spectrum between alert, task-related (red) and rest/sleep states (blue) across depth 

of recordings for each animal. Color indicates significance (p < 0.05, cluster-based permutation test).  

(B) Color difference plot of pairwise phase consistency (PPC) between task and rest/sleep states sorted based on preferred 

frequency. Red lines indicate mean + bootstrap 95% CI for PPC during task. Blue lines indicate mean + bootstrap 95% CI for 

PPC during rest/sleep. Black boxes indicate frequency ranges with significant difference across states (p<0.05, two-sample 

permutation test with Tmax multiple comparison correction).  

(C) Center: Phase plot for grand average phase and resultant vector for different frequency bands. Thick black dots show central 

tendency of phase locking values across the different cell groups per frequency band. Thick color dots indicate grand mean 

phase and resultant vector per cell group and frequency band, colored according to cell group. Off-center: Phase plots of selected 

individual neuron examples in different frequency bands. Examples are colored according to group membership; gray = group 1.  
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(D) Right: Lines show mean + bootstrap 95% CI for baseline-corrected ripple-associated activity for ripple-activated neurons (p < 

0.05, one-sample randomization test) in different cell groups. Left: Example raster and PETHs of individual neuron activity during 

ripple. 

(E) Right: Lines show mean + bootstrap 95% CI for baseline-corrected ripple-associated activity for ripple-suppressed neurons (p < 

0.05, one-sample randomization test) in different cell groups. Left: Example raster and PETHs of individual neuron activity during 

ripple. 

 

4.3.4 Stratification into superficial and deep CA1 pyramidal cells reveals 

physiological heterogeneity  

 

To extend findings from the rodent literature, we examined whether CA1 pyramidal cells 

recorded in different depths of Stratum Pyramidale differ in their spiking properties and 

circuit-level dynamics. For each session, cells in the ‘Pyramidal’ group (meeting firing rate 

and burst criteria), were median split according to depth, creating the CA1sup group 

(closer to Stratum Radiatum) and the CA1deep group (closer to Stratum Oriens). 

Compared to CA1deep cells, the firing rates of CA1sup cells were higher overall and 

during ripples, and they had a greater CV2 (Figure 3A-3C, Figure S1C; P < 0.05, 

permutation test), though they were less ‘bursty’ than their deeper peers (Figure 3B; P < 

0.001, permutation test). 

To investigate whether these cells interact differently, either within their subgroups, or in 

their coupling with the inhibitory groups, we analyzed their pairwise co-firing statistics. We 

found that pyramidal cells of the same sublayer were more likely to fire together compared 

with cells of different sublayers (Figures 3D), and they showed differences in co-firing 

strength with several of the inhibitory cell groups (p<0.001, permutation test; Figure 3E). 

The finer-grained temporal dynamics revealed greater detail in these interactions: 

baseline-normalized cross-correlograms (CCGs) also showed preferential within-

sublayer firing (p<0.01, two sample permutation test with Tmax correction, Figure 3D), 

and among the inhibitory groups, CA1sup and CA1deep differed in their lead/lag spike 

timing and strength (p<0.01, two sample permutation test with Tmax correction, Figure 

3E). Finally, CA1sup and CA1deep cells have somewhat opposite timing interactions with 

the ripple-suppressed cells:  for CA1deep cells, the interactions peak at 0ms, when 
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CA1sup cell interactions are near their nadir; CA1sup cells’ peak is at approximately 7ms 

lag (p<0.01, two sample permutation test). 

During ripples, CA1sup had a higher participation probability and fired more than 

CA1deep (p<0.01 two sample permutation test, Figure 3G). Relative to pre-ripple firing, 

CA1sup cells they fire more post-ripple compared to CA1deep (p<0.05 cluster-based 

permutation test, Figure 3F). Finally, CA1deep cells are more strongly locked to the 

ripples and fire at a slight but significant phase advance compared to CA1sup (p<0.01 

permutation test, p<0.001 Kuiper’s test, Figure 3G).  

 

4.3.5 CA1 cell assembly membership by strata and cell group 

 

We used unsupervised detection of recurrent co-activity to identify cell assemblies during 

sleep epochs, using established methodologies (Figure 3J and Figure S4A, Methods). 

Assemblies that included pyramidal cell contributions were assigned to "within 

superficial," "within deep," or "across", based on the category membership of those 

pyramidal cells. Our findings revealed that "within CA1sup" assemblies exhibited 

significantly stronger activation during ripple events in comparison to "within CA1deep" 

assemblies (p<0.05 cluster-based permutation test, Figure 3I). Furthermore, assembly 

membership depended on layer, with most having all members belonging to the same 

sublayer (Figures 3K). Importantly, these results held after accounting for the priors (the 

observed exceeded expected sampling distributions of eligible cells by layer), and when 

only considering assemblies detected during balanced sessions, where an equal number 

of CA1sup and CA1deep cells were recorded (Figures 3K). 

A cell’s selectivity across assemblies can be defined as the inverse of its participation rate 

(the proportion of assemblies to which a neuron significantly contributed, divided by all 

detected assemblies in a session). The majority of cells demonstrated a propensity for 

participating in specific assemblies, with a mean participation rate of 7% (Figure S4B). 

Participation varied by cell group (Figure S4C, p<0.001, Kruskal-Wallis test), and 

considering the firing rates of these groups, this effect was not otherwise accounted for 
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by the overall negative correlation between the firing rate of neurons and their 

participation rate (p<0.001, t-test Figure S4D). 

 

 

Figure 4-3. Sublayer-specific circuit dynamics of hippocampal pyramidal cells in macaque CA1. 

(A) Overall (thin lines) and ripple (thick lines) firing rate distribution for superficial (green, N= 154) and deep (purple. N= 147) 

pyramidal cells.  

(B) Mean ISI distribution. Inset: burst index distribution. 

(C) Difference (Sup-Deep) plot of joint probability density of previous ISIs versus next ISIs. 

(D) Left: Pairwise cofiring of sup/deep pyramidal cells with other pyramidal cells of within and across groups. Right: Mean cross-

correlograms of sup/deep pyramidal cells. Mean CCG values from -50 to -20ms were subtracted from all bins. Black lines indicate 

significant difference (p<0.05, two-sample permutation test with Tmax multiple comparison correction). 

(E) Left: Pairwise cofiring of sup/deep pyramidal cells and putative inhibitory cell groups. Mean cross-correlograms of sup/deep 

pyramidal cells and inhibitory cells. Mean CCG values from -50 to -20ms were subtracted from all bins. Black lines indicate 

significant difference (p<0.05, two-sample permutation test with Tmax multiple comparison correction). 

(F) Ripple-aligned spike density (mean + 95% CI) for significantly modulated cells (N = 125 superficial, and 96 deep), black horizontal 

line shows significant difference (p < 0.05 cluster-based two-sided permutation tests). Distribution of significantly modulated units 

(shaded area plots, p<0.05, one-sample cluster-based permutation test).  

(G) Left: Distribution of the ripple participation probability. Right: Phase concentrations and mean resultant vector for significantly 

phase locked units (N = 74 superficial, 98 deep, p = 1e-3 Kuiper two-sample test/p=2e-4 permutation test, N = 5000). 

(H) Mean cross-correlograms of sup/deep pyramidal cells and ripple-suppressed inhibitory cells (p<0.05, two-sample permutation 

test with Tmax multiple comparison correction). 

(I) SWR-triggered average activation strength in post-task sleep for CA1deep (N = 115) and CA1sup (N = 112) cell assemblies. 

(J) Example assembly weights for assemblies in which all members belonged to the same sublayer (N =227, “within layer”) or to 

different ones (N=27, “across layer”). Length indicates weight. Significant members are colored. 
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(K) Left: Fraction of within (N =227, orange) and across (N=27, dark gray) assemblies for all sessions and assemblies (N = 254) and 

for balanced sessions where the number of recorded deep and superficial were equal and assemblies that had at least 2 

significant pyramidal members (N = 31). For a, b, c, d, e, and g, P values were computed using a two-sided permutation test (N 

= 5000). 

 

4.4 Discussion 

 

Currently, any detailed microcircuit mechanism of the primate hippocampus thought to 

underlie its cognitive and behavioral functions must be extrapolated from the 

hippocampus of rodents. In this study, we sought to forge a link between the extensive 

understanding of CA1 microcircuit function from rats and mice (Bezaire and Soltesz 2013) 

to the network dynamics and brain-behavior states seen during naturalistic experiences 

in primates. To accomplish this, we recorded in vivo, in freely-moving monkeys during 

species-typical behaviors. To this we added high-density laminar recordings that identified 

depth-localized populations of isolated single units fully embedded in their network 

context. Physiologically-defined pyramidal cells were concentrated in the SWR CSD 

source layer, and additional cell groups arose from the unsupervised clustering of 

waveform and ISI distribution, building on previous work (E. K. Lee et al. 2021; Trainito et 

al. 2019). The novel addition of the ISI distribution had the advantage of incorporating 

features that human experts often use in evaluating cell firing characteristics. In addition, 

it allowed for the full ISI range to inform the clustering, as opposed to thresholding into 

discrete burst/non-burst groups. The inclusion of ISI may help mitigate some potential 

limitations of using single-channel waveshape as a sole grouping criterion, such as 

extracellular waveshape variance due to different positions relative to the cell soma 

(Henze et al. 2000; György Buzsáki, Anastassiou, and Koch 2012), and differences in 

absolute waveshape that may arise across preparations due to differences in 

electrochemical and physical properties of the recording electrode and of acquisition filter 

characteristics.  

Here, we describe in the primate hippocampus a spectrum of 10 identified cell groups 

that constrain the CA1 microcircuit through i. their intrinsic firing characteristics, ii. their 

different engagement with pyramidal cells, iii. their firing prevalence and temporal 

https://sciwheel.com/work/citation?ids=889800&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11529699,9500290&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11529699,9500290&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=28497,222898&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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organization relative to local field fluctuations, and to some degree, iv. their distribution in 

depth. Mesoscopic CA1-population/hippocampal spectrotemporal activity shows 

considerable differences in macaques relative to rats and mice (Leonard et al. 2015; 

Abbaspoor, Hussin, and Hoffman 2023; Jutras, Fries, and Buffalo 2013; Hoffman et al. 

2013; Brincat and Miller 2015). For example, some aspects of gamma and sharp-wave 

ripples appear well conserved across species, whereas the multiple circuit mechanisms 

driving hippocampal theta-band oscillations in rats and mice have yet to be dissected in 

primates. Conversely, the rodent circuits that could generate the equivalent to the 

hippocampo-cortical alpha or beta band, and their gamma coupling, as seen in monkeys 

(Hussin, Abbaspoor, and Hoffman 2022; Brincat and Miller 2015; Leonard et al. 2015), is 

yet to be firmly established in rodents (though see (Allen et al. 2016; Jayachandran et al. 

2023; Lansink et al. 2016)). Our finding of wide bandwidths of spike-field locking among 

the cell groups of CA1 suggests that in general, cells have the flexibility to participate in 

a wide range of frequencies. Within this range, three specializations were nevertheless 

evident. First, cell groups’ peak beta/gamma frequencies tiled the range of these 

frequencies (Figure S2B). Second, spike-phase timing in the weaker, mid-band 

frequencies of 7-30 Hz spanned the greatest range of phases (~90°) and exhibited the 

most groups with firing phases different from the pyramidal cells’ phase (Figure S2C). 

Third, groups differed in their assembly participation, and this was not merely a function 

of firing rate (Figure S4C). These differences constrain the available functional space in 

primate CA1, which was previously limited to considering broad classes, such as 

excitatory and inhibitory groups (Le Van Quyen et al. 2008; Ison et al. 2011; Leonard et 

al. 2015; Hussin, Leonard, and Hoffman 2020).  

Despite some degree of mismatch in hippocampal brain-behavioral states across clades, 

it is nonetheless tempting to identify possible correspondences between the present 

groups and identified cell classes in rodent CA1, particularly for generally conserved 

oscillations, such as SWRs (A. A. Liu et al. 2022; György Buzsáki 2015). We found a 

small number of ripple-suppressed neurons, primarily among the interneuron groups. In 

rodents, OLM  and axo-axonic cells under anesthesia (Klausberger et al. 2003), and a 

subset of axo-axonic cells in behaving rats (Viney et al. 2013; Dudok, Szoboszlay, et al. 

2021) decrease their firing rate during ripples, too (n.b. the the OLM class activation 

https://sciwheel.com/work/citation?ids=1930131,15512682,282624,5064276,63110&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1930131,15512682,282624,5064276,63110&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1930131,15512682,282624,5064276,63110&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14738279,63110,1930131&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1456961,15151587,7342956&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1456961,15151587,7342956&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4376690,1263054,1930131,5998962&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4376690,1263054,1930131,5998962&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13756278,980007&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=283225&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=976525,11913154&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=976525,11913154&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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depended on the preparation (C. Varga, Golshani, and Soltesz 2012)). At the other 

extreme, the rare TORO inhibitory cells dramatically increase firing rate leading into and 

during ripples (Szabo et al. 2022). We had two groups showing unusually strong ripple 

modulations, despite overall lower firing rates, and one in particular had disproportionate 

ripple participation and the highest proportion of cells showing strong assembly 

participation; however, these tended to fire maximally at, not before, the ripple peak, 

unlike TORO cells. Beyond ripple modulation, PV basket cells show strong theta-locking, 

and strongly regulate and phase-lead pyramidal cells (Amilhon et al. 2015). The cell 

groups we observed with strongest 4-7 Hz phase locking, however, matched pyramidal 

cells’ phase locking and angle, and had somewhat lower overall firing rates than classic 

theta-locked cells. Since PV inhibitory cells are thought to play a role in memory function, 

mediated through hippocampal network dynamics (Ognjanovski et al. 2017; Raven and 

Aton 2021; Xia et al. 2017), their recasting to fit the network dynamics of the primate brain 

will be an important future direction. Although the precise mapping across species is yet 

to be reconciled, our observations of systematic phase relationships between groups with 

varying frequency, offers the opportunity to identify putative groups as they arise with 

recent transcriptomic and synaptic-connectomic profiles in monkeys and humans, as 

demonstrated in rodent models (Bugeon et al. 2022; Schneider et al. 2023). 

Perhaps the most exciting finding was that CA1 pyramidal cells show different attributes 

by superficial/deep allocation. Similar to findings in rodents, (Mizuseki et al. 2011; Harvey 

et al. 2023), macaque CA1 pyramidal cells in superficial and deep layers differ in average 

firing rate, bursting, and coefficient of variation. They showed different 

pairwiseinteractions with the inhibitory cell groups and with fine temporal specificity within 

several of these groups. This included deep-pyramidal cell suppression, in the context of 

increased superficial-cell responses, and a tightly-timed  superficial-deep tradeoff among 

the ripple-suppressed cells, presumably arising from somatodendritic inhibitory 

mechanisms known to differently target pyramidal cells by depth (S.‑H. Lee et al. 2014; 

Valero et al. 2015; Royer et al. 2012; English et al. 2017). Inhibitory-cell switching can 

determine the precisely-timed expression of independent cell types or assemblies, 

creating parallel channels for information transmission (Lapray et al. 2012; 

Krook‑Magnuson et al. 2012; Ivan Soltesz and Losonczy 2018). Evidence for parallel 

https://sciwheel.com/work/citation?ids=83633&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12920455&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=905791&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3435353,12183507,4316028&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3435353,12183507,4316028&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13278767,14748116&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,14844728&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,14844728&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=996571,1591902,460225,4348093&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=996571,1591902,460225,4348093&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=714800,890020,5028932&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=714800,890020,5028932&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
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channels can be seen in their  participation in cell assemblies, which are composed of 

either superficial or deep neurons but rarely both (Harvey et al. 2023). When added to 

differences in connectivity, this enables both layer-biased processing of different elements 

of behavioral tasks and selective coordination of extrahippocampal activity (Harvey et al. 

2023). We discovered that primate CA1 also demonstrates this cell assembly bias by 

strata. Because macaques also show extra-hippocampal projections that are organized 

by CA1 pyramidal depth (Barbas and Blatt 1995; Insausti and Muñoz 2001), this 

suggests separable hippocampo-cortical networks may be organized through parallel 

channels within primate CA1. These findings, together with strata-specific differences in 

experience-dependent plasticity and in memory formation, (Stark et al. 2014; Valero et al. 

2015; Harvey et al. 2023; Berndt et al. 2023; Gu et al. 2023), suggest that their detection 

in primates may prove to be key to understanding how the hippocampus structures 

activity during memory formation.  

https://sciwheel.com/work/citation?ids=14844728&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14844728&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14844728&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=274973,9904251&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=984434,1591902,14844728,15345731,14440149&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=984434,1591902,14844728,15345731,14440149&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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4.5 Methods 

 

4.5.6 Subjects and Behavioral Conditions  

 

Two adult female macaques (Macaca mulatta, referred to as 'M1' and 'M2') were subjects 

in this study. Both monkeys underwent training in a 3D testing enclosure, which allowed 

them to move freely. This enclosure was equipped with multiple touchscreens distributed 

around its periphery. To receive a fluid reward, the monkeys needed to move sequentially 

to each of four touchscreens placed in one corner of the environment. On each screen, 

they had to touch designated objects associated with that screen, avoiding distractor 

objects. Their overall performance in completing the four-screen sequence determined 

their reward. The screens were arranged in a 2x2 array on opposite corners of the 3D 

space, necessitating visual search, reaching, and walking or climbing during each trial. 

The monkeys completed various trial blocks, which took place in both screen array 

corners of the testing apparatus. Following their training session, the monkeys were 

returned to their housing. For monkey M2, sleep recordings started immediately after the 

training session. For monkey M1, there were sometimes 1-2 hour gaps. Sleep epochs 

occurred with the monkeys in their normal housing area, with their usual social housing 

accommodations, in complete darkness, following the automated lighting system’s 

overnight dark cycle. All procedures were conducted in accordance with the approved 

protocols and authorized procedures under the local animal care authorities (Institutional 

Animal Care and Use Committee). 

 

4.5.7 Electrode placement and Electrophysiological recordings  

 

Active multichannel probes were inserted into a chronically implanted base (Talakoub et 

al. 2019), including a 128-channel probe (DA128-1, linear configuration with 40μm 

contact spacing) for Monkey M1 and a 64-channel probe (organized into 4 parallel shanks 

https://sciwheel.com/work/citation?ids=6898610&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6898610&pre=&suf=&sa=0&dbf=0
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with 40 channels at 90 μm spacing and 3 shanks with 8 channels at 60 μm spacing) for 

Monkey M2 ('Deep Array' design, by Diagnostic Biochips, Inc). The probes were affixed 

to adjustable microdrives (M1, M2: Nano Drives, Cambridge Neurotech, Inc.; M1: custom, 

Rogue Research, Inc.) to facilitate precise depth positioning adjustments post-

implantation, and allowing the raising and relowering (max. 7 mm or 5 mm, respectively) 

into target areas while remaining implanted. Post-operatively, the probes were 

incrementally advanced through these drives in 125mm steps until the target positions 

were achieved. The localization of recording sites was verified through postoperative CT 

scans, coregistered with pre-operative MRI data, and also by referencing functional 

landmarks that changed with increasing depth. Notably, the emergence of depth-specific 

sharp-wave ripples (SWRs) within unit-dense layers served as a key reference point. To 

align the 4 shanks in M2, we employed cross-correlation analysis of LFP signals observed 

during ripple activity across the channels. Local field potentials (LFPs) were digitally 

sampled at a rate of 30 kHz using the FreeLynx Wireless Acquisition system (Neuralynx, 

Inc) and subsequently bandpass filtered within the 0.1 Hz to 7500 Hz range. During task 

performance and sleep recordings for Monkey M2, data were wirelessly transmitted to 

the Freelynx acquisition system (Neuralynx, Inc). To optimize battery life, sleep 

recordings for Monkey M1 were stored on an SD card within the acquisition system. A 

high-frequency noise signal at approximately 6 kHz marked the point at which the battery 

capacity reached 10%. The onset of this noise was detected by calculating the root mean 

square (RMS) envelope of the band-passed filtered signal between 5800-6200Hz. The 

noise initiation point was defined as the timestamp at which the RMS envelope exceeded 

110% of the median value, and sleep data following this point was excluded. For the 

purpose of merging task and sleep recordings, data was initially converted to microvolt 

units, bitVolts were standardized to 0.195, and the data was subsequently transformed 

into binary files encoded as 16-bit integers. Sessions that exhibited no signal loss during 

recording were exclusively included in the analyses. In LFP-related analyses, the raw 

signal was subjected to third-order Butterworth filtering with a low-pass cutoff frequency 

set at either 350Hz or 450Hz, and the data was downsampled to 1 kHz. 
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4.5.8 CT-MRI image processing and coregistration 

 

The General Registration tool, Elastix, in the Slicer (version 4.11), was used to perform 

the registration of post-operative CT scans with pre-operative MRI images. The 

registration process maintained default parameters. Preceding registration, the CT 

images were cropped to encompass solely the skull region. 

 

4.5.9 Power spectral parametrization and fitting 

 

To estimate the layer-specific spectral content of the hippocampal and neocortical 

recordings, we used Welch’s method with a 50%-overlapping 1024-sample sliding 

Hanning window to estimate power spectra for the frequency range of 1–150 Hz with a 

frequency resolution of 0.25 Hz. To identify spectral peaks and compare between search 

and rest states, we parameterized power spectra using the method described by 

(Donoghue et al. 2020). This method models power spectra as a combination of the 1/f 

frequency components (aperiodic) in addition to a series of Gaussians that capture the 

presence of peaks (periodic components). The model was fit to a frequency range 

between 1 Hz and 200 Hz with a frequency resolution of 0.5 Hz. Settings for the algorithm 

were set as: peak width limits: (0.5, 12); max number of peaks: infinite; minimum peak 

height: 0; peak threshold: 2.0; and aperiodic mode: ‘Fixed’. 

 

4.5.10 Detecting hippocampal Sharp-wave ripples 

 

A single hippocampal LFP channel with largest ripple amplitude was selected for ripple 

detection. The wide-band signal was band-passed filtered between 100-180Hz using a 

3rd order Butterworth filter, and squared signal was calculated. The squared signal was 

further band-passed filtered in 1-20Hz range and z-normalized. SWR peaks were 

detected by thresholding the normalized squared signal at 3SDs above the mean, and 

https://sciwheel.com/work/citation?ids=10090013&pre=&suf=&sa=0&dbf=0
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the surrounding SWR start and stop times were identified as crossings of 1 SDs around 

this peak. SWR duration limits were set to be between 20 and 400 ms. Detected events 

with a time interval shorter than 40ms were merged.  

Exclusion Criteria: In addition to assessing amplitude and duration, we employed 

several criteria to identify and exclude potential false-positive ripple events. Channel 

Noise Exclusion: A 'noise' channel, defined as one devoid of detectable sharp-wave 

ripples (SWRs) in the local field potential (LFP), was designated. Any events 

simultaneously detected on this channel were considered as potential false-positives, 

likely originating from artifacts such as electromyography. Spectral Analysis: We 

conducted spectral analysis of each detected ripple event to further scrutinize its 

characteristics. The data was spectrally decomposed using Morlet wavelets, allowing us 

to compute the frequency spectrum for each event. This was achieved by averaging the 

normalized instantaneous amplitude within ±50ms of the ripple peak over the frequency 

range of 50-200 Hz, normalized by multiplying the amplitude by the frequency. We then 

analyzed the number and properties of spectral peaks in each detected ripple frequency 

spectrum. These peaks were identified using the findpeaks function in MATLAB, 

considering parameters such as peak height, prominence, peak frequency, and peak 

width. This analysis aimed to ensure that the detected ripple events genuinely reflected 

high-frequency, narrowband bursts within the ripple band range. We applied multiple 

criteria to achieve this: first, authentic ripple events were expected to exhibit a 

predominant spectral peak within the ripple band range. Therefore, if no single prominent 

peak (corresponding to the ripple band) was identified, the event was rejected. 

Additionally, authentic ripple events were anticipated to display a limited narrowband 

burst; thus, if the ripple-peak had an excessively wide peak width (indicating more 

broadband spectral changes) or prominent high-frequency activity, the event was 

considered for rejection (see (Y. Y. Chen et al. 2020)). Visual Inspection: Finally, all 

detected ripples underwent visual inspection, and any events flagged as false-positives 

during this process were subsequently removed from the dataset. 

 

https://sciwheel.com/work/citation?ids=9875935&pre=&suf=&sa=0&dbf=0
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4.5.11 Spike sorting 

 

Spike sorting was performed using Kilosort 1.0 ((Pachitariu et al. 2016), 

https://github.com/cortex-lab/KiloSort). The process involved applying a 300-Hz high-

pass filter to the raw signals, followed by whitening the data in blocks of 32 channels. 

Parameters relevant to automated sorting are detailed in the accompanying table. 

Removing putative double-counted spikes (Lecoq et al. 2021). The Kilosort algorithm 

will occasionally fit a template to the residual left behind after another template has been 

subtracted from the original data, resulting in double-counted spikes. Such double-

counted spikes could artificially inflate inter-spike interval (ISI) violations for a single unit 

or create erroneous zero-time-lag synchrony between neighboring units. Consequently, 

spikes with peak times within a 5e-4 second interval and peak waveforms detected on 

the same channels were systematically removed from the dataset. 

Removing units with artefactual waveforms. Kilosort1 generates templates of a fixed 

length (2 ms) that matches the time course of an extracellularly detected spike waveform. 

However, there are no constraints on template shape, which means that the algorithm 

often fits templates to voltage fluctuations with characteristics that could not physically 

result from the current flow associated with an action potential. The units associated with 

these templates are considered ‘noise’ and are removed on the basis of spread 

(waveform appears on many channels), and shape (e.g. no peak and trough or sinusoidal 

waveform) criteria and autocorrelogram function. 

Manual curation and re-clustering with Phy. Manual curation and re-clustering were 

performed using Phy (https://github.com/kwikteam/phy). Kilosort-derived clusters were 

imported into Phy for manual curation. Units that were poorly isolated according to the 

initial Kilosort results were re-clustered using Klusta with custom-designed plugins 

(https://github.com/petersenpeter/phyplugins) to obtain well-isolated single units. The 

quality of these clusters was evaluated based on refractory period violations and Fisher's 

linear discriminant metrics. Noise clusters and poorly isolated units were subsequently 

excluded from the analysis. 

https://sciwheel.com/work/citation?ids=1995606&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11882023&pre=&suf=&sa=0&dbf=0
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Kilosort Parameters 

ops.datatype 'dat' 

ops.fs 30000 

ops.Nfilt 1024 

ops.whitening ‘full’ 

ops.nSkipCov 1 

ops.whiteningRange 32 

ops.criterionNoiseChannels 0.2 

ops.Nrank 3 

ops.nfullpasses 6 

ops.maxFR 20000 

ops.fshigh 300 

ops.ntbuff 64 

ops.scaleproc 200 

ops.NT 32*1024+ ops.ntbuff 

ops.Th [4 10 10] 

ops.lam [10 30 30] 

ops.nannealpasses 4 

ops.momentum 1./[20 400] 

ops.shuffle_clusters 1 

ops.mergeT 0.1 

ops.splitT 0.1 

ops.initialize 'fromData' 

ops.spkTh -4 

ops.loc_range [3 1] 

ops.long_range [30 6] 

ops.maskMaxChannels 5 

ops.crit 0.65 

ops.nFiltMax 10000 
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4.5.12 Hippocampal CA1 layer estimation and localization of neuronal somata in 

the CA1 layers 

 

To estimate the location of the linear-array channels relative to CA1 layers, we used 

features of the sharp wave ripple. The sharp wave component of the SWR arises from 

CA3 Schaffer collateral inputs that generate a current sink in stratum radiatum (SR) with 

a return source centered in stratum pyramidale (Sullivan et al. 2011). In the relatively 

closed fields of rat or mouse CA1, this is evident as a polarity reversal between SR and 

the deeper layers, where the envelope flattens, distorts and ultimately reverses  (G 

Buzsáki, Leung, and Vanderwolf 1983). The source/sink gradient has been used as a 

depth reference to identify superficial/deep pyramidal cells (Harvey et al. 2023), and 

should be more sensitive to local generators (more tolerant of open-fields) than the raw 

fields (Mitzdorf 1985; Tenke et al. 1993; Steinschneider et al. 1992). On this basis, we 

first estimated the radiatum/pyramidale transition using current source density (CSD), the 

second spatial derivative, of ripple-trigger averaged signal across the regularly-spaced 

LFP channels. This identified the general regions of SR and SP. Next, we calculated 

ripple power and the slope of sharp-wave envelope peak, both of which have been used 

to center the pyramidal layer in previous studies (Mizuseki et al. 2011; Harvey et al. 

2023), respectively. For each session, we set the channel closest to the LFP slope zero-

crossing as 0, and the depth of the other channels in relation to that point, considering 

the fixed  inter-electrode distance. No additional scaling was made to the inter-channel 

distances. This reversal point fell in the middle of sinks and sources of CSD and above 

the depth of maximum ripple power. For the side-shank linear sites (in M2), we adjusted 

the physiological depth based on the correlational similarity of mean sharp-wave ripple 

LFP. For all isolated units, the site with the largest spike amplitude for each unit was 

regarded as the location of the cell body. 

 

https://sciwheel.com/work/citation?ids=769577&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=276382&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=276382&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14844728&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=139210,10075969,14015677&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,14844728&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=285919,14844728&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0


120 
 

4.5.13 Cell type classification 

 

To establish the feature space for cell type classification, we leveraged single-unit 

waveforms and interspike interval (ISI) distributions of the cells. The filtered single-unit 

waveforms (comprising 48 samples at 30 kHz) were first normalized within the range of 

0 to 1 and aligned. Subsequently, we used the Uniform Manifold Approximation and 

Projection (UMAP) to reduce the dimensionality of the waveform matrix to 2 components. 

In a parallel process, the log10 ISI distributions within the range of 0-10 seconds were 

subjected to UMAP analysis to obtain 2 components as well. For these UMAP 

procedures, we employed a custom UMAP function implemented in MATLAB (McInnes, 

Healy, and Melville 2018). The selection of UMAP parameters was guided by consultation 

with (E. K. Lee et al. 2021). To generate the feature space for clustering, the four 

attributes (two from waveform and two from ISI) were concatenated. Clustering was 

performed using Spectral Clustering in MATLAB, with Mahalanobis distance serving as 

the primary metric. Initially, we set the number of clusters to 20, based on the criteria of 

AIC and BIC applied to Gaussian mixture models (GMM) built on the feature space. 

Subsequent refinements were carried out on the initial clusters using either spectral or 

GMM clustering techniques, with similar clusters being merged. 

 

UMAP Parameters: 

min_dist 0.1 

n_neighbors 20 

n_components 2 

n_epochs 5000 

metric euclidean 

 

 

4.5.14 Classification of deep and superficial CA1 pyramidal cells 

 

https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11529699&pre=&suf=&sa=0&dbf=0
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The first group was designated the pyramidal cell group, because these cells 

demonstrated the low firing rates, high propensity for bursting, and dense localization 

within the Stratum Pyramidale that are the hallmarks of CA1 pyramidal cells (Ranck 1973; 

William E Skaggs et al. 2007; J Csicsvari et al. 1999a). For the superficial and deep 

analyses, we removed from this group the spatial outliers (with relative depths falling 

outside the 5-95th depth percentile range), and cells with mean firing rates > 1 Hz or a 

burst index exceeding 3, before calculating the median depth of these units to segregate 

into superficial and deep categories. The spatial distribution of CA1sup neurons spanned 

from -300 to 540 μm, and for CA1deep neurons, it extended from -630 to -330 μm. 

 

4.5.15 Burst Index 

 

We used a burst index that captured the propensity of neurons to discharge in bursts. The 

amplitude of the burst was estimated from the mean of spike auto-correlogram (1-ms bin 

size) measured between 1 and 10 ms normalized by the baseline, the mean value 

between 200 and 300 ms (Royer et al. 2012; Peter C Petersen et al. 2021). 

 

4.5.16 Ripple-associated spike content analysis 

 

Within-SWR firing rate was calculated as the number of spikes during SWRs divided by 

the cumulative duration of the SWRs between the first and last spike fired by the cell. The 

ripple participation probability of individual units was defined as the fraction of SWRs in 

which that neuron fired at least one spike. Ripple ratio was defined as firing rate during 

ripple events divided by the overall firing rate. 

To calculate spike density functions, spike vectors of individual cells were binned with 

1ms binsize and peri-event time histograms (PETHs) were computed locked to ripple 

peaks and converted to rate. Then a gaussian kernel with a 10 ms S.D. was applied to 

the PETHs to obtain spike densities. For each cell, we calculated the baseline activity as 

https://sciwheel.com/work/citation?ids=4572924,296152,554186&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4572924,296152,554186&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=460225,11775383&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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the mean firing rate of a shuffled surrogate dataset created for that cell and subtracted 

this value from the original PETH.  

To test the hypothesis that spiking activity of single cells are modulated surrounding the 

ripple peak, we derived nonripple event surrogates. These surrogates were created for 

individual cells using timestamps selected randomly without replacement from recording 

epochs when ripples were not detected. We matched the number of ripple and nonripple 

surrogate events (n observed ripple events = n nonripple events). Furthermore, to ensure 

that signal properties were maximally matched between target events and surrogates, 

surrogates were drawn only from a 10-min time window before and after the 

corresponding ripple event. To test the significant difference between the ripple-locked 

and surrogate spike densities, we used a cluster-based permutation procedure using 

5000 permutations and a cluster threshold of p < 0.05 and a final threshold for significance 

of p < 0.05. 

 

4.5.17 Spike-field synchronization 

 

To quantify spike-field synchronization, we used the pairwise phase consistency (PPC) 

measure, which is unbiased by the number of spikes (Vinck et al. 2010). For hippocampal 

recordings, we selected the sharp-wave ripple channel in the Stratum Pyramidal of the 

CA1 across sessions. If the unit spikes were from this channel, we used an adjacent 

channel to measure the PPC. The spectral content was estimated with Morlet wavelet 

decomposition method using a constant number of cycles (7) per frequency for 

frequencies between 1 and 200 Hz with a frequency resolution of 1 Hz. We measured 

PPC values separately for spikes during wakeful and rest/sleep states, and only for 

neurons that fired at least 100 spikes (Vinck et al. 2010). One caveat of this approach is 

that it assumes signals to be oscillatory and, additionally, sinusoidal. This can distort 

preferred phase estimations. We used an alternative approach to estimate phase of 

modulation  in restricted time windows of presumed oscillatory bouts, across frequency 

ranges.  For each frequency group, LFP signal was filtered in the specified frequency band 

using a 3rd Butterworth filter. Next, instantaneous phase and power were derived from 

https://sciwheel.com/work/citation?ids=83076&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=83076&pre=&suf=&sa=0&dbf=0
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Hilbert transform. A phase value was assigned to each action potential during significant 

periods (power of filtered LFP > 2 S.D. above the mean) using linear interpolation. Peaks 

are at 0° and 360° and troughs at 180° throughout the paper. Then we calculated the 

mean phase and resultant vector using the circular statistics toolbox on MATLAB ((Berens 

2009), https://github.com/circstat/circstat-matlab). To find the grand mean phase and 

resultant vector of a cell group in a specific frequency, we measured the mean phase of 

firing for included members of that cell group and then calculated the mean phase and 

resultant vector of the mean phases. The grand mean phase and resultant vector 

determines the consistency of phase of firing among the members of a cell group. For the 

calculation of the grand mean phase, we included only cells that had at least 20 spikes 

during significant epochs of interest. We set a significance threshold of p = 0.01 using the 

Rayleigh test for phase locking. 

 

4.5.18 Pairwise cell interaction 

 

We employed two complementary approaches to estimate pairwise cell interactions in 

our analysis. First, recordings were segmented into 25 ms time bins, and for each neuron, 

the number of spikes within each bin was counted and converted to firing rate. 

Subsequently, we convolved the spike vectors with a Gaussian kernel, with a standard 

deviation calculated as binsize / (2 * sqrt(2 * log(2))) (converted to Full Width at Half 

Maximum, FWHM). Pearson's correlation coefficients were then calculated between the 

spike density vectors of different neurons, serving as a measure of their co-firing 

tendencies. 

Due to potential recording instabilities, some cells might have appeared or disappeared 

during the recording. To prevent periods of inactivity from influencing the Pearson's 

coefficients, we only considered correlations during overlapping windows of activity if two 

conditions were met: 1) the overlapping window extended beyond 5 minutes, and 2) both 

cells fired at least 100 spikes within the overlapping time window. 

https://sciwheel.com/work/citation?ids=3055346&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3055346&pre=&suf=&sa=0&dbf=0
https://github.com/circstat/circstat-matlab
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Additionally, cross-correlograms (CCGs) were computed between pairs of neurons with 

a 1 ms bin resolution and converted to rate (CCG divided by the reference cell's number 

of spikes per time bin). These CCGs were smoothed using a zero-lag partially hollowed 

Gaussian filter with a convolving window of 5 ms and a hollow fraction of 0.6 (English et 

al. 2017; Stark and Abeles 2009). 

The mean activity in a baseline window (-50 to -20 ms) was subtracted from the original 

CCGs to account for any baseline activity. For assessing the statistical significance of 

CCGs, we employed a surrogate approach by shuffling the inter-spike intervals of the 

cells (Nádasdy et al. 1999) and calculating the CCGs between the surrogate cells. This 

process was repeated 5000 times to generate a surrogate distribution of CCGs. P-values 

were computed for each time bin of the CCG (-20 to 20 ms) and subjected to multiple-

comparison correction using the Benjamini and Hochberg False Discovery Rate (FDR) 

procedure. Only cells with at least one significant time bin were included in the calculation 

of the mean CCG. To compare CCGs between the CA1sup and CA1deep groups, a two-

sample permutation test with Tmax correction was used (Blair and Karniski 1993). 

 

4.5.19 Assembly pattern identification and activation strength 

 

Cell assemblies were identified during sleep recordings as previously described (Vítor 

Lopes‑dos-Santos et al. 2011; Vítor Lopes-dos-Santos, Ribeiro, and Tort 2013; van de 

Ven et al. 2016; Peyrache et al. 2010; Harvey et al. 2023; Boucly et al. 2022). Significant 

co-firing patterns were detected using an unsupervised statistical method based on 

independent component analysis (ICA). The spike trains for each neuron were binned 

into time windows of 90-ms (corresponding to max duration of ripple events at 90 

percentile) and z-score transformed to eliminate biases due to differences in average firing 

rates. Next, a principal component analysis was applied to the binned spike matrix (Z). The correlation 

matrix of Z was given by 𝐶 =  
1

𝑛
𝑍𝑍𝑇   and the eigenvalue decomposition of C was given by: 

∑ 𝜆𝑗𝑝𝑗𝑝𝑗
𝑇 =

1

𝑛

𝑛

𝑗=1

𝑍𝑍𝑇 

https://sciwheel.com/work/citation?ids=4348093,7997859&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4348093,7997859&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=137917&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10360007&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9907435,4528389,3013343,717521,14844728,15074575&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9907435,4528389,3013343,717521,14844728,15074575&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9907435,4528389,3013343,717521,14844728,15074575&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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where 𝜆𝑗 is the jth eigenvalue of C and 𝑝𝑗 is its corresponding eigenvector. The Marcenko-Pastur law 

was used to estimate the number of significant patterns embedded within Z. For a nXB matrix, an 

eigenvalue exceeding 𝜆𝑚𝑎𝑥, defined by 𝜆𝑚𝑎𝑥 = (1 + √𝑛/𝐵)2, signifies that the pattern given by the 

corresponding principal component explains more correlation than would be expected if the neurons 

were independent of each other. The number of eigenvalues exceeding 𝜆𝑚𝑎𝑥 was defined as NA and 

therefore represents the minimum number of distinct significant patterns in the data. The significant 

principal components were then projected back onto the binned spike data 

𝑍𝑃𝑅𝑂𝐽 = 𝑃𝑆𝐼𝐺𝑁
𝑇 𝑍 

where 𝑃𝑆𝐼𝐺𝑁 is the nXNA matrix with the NA principal components as columns. 

Independent component analysis (ICA), using the fast ICA algorithm 

(http://research.ics.aalto.fi/ica/fastica), was then applied to the matrix ZPROJ. That is, an NAXNA 

unmixing matrix W was found such that the rows of the matrix 𝑌 = 𝑊𝑇𝑍𝑃𝑅𝑂𝐽 were as independent as 

possible. The arbitrary signs of the Independent component (IC) weights were set so that the 

highest absolute weight was positive. The unmixing matrix W was then used to derive each cell’s 

weight within each assembly 𝑉 = 𝑃𝑆𝐼𝐺𝑁𝑊 where the columns of 𝑉 (𝑖. 𝑒. , 𝑣1, … , 𝑣𝑁𝐴) are the weight 

vectors of the assembly patterns. 

To determine the strength of the expressed assemblies, we tracked each assembly pattern 𝑣𝑘 over 

time by: 

𝑅𝑘(𝑡) = 𝑧(𝑡)𝑇𝑃𝑘𝑧(𝑡) 

where 𝑧(𝑡) is a smooth vector-function containing for each neuron its z-scored instantaneous firing-

rate and 𝑃𝑘 is the matrix projecting 𝑧(𝑡) to the activation-strength of the assembly pattern 𝑘 at time 𝑡. 

 

4.5.20 Organization of cell assemblies 

 

The majority of the identified assembly patterns exhibited a characteristic distribution 

where a few neurons displayed high weights, while a larger group of neurons had weights 

approximating zero. To determine the significant membership corresponding to each 

assembly pattern, we used the criteria that the member neurons of an assembly should 

have weights exceeding the mean weight by at least two standard deviations. It's 
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important to note that all subsequent analyses were conducted directly on the assembly 

patterns themselves, using the weight vectors derived from the contribution of all recorded 

neurons. Based on the configuration of significant assembly members, the assemblies 

were classified into three distinct groups: Within Assemblies: These assemblies were 

defined as having at least one significant member from the pyramidal cell group. If all 

significant pyramidal members were exclusively from the superficial or deep regions, we 

labeled the assembly as "within superficial" or "within deep," respectively. Across 

Assemblies: These assemblies included at least one significant member from both the 

superficial and deep pyramidal cell groups. Assemblies with No Recorded Pyramidal 

Members: This category comprised assemblies that did not contain any recorded 

pyramidal cell members. 

To estimate the probability of realization of a specific assembly organization, we used the 

binomial probability density function (binopdf in MATLAB). Observed and expected 

probabilities were computed as: 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑃𝑟𝑜𝑏 =  𝑏𝑖𝑛𝑜𝑝𝑑𝑓(𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑠𝑖𝑔𝑆𝑢𝑝 + 𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑁𝐷𝑒𝑒𝑝/(𝑁𝑆𝑢𝑝 + 𝑁𝐷𝑒𝑒𝑝));    

𝑃𝑎𝑙𝑙𝐷𝑒𝑒𝑝      =  𝑏𝑖𝑛𝑜𝑝𝑑𝑓(𝑠𝑖𝑔𝑆𝑢𝑝 + 𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑠𝑖𝑔𝑆𝑢𝑝 + 𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑁𝐷𝑒𝑒𝑝/(𝑁𝑆𝑢𝑝

+ 𝑁𝐷𝑒𝑒𝑝)); 

𝑃𝑎𝑙𝑙𝑆𝑢𝑝       =  𝑏𝑖𝑛𝑜𝑝𝑑𝑓(𝑠𝑖𝑔𝑆𝑢𝑝 + 𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑠𝑖𝑔𝑆𝑢𝑝 + 𝑠𝑖𝑔𝐷𝑒𝑒𝑝, 𝑁𝑆𝑢𝑝/(𝑁𝑆𝑢𝑝 + 𝑁𝐷𝑒𝑒𝑝)); 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑏 =  1 −  (𝑃𝑎𝑙𝑙𝑆𝑢𝑝 +  𝑃𝑎𝑙𝑙𝐷𝑒𝑒𝑝); 

 

Where 𝑠𝑖𝑔𝐷𝑒𝑒𝑝 and 𝑠𝑖𝑔𝑆𝑢𝑝 represent the number of significant CA1deep and CA1sup 

members within the assembly, respectively. 𝑁𝐷𝑒𝑒𝑝 and 𝑁𝑆𝑢𝑝 denote the total number of 

recorded CA1deep and CA1sup neurons within the session. 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑃𝑟𝑜𝑏 signifies the 

probability of encountering the specific organization of the assembly. 𝑃𝑎𝑙𝑙𝐷𝑒𝑒𝑝 and 

𝑃𝑎𝑙𝑙𝑆𝑢𝑝 indicate the probability that all significant pyramidal members exclusively belong 

to either CA1deep or CA1sup. 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑃𝑟𝑜𝑏 reflects the anticipated probability that the 

assembly could belong to the "across" category. 
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Assembly participation probability was calculated for all cells per session and it was 

defined as the number of assemblies where a cell participated as a significant member 

divided by the total number of detected assemblies in a session. 

 

4.5.21 Statistical analysis 

 

Data collection was not conducted under blinded conditions and data analysis and 

behavioral experiments did not necessitate manual scoring. No specific methodology was 

employed to estimate the minimum required population sample, but the number of 

animals, trials, and recorded cells exceeded or was comparable to those used in prior 

studies. All statistical analyses were performed using MATLAB R2021a, utilizing non-

parametric methods for comparisons of means and variances, including Kruskal-Wallis 

analysis of variance, two-sample permutation tests, one-sample randomization tests. 

Two-sample permutation test: A two-sample permutation test is a statistical method 

used to compare two independent groups or samples in a hypothesis testing framework. 

It is particularly valuable when the data do not meet the assumptions of parametric tests 

like the t-test. For comparison where each sample had a single data point, we simply 

shuffled the membership assignments 5000 times and computed the mean difference 

between the surrogate samples each time to create a surrogate probability distribution of 

mean differences. The original, non-permuted data are then compared to the surrogate 

distribution to obtain uncorrected p-values. 

For cluster-based multiple comparison correction, all samples with p-values smaller 

than 0.05 were selected. These selected samples were subsequently clustered into 

connected sets based on their adjacency, and the size of each cluster was calculated. 

This process was repeated 5000 times to generate a distribution of cluster sizes. Clusters 

with sizes exceeding the cluster threshold at the 95th quantile were reported as 

significant. 

For CCG analyses we controlled family-wise error rate (FWER) using the Tmax correction 

method (Blair and Karniski 1993). This method provides strong control of FWER, even for 

https://sciwheel.com/work/citation?ids=10360007&pre=&suf=&sa=0&dbf=0
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small sample sizes, and is much more powerful than traditional correction methods 

(Gondan 2010; Groppe, Urbach, and Kutas 2011a). It is also rather insensitive to 

differences in population variance when samples of equal size are used (Groppe, Urbach, 

and Kutas 2011b). 

One-Sample Randomization Test: This test, akin to the permutation test, involved 

comparing a time series against a surrogate dataset created from randomly selected 

timestamps. 

For all other posthoc tests, either Tukey-Kramer or the Benjamini & Hochberg (1995) 

multiple comparison correction was applied, as specified in the main text. 

Boxplots were used to present data, with the median, 25th, and 75th percentiles 

represented within the box, and the whiskers illustrating the data range. In cases where 

boxplots did not display individual data points, outliers were excluded from the plots but 

were consistently included in the statistical analysis. 

 

 

 

https://sciwheel.com/work/citation?ids=488527,378042&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=6133025&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6133025&pre=&suf=&sa=0&dbf=0
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Figure 4-4. Physiological features of different cell groups in the macaque hippocampal CA1 

(A) Left: Chebyshev distance matrix for feature space of recorded cells. Note that the diagonal values are smaller than off-diagonal 

indicating that within-group members were closer together in the feature space compared to between-group members. Right: 

Distribution of between-group (red), and within-group (bone white) of distance values (p<0.001, two-sample permutation test) 

(B) Firing rate of neurons during sleep and wakeful states for different cell groups (N: number of cells, pval = result of a two-sample 

permutation test). 

(C) Left: ISI-based coefficient of variance (CV2) for different cell groups (p<0.001, Kruskal-Wallis test). Matrices show the result of 

pairwise permutation tests for firing rate and CV2 (dark pixels indicate p<0.01, two-sample permutation test + FDR correction). 

Right: CV2 for superficial versus deep pyramidal cell group (p<0.001, two-sample permutation test) 

(D) Joint ISI histograms showing the next interval (ISIi+1) as a function of the previous interval (ISIi) for different cell groups. 

 

 

Figure 4-5. Oscillatory dynamics and spike-field relationship 

(A) Left: 1/f corrected FOOOF power spectrum across depths of recording during task (top) and rest/sleep (bottom) for two animals 

subjects. Right: Corrected (black) and balanced (grey) proportion of detected oscillatory bouts during task versus sleep states in 

different frequency bands. LFP channels was selected from Stratum Radiatum. 



130 
 

(B) Mean PPC values during task (colored) and rest/sleep (grey). 

(C) Phase plots showing grand mean phase and resultant vector for cell groups and frequency bands. Note that for the 1-4Hz group, 

we separated the results for the 2 animal subjects due to conspicuous differences between them. Matrix shows percent (%) of 

cells with significant phase locking (p<0.01, Rayleigh's test) in each frequency and cell group; total number of cells included for 

this analysis (all cells with less than 20 spikes during significant oscillations were excluded); and the results of pairwise 

permutation tests between pyramidal cell group and other groups for different frequency bands (Significant differences are 

depicted by *colored, p<0.05, two-sample Watson-Williams test, FDR corrected) 

 

 

Figure 4-6. Sharp-wave ripple-associated spiking dynamics 

(A) Ripple-aligned spike density (mean + 95% CI) for significantly modulated cells of different groups. N: Significantly modulated/total 

cells in the group. Distribution of significantly modulated units (shaded area plots, p<0.05, one-sample cluster-based permutation 

test). 

(B) Left: Ripple firing rate for different groups. (p<0.001, Kruskal Wallis test). Middle: Ripple ratio (average firing rate during ripples / 

overall firing rate, p<0.001, Kruskal-Wallis test). Right: Ripple participation probability (p<0.001, Kruskal-Wallis test). Color coded 

asterisks show the result of post-hoc pairwise permutation test between pyramidal cell group and all other cell groups (* p<0.001, 

FDR corrected). 

(C) Distribution of peak response times around the ripple peak (p<0.001, Bartlett's test for equality of variances). 
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Figure 4-5. Anatomical organization of assembly dynamics in the macaque hippocampal CA1 

(A) Top: Example LFP traces across depth of recording in CA1 during sleep for M2. Middle: Raster plot of simultaneously recorded 

units. Bottom: Assembly activation strength of different assemblies. 

(B) Distribution of assembly participation rate for cells. Cells with a participation rate of 0 were removed from the analysis. 

(C) Distribution of assembly participation probability for different cell groups (p<0.001, Kruskal-Wallis test). The first row of text shows 

the number of cells with a participation rate greater than 0. The second row of text show average available assemblies to 

participate in for different cell groups across sessions. 

(D) Relationship between firing rate of neurons and assembly participation rate showing a significant inverse correlation (r = -0.14, 

p < 0.001 ttest) 
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5. General Discussion 

 

In the past couple of decades, we've witnessed significant progress in recording 

techniques for rodents, ranging from high-density extracellular recordings to in vivo 

juxtacellular recordings, functional transcriptomics, and genetic cell tagging. These 

advances have unveiled a distinct functional organization of diverse cell classes in various 

layers of the CA1 region (Klausberger and Somogyi 2008; Harris et al. 2018). The state-

of-the-art technologies in primate electrophysiology, however, still lags behind and 

consequently, many of our theories on neural mechanisms of learning and memory 

heavily rely on rodent studies. While these findings in rodents have revolutionized our 

understanding of the brain, the direct translation to primates may not be straightforward 

due to differences in their behavioral repertoire and brain structure.  

From a cognitive perspective, it is increasingly recognized that the limited ecological 

validity found in many paradigms and settings in the field can artificially constrain our 

theories about the cognitive processes involved (Miller et al. 2022). In most cases, there's 

a significant gap between the spatiotemporal scale of naturalistic episodic memories and 

the often artificial laboratory memory tests, which usually overlook the crux of the 

processes that underlie these functions such as dynamic and flexible embodiment in 3D 

complex physical spaces (Shamay‑Tsoory and Mendelsohn 2019). This disparity can 

impact our understanding of how memory systems are organized, their capacity, and their 

underlying mechanisms across animal species. 

To address these challenges, my dissertation aimed to investigate the neural dynamics 

of the hippocampus in freely-moving macaques within more ecologically relevant memory 

task settings.  I used multi-channel laminar recordings to sample local field potentials 

(LFP) and spiking activity from different layers of the CA1 region and used similar 

analytical techniques to those used in rodent studies, to facilitate the comparison of 

findings between macaques and rodents. These approaches enabled me to create a 

more detailed microcircuit picture of the primate hippocampus and compare it to the 

rodent models. Such comparative electrophysiological approaches across two species 
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with notably different exploratory behaviors can provide insights into how the 

hippocampus supports the distinctive behavioral repertoires of these species. 

 

6. Chapter 1: Exploring event memories in freely-behaving macaques 

 

One of the main goals of this dissertation was creating a task enclosure suitable for 

cognitive tests in freely behaving macaques. This enclosure, the Treehouse, was 

designed to facilitate intricate interactions with the environment, offering conditional 

stimulus arrays that extend across both space and time, all within the context of 

naturalistic movements and exploratory behaviors. These features are crucial parts of the 

contextual episodic memories, a topic I will delve into. Simultaneously, this apparatus 

meets the electrophysiological requirements by delivering precise timing, experimental 

control, and repetition necessary for studying the neural dynamics of memories within 

these behavioral conditions. 

Episodic memories include details about the spatiotemporal context of events, seamlessly 

integrated into a sequence of unified and coherent representations. These memories can 

be flexibly expressed to facilitate adaptive behavior in novel situations (Crystal 2021; 

Allen and Fortin 2013). Despite observations on the capacity of animal models to learn 

complex spatiotemporal contingencies and to form sequence memory at the behavioral 

level, much of our understanding of the neural dynamics of contextual episodic memory 

primarily stems from the contextual fear conditioning paradigm in rodents. In this 

paradigm, animals associate a spatial context with an unpleasant experience. This 

paradigm offers a single memory within a limited spatiotemporal context. Although 

valuable insights have been gained into the neural organization of such memories, it's 

crucial to recognize that memory is diverse, with organization varying based on specific 

content. Therefore, studying the neural organization of memories across species and 

under different cognitive conditions spanning various spatiotemporal scales and stimulus 

complexities is essential. 
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Laboratory paradigms designed to assess episodic memories frequently impose 

restrictions on the spatial and temporal scales of memories, typically to exert control over 

the subject's behavioral state. The neural and cognitive structures underlying memories 

are sensitive to the spatiotemporal characteristics of the items to be remembered. 

Therefore, careful consideration must be given to the specific demands placed on the 

subject and the conditions under which assessments are conducted. Temporal scale 

assessment involves two key aspects: 1) the length of a sequence that a subject needs 

to learn and 2) remoteness, measuring the time elapsed from the original exposure to 

information before the retention/retrieval test. Episodic memories are constructed from 

sequences of events, with events defined by their specific contextual arrangements in 

terms of space and time. Both animal models and humans exhibit the ability to remember 

a list of items in their correct temporal order. In rats, selective lesions in the hippocampus 

impairs remembering the sequential ordering of odors while sparing the capacity to 

recognize odors that recently occurred (Fortin, Agster, and Eichenbaum 2002; Agster, 

Fortin, and Eichenbaum 2002). Similarly, patients with medial temporal lobe (MTL) 

damage exhibit no special difficulty remembering spatial details in comparison with 

nonspatial details but the order in which patients recalled the events is unrelated to the 

order in which they occurred (Dede et al. 2016). Interestingly, a recent study shows that 

monkeys with hippocampal lesions were impaired only transiently, if at all, in memory for 

temporal order (Basile et al. 2020), however, order judgments are sensitive to fornix 

transection in monkeys (Charles, Gaffan, and Buckley 2004). This suggests that other 

regions in the MTL might be supporting the memory for order. Electrophysiological studies 

in rodents and neuroimaging studies in humans also demonstrate that hippocampal 

activity patterns differentiate between overlapping object sequences and between 

temporally adjacent objects that belonged to distinct sequence contexts (Hsieh et al. 

2014; Gelbard‑Sagiv et al. 2008; Lehn et al. 2009; Davachi and DuBrow 2015). These 

results caution against over-generalizing from human correlational studies or rodent 

experimental studies and might suggest that the organization of memories is different 

across these species, emphasizing causal tests of hippocampal function in nonhuman 

primate models. 
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Space is another dimension which is an inseparable part of a contextual memory because 

all memories are formed somewhere. But not all spaces are equal (Banta Lavenex and 

Lavenex 2009). Cognitive tests in monkeys, and even humans, is typically restricted to 

chaired subjects where the relevant space for memory is on a monitor, focusing on the 

spatial layout of stimuli. Under these conditions, we have a high level of control over the 

subject and the experimental settings, but the behavioral repertoire is limited, doesn’t 

incorporate body movement and sensation, and is less ethologically relevant. Removing 

naturalistic components of everyday experience as they pertain to presented stimuli, real 

contextual information, active participation, and bodily movement may reduce ecological 

validity to the extent that it precludes us from understanding behavioral and neural 

elements of memory in real life (Shamay‑Tsoory and Mendelsohn 2019). The main 

argument is that interfering with the ability of participants to act on the environment may 

reduce their sense of control over the environment, in turn affecting their sense of 

agency—the experience of controlling one’s actions (Haggard and Chambon 2012). That 

the actions of participants do not affect the experience may diminish the engagement of 

participants in the tasks and leave basic cognitive faculties dormant. In agreement with 

this, in natural and virtual environments (VE) spatial learning depends on several factors 

including the spatial goal, environmental complexity, and mode of learning. A factor 

influencing the mode of learning is the extent to which exploration is self-governed 

(Carassa et al. 2002). Memories of experiences are formed whether the individual is a 

passive part of the occurrence or an active agent. The question at hand is whether the 

degree of perceived control over the environment may affect memory properties 

associated with relevant experiences. There are now several lines of evidence supporting 

the notion that actively interacting with the environment can affect memory formation 

(Brandstatt and Voss 2014; Carassa et al. 2002; Koriat and Pearlman‑Avnion 2003; 

Murty, DuBrow, and Davachi 2015; Plancher et al. 2013; Rotem-Turchinski, Ramaty, and 

Mendelsohn 2019). For instance, in humans, active exploration, self-movement, and self-

referencing in natural complex environments enhance memory of visuospatial scenes and 

spatial memory in virtual environments (Brooks et al. 1999; Carassa et al. 2002; Plancher 

et al. 2013; Penaud et al. 2022).  It has been suggested that additional movement traces 

provide supplementary specificity to the formed memories and hence enhance them 
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compared to passively acquired memories (Brooks et al. 1999; Plancher et al. 2013). 

These observations are in line with the embodied views of memory that denote memories 

operate in the service of perception and action, and hence memory representations must 

arise from bodily interactions with the world (Glenberg 1997). Interestingly, one of the 

main findings in the current dissertation was that as monkeys underwent the learning 

process, the kinetics of their head movements altered. In primates, the combination of 

eye and head movements plays a central role in acquiring information about the 

environment's structure (active sensing) and externalizing internal beliefs or deliberations 

(embodied cognition) (Zhu, Lakshminarasimhan, and Angelaki 2023). The outcomes of 

this behavioral experiment consequently imply that learning not only modify an animal's 

internal cognitive states but also influence how these cognitive states are expressed 

through their bodily actions. This adjustment in active sensing likely assists the animal in 

more effectively gathering pertinent information from the surroundings and translating it 

into purposeful actions. Such findings are not possible under restrained conditions. 

The hippocampus plays a central role in processing the spatial arrangement of items in 

the visual scene. In monkeys, while hippocampal lesion leaves the capacity to learn 

discrete objects-reward associations intact, it significantly impairs the memory retrieval if 

subject require to know not only the objects, but also something about their spatial 

arrangement in the scene (Gaffan 1991, 1994). The involvement of hippocampus in 

spatial learning depends on the frame of reference (allocentric vs. egocentric). Lesion of 

the hippocampus in freely-behaving monkeys results in significant memory impairment in 

the absence, but not the presence, of local cues (Lavenex, Amaral, and Lavenex 2006). 

These results suggest that the monkey hippocampal formation is critical for the 

establishment or use of allocentric, but not egocentric, spatial representations. 

Specifically, any task in which subjects always approach a testing apparatus from the 

same direction, which is the condition for most of the computerized tasks of memory, 

cannot rid the task of its egocentric component, and therefore cannot be considered 

purely spatial relational. It has been argued that egocentric strategies employed in 

shorter-time windows might render the task hippocampal-independent (Banta Lavenex 

and Lavenex 2009). Lastly, restricting animals’ movement alters the network state 

dynamics of the hippocampus, and reduces not only the number of activated cells but 
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also their response selectivity (Thome et al. 2017; Aghajan et al. 2015; T. C. Foster, 

Castro, and McNaughton 1989). The findings from my dissertation and prior research 

underscore the importance of developing behavioral experiments that contain a broader 

range of elements from natural behaviors. These elements might include aspects like 

those that depend on the subject (e.g., free navigation, situated perception) and aspects 

that vary according to the situation (e.g., environmental sensory enrichment and temporal 

sequencing). Embracing a more naturalistic approach to behavior can potentially lead to 

a profound transformation in our understanding of the relationship between the brain and 

behavior. 

Appreciating the importance of spacetime features, active sensing, and body movements 

in memory processing, I devised a task in the Treehouse to assess memory in freely 

moving macaques, which incorporates a distinctive combination of features designed to 

closely mimic memory processes in natural settings. In this sequential item-in-context 

associations task: 1) events are embedded in unique spatial and temporal contexts within 

a 3D real environment, 2) each trial unfolds sequentially, 3) it necessitates flexible 

learning of contingent associations, and 4) it facilitates the testing of multiple item-context 

sets on distinct niches (e.g., sides of the Treehouse) within the same session. The 

monkeys adeptly learned multiple sets of 4-item sequences, including numerous unique 

item-context associations, with no apparent limitations related to interference-based 

capacity. While not discussed in this dissertation, I also evaluated their long-term memory 

of remote sets, which the animals learned 2-5 weeks prior to the retention test and had 

not encountered since. Both animal subjects exhibited significantly higher task 

performance (success probability) on early trials (first 10 trials) and overall, indicating 

memory savings for remote sets even after weeks of no exposure (unpublished data). 

The arbitrary nature and the spatiotemporal contingencies of associations in this task can 

put it in the category of event/episodic memories. Episodic memory was originally 

described as unique to humans (Tulving and E 1972), however, decades of research now 

demonstrate convincingly that animals share some of the core features of episodic 

memory in humans (Allen and Fortin 2013; Nicola S Clayton, Bussey, and Dickinson 

2003; Crystal 2021).  Although still a matter of debate, some of the more established 
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features are content and structure. Episodic memories include information about the 

(spatiotemporal) context of events integrated into a sequence of unified coherent 

representations, and these memories can be flexibly expressed to facilitate adaptive 

behavior in novel situations (Crystal 2021; Allen and Fortin 2013). 

Potential cases of episodic memory in nonhumans have been documented in a diverse 

range of species. Clayton and Dickinson operationally defined episodic memory as one 

that provides information about the 'what' of events as well as 'when' and 'where' they 

happened (N S Clayton and Dickinson 1998; D. Griffiths, Dickinson, and Clayton 1999). 

They showed that food-caching scrub jays can remember what foods they hid in which 

locations at which points in time providing the first evidence of what-where-when memory 

in nonhumans. Later a similar paradigm was used for freely moving rhesus monkeys. 

Although monkeys demonstrated long-term (~25hrs) memory for the type and location of 

food, they failed to demonstrate sensitivity to when they acquired that knowledge 

(Hampton, Hampstead, and Murray 2005). Other studies in primates that only addressed 

the where component, testing memory for food locations, provided evidence of long-term 

spatial memory revealing a capacity to remember the positions of accessible and non-

accessible baited sites for periods up to months. Similar what-where-when approaches 

have also been adapted to other species including humans (Allen and Fortin 2013). It has 

been argued that the integrated what-where-when approach may be overly restrictive and 

as such other forms of memory for events in context should also be considered episodic, 

such as memories involving a subset of the two (e.g., what-where). The what-where 

approach focuses on the memory for the spatial context of episodic memory and asks 

animals to remember specific what-where associations (i.e., specific items in specific 

places). In computer-based stationary item-in-context task paradigms which is a version 

of what-where, the “what” component refers to the presentation of specific objects, and 

where refers to the unique visual scene in the background and the task of the animal is 

to learn what object is rewarded on which visual context.   Using this paradigm, early 

studies demonstrated that monkeys can learn a list of what-where problems (Gaffan 

1994; Elisabeth A. Murray, Baxter, and Gaffan 1998). Our previous results also showed 

that monkeys can learn to associate objects embedded in more naturalistic images to 

reward (Chau et al. 2011; Hussin, Abbaspoor, and Hoffman 2022) and demonstrate 
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memory savings for these unique scenes after a year of no exposure (Hussin, Abbaspoor, 

and Hoffman 2022). Other studies in monkeys demonstrate their ability in learning spatial 

discrimination, object discrimination, object recognition, and relational tasks, all of which 

can be considered important prerequisites for episodic memory (Angeli, Murray, and 

Mishkin 1993; Hampton, Hampstead, and Murray 2004; Lavenex, Amaral, and Lavenex 

2006; Malkova and Mishkin 2003; E A Murray and Mishkin 1998; Parkinson, Murray, and 

Mishkin 1988). The findings of this dissertation add to this body of knowledge by showing 

that macaques are capable of learning distinct sets of arbitrary associations in face of 

great interference from other elements in the environment, flexibly switch their choices 

depending on the context they are situated in and remember this information after weeks. 

 

7. Chapter 2: Interspecies differences in hippocampal theta oscillation: the case 

for its role in active sensing 

 

In chapter two, I looked into the network state dynamics of macaque hippocampal CA1 in 

3 macaque monkeys and under different behavioral conditions. The results showed that 

in both head-restrained and freely-behaving subjects that were engaged in a 

hippocampal-dependent memory-task, beta2/gamma oscillations dominated the 

oscillatory mode of the CA1. In contrast, during offline states of rest or sleep, the dominant 

gamma oscillations were replaced by a strong theta activity. It is noteworthy that I found 

bouts of theta activity also in awake behaving macaques, but these theta episodes were 

less prevalent and weaker than theta during offline states. Consistent with this behavioral 

segregation, cross-frequency coupling also revealed negative (or no) correlation between 

these two rhythms. 

I also showed that spiking pattern of hippocampal neurons phase lock to the local 

oscillations peaking at theta (3–10 Hz), beta2/slow gamma (20-35Hz), and high-

gamma/ripple band (60-150Hz). Because spike-field coherence was measured during 

behavior, the strong peak on the theta frequency band was surprising; however, I further 

demonstrated that the spike-theta coherence partially arise from the non-oscillatory slow 

component of sharp-wave ripples not theta rhythms. The same phenomenon has also 
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been observed in the human hippocampus (Tong et al. 2021). Because in primates, the 

negative deflection of SWRs contain spectral power within low frequencies (2-10Hz, 

(Tong et al. 2021; Leonard et al. 2015)), it is imperative to account for these non-

oscillatory events before reporting the strength and prevalence of theta activity. In 

primates, duration of reported bouts of theta during freely-moving behavior is on average 

~400ms (~3 cycles of a 8Hz oscillation (Abbaspoor, Hussin, and Hoffman 2023; M 

Aghajan et al. 2017) which roughly correspond to the duration of negative deflections 

accompanying SWRs (Abbaspoor, Hussin, and Hoffman 2023). It is important to note that 

SWRs also occur during active exploration/memory retrieval in primates (Leonard et al. 

2015; Leonard and Hoffman 2017; Norman et al. 2019, 2021). This suggest that some of 

the previously reported power in theta band might have been contaminated with the power 

in non-oscillatory negative deflections. 

Previously, several other studies have investigated the oscillation modes during awake 

and sleep in macaques (Talakoub et al. 2019; Takeuchi et al. 2015). In chapter 2, I built 

upon those reports and extended them. First, I performed the recordings in a targeted 

part of the hippocampus (pyramidal layer of CA1), in freely-moving macaques that were 

engaged in a memory task. These elements are important because, as discussed in the 

introduction, the strength of theta rhythms changes as a function of layer, area of 

recording, and behavior. Strongest theta in rats/mice is recorded during running, and 

restraining these animals can hinder or abolish theta activity (T. C. Foster, Castro, and 

McNaughton 1989). Therefore, it was imperative to characterize the theta dynamics in 

moving macaques. For recordings, we have used microelectrodes that were also used in 

rodents for such investigations. This is important because it has been argued that 

differences in theta rhythms in primates and rodents might be due to methodological 

differences in recordings (impedance, macro vs micro (Ulanovsky and Moss 2007)). 

Differences in analytical methods can lead to changes in results and therefore leading to 

unfair comparisons. As such, to characterize the oscillations and also to make a fair 

comparison, I also used the same methods that were previously used in rodent studies. 

Finally, we also recorded spiking activity. Genuine strong oscillations usually entrain local 

spiking activity. We showed that spiking activity in hippocampal neurons of macaques, in 

contrast to rats, doesn’t show theta rhythmicity. A finding that supports the interpretation 
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that theta activity might not readily be engaged in processes that were described in 

rodents. So, what is theta activity doing in primates? I think to answer this question, we 

should put the primate findings in the context of cross-species analysis. 

A comparative analysis across various animal species unveils disparities in the 

rhythmicity, power, prevalence, and behavioral contingencies of hippocampal theta 

oscillations. Different animal species exhibit specialized and distinct forms of locomotion 

and exploration strategies. In natural behavior, motor behaviors associated with 

information gathering play a crucial role in the active sensing process, defined as actively 

locating and acquiring sensory information using a motor sampling routine (Schroeder et 

al. 2010). The role of hippocampus in learning and memory have been linked to various 

types of active sensing across animal species (Fotowat et al. 2019; Meister and Buffalo 

2016; Zhu, Lakshminarasimhan, and Angelaki 2023; Bland and Oddie 2001). Is it 

possible that variations in theta oscillations might, at least in part, be accounted for by 

differences in the expression of behavior, active sensing, and cognitive demands? 

Here, I will examine the research on hippocampal theta oscillations across various animal 

species, aiming to provide a context for the findings in the current dissertation. I will draw 

two primary conclusions: 1) during active behavioral states, theta rhythms are associated 

with different forms of active sensing across species, and 2) the mechanisms underlying 

theta activity during sleep or immobility may differ from those observed during 

wakefulness. 

 

7.1 Rat/Mouse 

Rats and mice are nocturnal animals with poor visual abilities that heavily rely on their 

proximal senses, namely olfaction and somatosensory sensations (Kaas, Qi, and 

Stepniewska 2022; Burn 2008). Their exploration of the environment involves a 

combination of sensory activities, such as sniffing for acquiring odor information, whisking 

to gather tactile information, and walking (Ranade, Hangya, and Kepecs 2013). These 

activities show strong synchronization (Ranade, Hangya, and Kepecs 2013) and their 

regularity all fall within the frequency range of the hippocampal theta rhythm (Ranade, 

Hangya, and Kepecs 2013; Berg, Whitmer, and Kleinfeld 2006; Grion et al. 2016; Joshi 
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et al. 2023). As have been posited before (Komisaruk 1970) sniffing and whisking show 

a strong phase synchronization with ongoing theta rhythms in the hippocampus, and this 

relationship can vary as a function of learning state (Macrides, Eichenbaum, and Forbes 

1982) or environmental-behavioral conditions (Grion et al. 2016; Berg, Whitmer, and 

Kleinfeld 2006).  

A recent rat study addresses the question of whether hippocampal local dynamics can be 

influenced by or coordinated with the detailed structure of locomotor processes. The 

findings of this study reveal a strong synchronization between the ongoing steps of the 

animals and various aspects of hippocampal dynamics, including hippocampal theta 

rhythms, multiunit activity (MUA), and the microstructure of spatial representations. 

What's particularly interesting is that this coordination swiftly adapts to changes in 

cognitive demands. These results strongly indicate the existence of a dynamic 

coordination between the cognitive representations and the peripheral motor processes 

(Joshi et al. 2023). 

Overall, these findings implies that the coherence between sensory-motor systems and 

hippocampal theta rhythms is particularly enhanced during periods when the rat is actively 

gathering sensory information. This coherence might, in turn, improve the efficiency of 

integrating stimulus information into memory and decision-making centers .  The 

dynamics synchronization between movement-related active sensing parameters and 

hippocampal local oscillations have been reported in other species. 

 

7.2 Bats 

Echolocating bats have two distinct modes of exploratory behavior: (i) "exploration without 

locomotion," characterized by low velocity and the use of echolocation for environment 

exploration while nearly stationary, and (ii) "exploration by locomotion," where the bat is 

actively moving and employs lower call rates. Hippocampal recordings in bats reveal the 

presence of a clear theta oscillation, peaking between 5-7 Hz, but this phenomenon is 

exclusively observed during the first behavioral mode, which corresponds to echolocation. 

Theta oscillations in bats manifest in short (1-2 seconds), intermittent bursts with 

significant amplitudes and exhibit a depth profile similar to that observed in rodents, with 
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increasing theta amplitude toward the hippocampal fissure. Interestingly, theta bouts can 

also be recorded during sleep; however, the power spectrum analysis shows no 

prominent theta spectral peak when computed over the entire sleep session. This 

suggests that theta oscillations are only sporadically present during sleep and occupy a 

relatively small percentage of the sleep duration. Neuronal firing rates exhibit a slight 

reduction during theta episodes compared to non-theta periods, although there is a 

discernible moderate influence of theta bouts on neural firing patterns (Ulanovsky and 

Moss 2007). 

 

7.3 Ferret 

A recent study explored hippocampal theta rhythms in rats and ferrets under comparable 

behavioral situations (Dunn et al. 2022). In ferrets, prominent hippocampal theta waves 

are observed during locomotion, exhibiting a depth profile and speed/power (frequency) 

relationship similar to those observed in rats. However, there are notable differences in 

the characteristics and behavioral associations of theta activity in ferrets when compared 

to rats and mice. Firstly, the frequency of theta waves during locomotion in ferrets (4 – 7 

Hz) is lower than the typical range seen in rats (5 – 12 Hz). Secondly, in rats, theta 

oscillations transition into large irregular activity during periods of immobility, whereas in 

ferrets, hippocampal theta oscillations remain robust during both movement and 

immobility. Significantly, theta oscillations are stronger during immobility periods 

associated with rewards, in contrast to holding or spontaneous immobility outside of the 

task, and this effect is primarily observed in the SLM layers of the hippocampus. 

Interestingly, error trials exhibit a similar pattern of peak range values across the probe, 

suggesting that reward consumption may not be necessary for the observed 

enhancement. 

Theta oscillations during immobility (hold or reward) and movement display distinct 

features in ferrets. While theta activity during movement exhibits a characteristic sawtooth 

shape, similar to rats, immobility-related theta oscillations lack the sawtooth waveform 

and display a more sinusoidal pattern. Moreover, the administration of atropine 

suppresses theta oscillations during immobility, with significant reductions in peak range 
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observed in all animals and regions around the cell layer. However, during movement, 

atropine has no effect on the prevalence of theta oscillations. Furthermore, immobility-

related theta during both the Hold and Reward epochs appears to be generated from 

common mechanisms. Power spectral densities (PSDs) in the Reward and Hold epochs 

do not display the harmonic peaks evident in Run epoch PSDs, suggesting that the 

oscillations during both Hold and Reward epochs have similar waveforms. Additionally, 

the application of atropine abolishes theta during both Hold and Reward epochs, with 

significantly reduced peak range values for both epochs.  

The findings of this research are important because they show that, even under similar 

behavioral conditions, differences in the relationship between theta activity and behavioral 

states exist across species. 

 

7.4 Sheep 

During periods of alert wakefulness in sheep, the hippocampus exhibits a prominent theta 

oscillation ranging from 4 to 10Hz, alongside gamma band oscillations. Notably, the 

power of theta oscillations is more pronounced during phases of higher locomotion speed 

compared to slower moments. However, when examining the entire spectrum of 

movement speeds, a regression analysis of theta power only revealed weak correlations 

with speed or acceleration. Additionally, there is a robust phase-amplitude coupling 

between the theta frequency band and high gamma range (55-90Hz), but this coupling is 

not observed with low gamma frequencies (30-50Hz). It's important to note that the 

strength of this relationship depends on the speed of locomotion. While the study 

recorded a small population of cells, the majority of them exhibited synchronization with 

theta oscillations. An intriguing finding was the variability in the activation of theta-

modulated cells during different types of movements. For instance, when the sheep was 

guided through the arena with its head directed upward, a theta-modulated neuron 

displayed preferential activity. In contrast, when the same path was traversed with the 

head facing forward or downward, the cell remained silent (Perentos, Krstulovic, and 

Morton 2022). 
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7.5 Nonhuman and human primates 

Primates possess high acuity color and stereovision, granting them the ability to perceive 

distant objects in during daylight (Kaas, Qi, and Stepniewska 2022). Consequently, their 

environmental exploration primarily relies on visual inputs, utilizing the specialized 

mechanism of saccadic eye movements, the rapid and repetitive displacement of a high-

acuity region of the retina to sample different locations in the visual environment (Fuchs 

1967). 

In macaques, the initiation of saccadic eye movements is linked to a transient alignment 

of theta (3–8 Hz) rhythms (Hoffman et al. 2013; Jutras, Fries, and Buffalo 2013; Doucet 

et al. 2020). This phase clustering (PC) phenomenon varies depending on the specific 

task and the visual stimuli present in the field of view (Hoffman et al. 2013; Doucet et al. 

2020). For instance, saccades made on a solid gray background exhibited significant PC 

values at approximately 4 Hz, while saccades towards specific targets predominantly 

showed significant PC values in the 4 to 8 Hz range. Additionally, saccade characteristics 

were found to correlate with the phase and amplitude of local field potentials (LFPs): 

saccade direction correlated with delta (≤ 4 Hz) phase, and saccade amplitude correlated 

with theta (4 – 8 Hz) power (Doucet et al. 2020). The reliability of this phase reset is 

indicative of subsequent recognition (Jutras, Fries, and Buffalo 2013). Conversely, 

frequencies in the alpha/beta range (8 – 16 Hz) exhibited higher clustering around the 

onset of fixations (Doucet, Gulli, and Martinez‑Trujillo 2016). These findings suggest that 

hippocampal LFPs are modulated at specific frequencies during saccade-fixation 

sequences, influenced by both sensory and motor components. However, despite the 

synchronization between step timing and hippocampal theta activity in rats, the frequency 

of PC is not a direct consequence of saccade rate (Jutras, Fries, and Buffalo 2013; 

Hoffman et al. 2013). Interestingly, single-unit neuronal activity increased only at the 

onset of saccades directed at a visual target, not during saccades to a solid background 

(Doucet et al. 2020). This implies that saccade-related signals, likely originating outside 

the hippocampus, influence the phase of LFPs in the hippocampus without necessarily 

altering the firing rate of individual neurons. It's worth noting that a previous study 

demonstrated changes in hippocampal unit activity during spontaneous saccadic eye 

movements in complete darkness (Ringo et al. 1994). Intriguingly, similar saccadic 

https://sciwheel.com/work/citation?ids=14887124&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5088308&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5088308&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5064276,282624,7241641&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5064276,282624,7241641&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5064276,7241641&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5064276,7241641&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7241641&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=282624&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1458252&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=282624,5064276&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=282624,5064276&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7241641&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15552866&pre=&suf=&sa=0&dbf=0


146 
 

modulations were also observed in the medial septum (S Sobotka and Ringo 1997). 

Finally, delivering hippocampal stimulation immediately after a saccade in monkeys 

resulted in larger late components in the local evoked potentials of extrahippocampal 

areas compared to stimulation without a saccade, suggesting that saccadic modulation 

can also alter functional connectivity between the hippocampus and other brain regions 

(Stanislaw Sobotka, Zuo, and Ringo 2002). 

More recently the relationship between hippocampal theta rhythms, free navigation, and 

saccadic eye movements have been addressed in freely moving macaques (Mao et al. 

2021). Power spectral analysis during free navigation revealed two peaks at 1-4Hz and 

12-30Hz suggesting that rodent-like theta (4-10Hz) is not the dominant mode of oscillation 

in freely moving macaques. This is consistent with previous reports (Talakoub et al. 2019) 

and the results of the current dissertation (Abbaspoor, Hussin, and Hoffman 2023). 

Despite this, intermittent brief bouts of theta activity were recorded during the movement 

onset and during saccadic eye movements. Hippocampal LFP consistently showed 

modulation linked to saccade events. Consistent with studies in headfixed monkeys 

(Doucet et al. 2020), theta band power was positively correlated with saccade magnitude. 

Based on these findings, it was suggested that the relationship between theta activity and 

saccade in macaques may be analogous to that between theta and locomotion in rodents. 

In addition, although a large number of neurons showed spike-LFP phase locking with 

theta activity, theta phase precession was only present in a minority of cells (12/599 

neurons for low theta and 13/599 neurons for theta), which were all tuned to various 

spatial variables (Mao et al. 2021). 

Much like the findings in macaques, humans also exhibit significant hippocampal phase 

clustering within the theta frequency range (4-8 Hz) following the onset of visual images 

or saccades (Katz et al. 2020). This phenomenon is accompanied by modulations in 

single-unit neuronal activity both before and during the saccade (Katz et al. 2022; 

Andrillon et al. 2015). These modulations are characterized by an increase in inhibition, 

leading to reduced firing rates in potential pyramidal cells and increased firing rates in 

potential inhibitory cells (Katz et al. 2022). The amplitude of the post-saccade event-

related potential (ERP) is correlated with the magnitude of firing rate reduction in putative 
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inhibitory cells during the peri-saccadic period (Katz et al. 2022). These observations 

suggest the presence of a corollary discharge signal that reaches the hippocampus, 

potentially activating parvalbumin interneurons, which, in turn, effectively inhibit pyramidal 

cells, resulting in the phase resetting of membrane potential oscillations (Katz et al. 2022; 

Martinez‑Trujillo 2022). 

Moreover, the ERPs associated with saccades and image onsets exhibit distinct 

characteristics, with the response to image onset peaking in a lower-frequency range 

(delta, 1-3 Hz) (Katz et al. 2020). The population of neurons modulated by image onset is 

separate from those influenced by saccade-related events and the neurons responsive 

to image onset show a peak increase in firing rates a considerable time after the 

modulation observed in saccade-related units (Katz et al. 2022). This indicates that, 

within the medial temporal lobe (MTL), the units processing visual information following 

image onset differ from those responding to saccade-related information. If the peri-

saccade modulation were solely due to extraretinal signals, it should persist in the 

absence of light. Prior research with humans and non-human primates suggests that 

saccade-related ERPs and neuronal activity modulation can be observed in darkness or 

on blank screens (Andrillon et al. 2015). 

Further evidence supporting the coordination of movements related to active sampling 

and hippocampal oscillations comes from studies on marmosets. Marmosets frequently 

execute rapid head-gaze shifts to explore their visual environment. When aligning local 

field potentials (LFPs) with the peak velocity of these head movements, the 4-15 Hz 

frequency range, with a peak in the theta frequencies (4-10 Hz), is most prominent around 

the onset of head movement. This theta phase-resetting is accompanied by the 

modulation of neuronal firing in both potential interneurons and pyramidal cells. 

Differences in activation latencies and the proportion of various modulation types suggest 

that phase resetting may be causally linked to interneuron activation, followed by a range 

of modulations in pyramidal cells (Martinez‑Trujillo et al. 2023). 

 

 

https://sciwheel.com/work/citation?ids=13983881&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13983881,15554428&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13983881,15554428&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11114929&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13983881&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1477536&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15505351&pre=&suf=&sa=0&dbf=0


148 
 

7.6 Conclusion 

 

In 1972, Johnathan Winson published a paper in which he conducted a review of the 

behavioral correlates of hippocampal theta activity in various species based on the data 

available at that time. He concluded that "It is suggested that the plethora of theories and 

the contradictions that have arisen reflect a core difficulty in the interpretation of the data 

in this field due to the implicit assumption that there must be a correlation of theta activity 

with specific behaviors that will hold across species. It is concluded that this assumption 

is untenable and that the data indicate that there is a distinct set of theta-correlated 

behaviors for each species. These behaviors may correspond to important natural 

behaviors of the species." (Winson 1972)”. 

In this context, I have examined the characteristics and behavioral connections of 

hippocampal theta rhythms across different species, taking into account the latest 

research findings. This comparative approach yields several key findings: 1) theta activity 

is consistently observed in the hippocampus of all recorded mammalian species, 2) the 

properties of theta rhythm, including its frequency, power, waveform, and prevalence, 

exhibit significant diversity across species, 3) more importantly, on the surface, the 

behavioral contingencies of theta rhythms seem to be distinct across species. 

Variations in behavioral training approaches, analytical methodologies, and data 

recording methods pose challenges when attempting to make a fair comparison across 

studies. It's important to acknowledge that some of the inconsistencies in findings may 

be due to these variations. However, even when experiments are conducted under 

identical conditions, distinctions in the correlation between theta activity and behavioral 

states persist among different species (Dunn et al. 2022). The question then arises 

whether we can identify shared behavioral principles that could help explain the observed 

differences in theta across species? 

Traditionally, influenced by extensive research on rodents, it was theorized that theta 

rhythms is linked to spatial navigation and memory processes (encoding and retrieval) 

(György Buzsáki and Moser 2013). However, findings from different species challenge 

this perspective on theta activity. For instance, many spatial navigation and memory 
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models are built on the assumption of continuous theta oscillations. Yet, evidence from 

bats, nonhuman, and human primates indicates that theta oscillation occurs in brief bursts 

(<2sec), and accounts for less than 15% of the awake recording time. It seems unlikely 

that memories are encoded and retrieved only a couple of times a minute. Thus, in these 

species, models of oscillatory encoding and retrieval of memories via the theta cycle may 

not be applicable (Michael E Hasselmo, Bodelón, and Wyble 2002). 

Furthermore, in some species, theta activity is recorded during awake immobility (e.g. 

ferrets, cats and restrained primates during visual search), and in some of the species 

theta doesn’t show correlation with speed/acceleration (e.g. sheep) and in others it is too 

infrequent during free navigation (e.g. primates), to be significantly involved in their 

navigational mechanisms. Nevertheless, despite differences in the dynamics of theta 

rhythms, the presence of place cells has been documented in some nonrodent species 

including bats (Ulanovsky and Moss 2007), nonhuman primates (Courellis et al. 2019; 

Hori et al. 2003; Mao et al. 2021; Hazama and Tamura 2019), and humans (Poo et al. 

2016). Additionally, in line with the advanced distant vision of primates, a substantial 

population of spatial view cells has been observed in macaques (Rolls 1999), marmosets 

(Martinez‑Trujillo et al. 2023), and humans (Rolls 2023). These cells exhibit maximum 

activity when the animal focuses on a specific area of the environment. The discovery of 

place/spatial view cells in the hippocampus of these species supports the idea that 

hippocampal pyramidal neurons play a role in spatial processing. However, in non-rodent 

species like bats and nonhuman primates, the interaction between theta oscillations and 

place-cell activity in the hippocampus of freely moving animals is rather limited and weak. 

Hippocampal neurons can encode self-position without a significant influence from this 

oscillation (Courellis et al. 2019; Eliav et al. 2018; Ulanovsky and Moss 2007). Based on 

these findings, it has been suggested that two aspects of spatial navigation should be 

distinguished: exploration and self-position. Exploration pertains to actions related to 

building a mental representation of the environment, whereas self-position refers to 

determining one's location within that environment (Courellis et al. 2019). In the case of 

nocturnal burrowing animals like rodents, these two aspects of navigation are closely 

linked because there are fewer distant sensory cues available to construct a spatial map 

before moving through it. Notably, in rodents, the relationship between these neural 
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signals is not fixed but influenced by behavioral characteristics that may reflect the 

differentiation between exploration and self-position. In species where these two 

navigational components are less temporally intertwined, the association between theta 

oscillations and place cell activity is also weaker. For instance, in primates, the typical 

pattern is to visually explore the surroundings before actively moving through them. 

Based on the emerging comparative data regarding hippocampal theta oscillations, a 

more comprehensive framework can be formulated, wherein the variations in theta 

rhythms among different species are influenced by how these animals utilize their sensory 

systems to explore the environment. Across species, a strong correlation appears to exist 

between recorded hippocampal theta rhythms and active sensory engagement. While 

sensory processing was once viewed as a passive mechanism where biological receptors 

like photoreceptors and mechanoreceptors convert physical stimuli into neural signals, 

recent discoveries suggest otherwise (Schroeder et al. 2010). It's becoming clear that 

most sensory processing is actually an active process, primarily shaped by motor and 

attentional sampling routines. Due to the rhythmic nature of these motor routines and their 

synchronization with ambient rhythms in sensory regions, sensory input tends to exhibit 

a rhythmic pattern. Such active rhythmic sampling of the environment might coordinate 

with ongoing brain rhythms or influence their expression. Given the distinct structural 

organizations of bodies across species, active sensing involves unique sensory-motor 

processes in different animals. As a results, if hippocampal theta rhythms are associated 

with or dependent on active sensing in animals, theta activity is expected to emerge 

during various behavioral expressions and specific conditions. But generally, during 

awake states, we might expect maximal theta activity when sensory information arrives 

at high rates or changes rapidly. 

The above explanation appears to conflict with certain observations, including the findings 

of the present dissertation, which indicate that in primates, theta activity becomes a 

prominent rhythmic oscillation during sleep periods when the influence of sensory 

systems is reduced. It's plausible that the mechanisms generating sleep-associated theta 

rhythms differ from those responsible for theta rhythms during alert wakefulness. In 

rodents, hippocampal theta oscillations have been categorized into two types: type 1, 

https://sciwheel.com/work/citation?ids=376684&pre=&suf=&sa=0&dbf=0
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termed 'atropine-resistant' theta, which occurs during locomotion, and type 2, labeled 

'atropine-sensitive' theta, which is present during immobility in response to sensory stimuli 

(Kramis et al. 1975, Robinson, T.E. 1980, Bland et al. 2001). Type 2 theta has been 

proposed to play a role in sensory processing relevant to the initiation and maintenance 

of voluntary motor behaviors (Bland et al. 2001). Similarly, recent observations in ferrets 

revealed that atropine disrupted theta during immobility while leaving theta during 

locomotion unaffected. It's conceivable that a similar differentiation between different 

types of theta coexists in the primate hippocampus through different mechanisms. 

 

8. What shall the primate hippocampus do in the absence of continuous theta 

activity? 

 

The findings of chapter 2 show that during awake active behavioral states, macaque CA1 

is dominated by supratheta oscillations such as beta and gamma. Gamma oscillations 

are involved in spike-time dependent plasticity, intra-areal dynamic reconfiguration, and 

cell assembly formation, all of which are postulated to be critical for memory formation. I 

will discuss how gamma can engage in these operations and how these operations are 

linked to memory. 

 

8.1 Gamma and episodic memory 

 

Numerous studies across species indicate that gamma oscillations in the hippocampus 

(30 – 90 Hz) play a crucial role in both the formation and retrieval of memories. The 

connection between memory and gamma oscillations can be generally classified into two 

categories: 1) enhancement of gamma oscillation power or alterations in its 

characteristics during memory formation or retrieval, and 2) memory-related modulation 

of the intra- and inter-areal synchronization of gamma oscillations. I will delve into the 

findings of several of these studies. 
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8.1.1 Local hippocampal gamma oscillations and memory 

 

In rats, distinct subtypes of gamma oscillations have been recorded. It has been 

suggested that entorhinal cortex-associated fast gamma oscillations in the SLM of CA1 

facilitates memory formation, while CA3-indued slow-gamma oscillations in the SR can 

support memory retrieval (Colgin and Moser 2010).  Several pieces of evidence support 

these theories. These studies have collectively discovered: 1) an increase in the power 

of CA3-slow and EC-fast gamma during moments indicative of memory retrieval and 

encoding (M. Takahashi et al. 2014; Cabral et al. 2014), 2) variations in the phase-

amplitude coupling between local theta rhythms and slow and fast gamma during retrieval 

and encoding (Tort et al. 2009; Shirvalkar, Rapp, and Shapiro 2010), 3) distinct spatial 

sequence coding during slow and fast gamma rhythms, with slow gamma power and 

phase locking of spikes increasing during prospective coding, and fast gamma power and 

phase locking increasing during retrospective coding (Bieri, Bobbitt, and Colgin 2014; 

Zheng et al. 2016). Additionally, Scopolamine, a drug that impairs memory encoding but 

not memory retrieval, has been observed to reduce fast gamma rhythms (~60–120 Hz) 

while leaving slow gamma rhythms (~20–40 Hz) unaffected (Newman et al. 2013).  More 

recently, it has been shown in a mouse model of Alzheimer’s disease, that reduced slow 

gamma amplitude, and phase-amplitude coupling to theta oscillations coincide with 

spatial memory loss. Restoring the slow gamma oscillations in the hippocampus by 

frequency-specific (40Hz but not 80Hz) optogenetic stimulation of medial septal 

parvalbumin neurons rescued spatial memory in mice (Etter et al. 2019). It's worth noting 

that there are also studies with results that don't align easily with the idea of slow, and 

fast gamma serving distinct memory functions (Yamamoto et al. 2014; Trimper, 

Stefanescu, and Manns 2014; Kemere et al. 2013). 

In monkeys, gamma-band LFP power is enhanced during successful memory formation 

(Jutras, Fries, and Buffalo 2009). Additionally, the synchronization between local spiking 

activity and gamma oscillations strengthens as a function of repetition in a memory task 

(Montefusco‑Siegmund, Leonard, and Hoffman 2017), and this modulation during 

encoding predict greater subsequent recognition memory performance (Jutras, Fries, and 

Buffalo 2009). 
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Intracranial studies of human memory also report increases in the power of gamma 

frequencies during successful compared with unsuccessful memory operations (B. J. 

Griffiths et al. 2019; Herweg, Solomon, and Kahana 2020). This is sometimes associated 

with a decrease in theta power. (Fellner et al. 2019; Greenberg et al. 2015; Herweg, 

Solomon, and Kahana 2020; Long and Kahana 2015; Sederberg et al. 2003, 2007; B. C. 

Lega, Jacobs, and Kahana 2012; Burke et al. 2014; Weidemann et al. 2019). 

 

8.1.2 Interareal gamma phase synchronization and memory: 

 

Along with changes in the power of hippocampal gamma oscillations, elevation in inter-

areal gamma-band phase synchronization has also been reported in rats, monkey, and 

human (Fell et al. 2001). 

Recently, we recorded neural activity in the hippocampus and retrosplenial cortex of 

macaques as they visually selected targets in year-old and newly acquired object-scene 

associations. We found that although hippocampal activity was unchanging with memory 

age, remote retrieval was associated with decreased gamma-band synchrony between 

the hippocampus and each neocortical area (Hussin, Abbaspoor, and Hoffman 2022). 

Another study found functional differences and frequency-specific interactions between 

HPC and PFC of monkeys learning object pair associations. Theta-band HPC-PFC 

synchrony was stronger after errors, was driven primarily by PFC to HPC directional 

influences and decreased with learning. In contrast, alpha/beta-band synchrony was 

stronger after correct trials, was driven more by HPC and increased with learning   (Brincat 

and Miller 2015). 

In humans, neocortical alpha/beta (8 to 20 Hz) power decreases reliably precede and 

predict hippocampal “fast” gamma (60 to 80 Hz) power increases during episodic memory 

formation; during episodic memory retrieval, however, hippocampal “slow” gamma (40 to 

50 Hz) power increases reliably precede and predict later neocortical alpha/beta power 

decreases (B. J. Griffiths et al. 2019). 
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The reviewed evidence suggests that distinct forms of gamma oscillation, and other types 

of supra-theta oscillations such a beta oscillation, can be found within the hippocampal, 

each of which might have a complementary role in the neural processes of memory in 

primates. What are the mechanisms through which gamma oscillations can facilitate the 

formation and expression of memories? 

 

8.2 The mechanistic link between gamma oscillations and episodic memory 

 

8.2.3 Gamma oscillations and spike timing-dependent plasticity 

 

Our ability to form memories hinges upon long-term potentiation of synaptic transmission 

in the hippocampus, a process through which synaptic connections between two neurons 

are strengthened (Bliss and Collingridge 1993; Lynch 2004; Malenka and Nicoll 1999). 

Spike timing-dependent plasticity (STDP) is a specific form of synaptic plasticity whereby 

the synaptic modification depends on (i) a presynaptic spike leading to the release of 

presynaptic glutamate, which promotes the opening of postsynaptic NMDA receptors; and 

(ii) the backpropagation of a postsynaptic spike leading to the unblocking of the Mg2+ 

block from the same postsynaptic NMDA receptors (Bliss and Collingridge 1993; 

Caporale and Dan 2008; H Markram, Gerstner, and Sjöström 2012). It has been 

suggested that the presynaptic action potential must precede the postsynaptic action 

potential by ~10–20 ms for STDP to occur (H Markram et al. 1997; Levy and Steward 

1983; Bi and Poo 1999); please note that this is mostly a crude estimate, the exact 

temporal window can depend on cell types, affected dendritic compartment, and brain 

area).  Although STDP depends upon correlated pre- and postsynaptic spiking, a solitary 

presynaptic spike is unlikely to induce postsynaptic spiking; Instead, convergent input is 

required (Bliss and Collingridge 1993; Sjöström, Turrigiano, and Nelson 2001).  

Gamma oscillations can establish the necessary conditions for STDP. Their cycle 

duration falls within the optimal time frame for STDP. Furthermore, gamma oscillations 

can enhance the coordination of convergent inputs by synchronizing the firing of multiple 

presynaptic neurons, leading to a more potent depolarizing effect on the target 
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postsynaptic neuron than what would occur with isolated firing. Although theoretically, 

oscillations of any frequency could synchronize neuronal activity, gamma oscillations 

stand out as particularly suitable. They provide a relatively brief window of excitability, 

ensuring near-perfect synchronization of neuronal firing, while also featuring oscillatory 

cycles of adequate length to allow neurons to return to their resting state before the next 

excitatory phase of the oscillation (B. J. Griffiths and Jensen 2023). In vitro studies 

demonstrate that in neuronal networks that are engaged in high-frequency oscillations, 

synaptic modifications remain highly sensitive to the phase relation between periodic 

presynaptic and postsynaptic activity. When postsynaptic neurons receive synchronized, 

oscillatory inputs, synapses undergo long-term potentiation (LTP) when EPSPs coincided 

with the peaks of the oscillations but exhibited long-term depression (LTD) when EPSPs 

coincided with the troughs (Wespatat, Tennigkeit, and Singer 2004). These results 

suggest that precise phase synchronization of discharges in distributed networks is critical 

for the direction of synaptic modification. We showed that similar to previous studies, in 

the hippocampal CA1, the coupling between local field potential (LFP) oscillations and 

the spiking of single neurons can be highly precise across cell types. Neural networks 

simulation show that such precise spike-LFP coupling can be achieved, in the face of 

heterogeneous membrane properties and total input, under quite general conditions by 

the combination of STDP, and neuronal ensemble oscillations invariant to differences in 

initial excitation (Muller, Brette, and Gutkin 2011). More direct support for the idea that 

gamma oscillations may play an important role in hippocampal function comes from the 

finding that experimentally induced gamma oscillations produce a prolonged 

enhancement of recurrent excitatory connections between CA1 pyramidal neurons 

(Whittington et al. 1997). These observations suggest that gamma oscillations may be an 

important factor determining the temporal activity relationships that are critical for the 

function synaptic plasticity which further can support memory. 
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8.2.4 Gamma oscillations and dynamic coordination 

 

Perception and cognition rely on context-dependent selection of relevant inputs and the 

control of flexible interareal brain interactions on behavioral time-scales that are faster 

than structural synaptic changes. In particular, strength and direction of influences 

between areas, must be reconfigurable even when the underlying structural connectivity 

is fixed (Varela et al. 2001; Bressler and Kelso 2001). 

Simulations of interacting circuit models with oscillatory behaviors and fixed structural 

connectivity demonstrate that the same structural motifs can produce a variety of effective 

motifs with distinct strengths and directions of connectivity organized into different families 

of interactions (Battaglia et al. 2012). Due to nonlinearity in dynamics, the symmetrical 

relationships between the nodes in the structural system can be disrupted, resulting in 

dynamics with multiple stable states. This dynamic multi-stability enables the controlled 

transition between effective motifs within the same family without requiring any structural 

modifications. This means that, without making modifications to the long-rage excitatory 

or local connections, the flow of information can rapidly switch from A→B to B→A. Shifting 

between effective motifs belonging to different families, however, cannot happen without 

changes in the strength of the delay of inter-areal couplings, even if the overall topology 

of the underlying structural motif needs to remain unaltered. Such rapid dynamic 

reconfiguration of functional connectivity can facilitate the regulation of both the efficiency 

and the directionality of information transfer in short-time scales which is critical for 

cognition. 

Experimental work on such rapid reconfiguration comes from observations that 

information flow can change around the time of high-frequency oscillations. For example, 

in hippocampus, during sleep, there is a rapid cortical–hippocampal–cortical loop of 

information flow around the times of SWRs (Rothschild, Eban, and Frank 2017). 

Patterned spiking in auditory cortex (AC) precedes and predicts the subsequent content 

of hippocampal activity during SWRs, while hippocampal spiking patterns during SWRs 

predict subsequent AC activity. It has been proposed that such loop in information flow 
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can bias the content of experiences being replayed and thus consolidated into long-term 

stores.  

In the primary visual cortex, the local phase of gamma-band rhythmic activity exerts a 

stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially 

separated populations within the primary visual cortex. The relationships between gamma 

phases at different locations, often described as phase shifts, corresponded to a stimulus-

modulated propagation of gamma-band waves along spatial directions that maximized 

information transfer. Transient changes in the spatial arrangement of phase patterns 

linked to the direction of gamma wave propagation, coinciding with an increase in the 

amount of information flowing along the instantaneous direction of the gamma wave. 

These effects were specific to the gamma-band frequency. Based on these, it was 

proposed that the evolving relationships between gamma phases at different sites may 

serve as a potentially causal mediator in the dynamic reconfiguration of functional 

connections (Besserve et al. 2015). 

Several concerns have been raised with regard to the function of gamma oscillations in 

dynamic reconfiguration and rerouting of information. Gamma synchronization occurs in 

brief episodes lasting approximately around 100 milliseconds, and these oscillatory 

episodes are not autocoherent (phase conserving) and exhibit strong characteristics of 

stochasticity (Burns, Xing, and Shapley 2011; Xing et al. 2012). As such, gamma activity 

cannot be used as a clock meaning that neuronal networks cannot use gamma activity 

as a regular temporal signal on which to base time-dependent calculations. This result 

calls into question theories of “binding” by coherence using gamma-band oscillations that 

rely on regular, rhythmic, or autocoherent oscillations (Burns, Xing, and Shapley 2011). 

Furthermore, interareal synaptic transmission delays are long and diverse  and  may  

counteract  reliable phase synchronization. Lastly, the frequency of the transient 

oscillatory bursts fluctuates over time and varies between recording sites (Ray and 

Maunsell 2010) making effective phase synchronization difficult. Given these factors, it 

would initially appear unlikely for intra-areal gamma bursts to spontaneously align with 

each other. 
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These concerns were effectively addressed through a series of simulations using various 

circuit models (Palmigiano et al. 2017). These models naturally exhibited significant 

variability in terms of power, frequency, and timing, while also encompassing crucial 

forms of heterogeneity, including the presence of diverse transmission delays. Within 

these models, specific parameters were fine-tuned to produce collective gamma 

oscillations that were short-lived, lasting only a few cycles, weakly synchronized, and 

characterized by stochastically drifting frequencies. Notably, these features closely 

resembled the characteristics of local field potentials observed in behaving animals. 

When multiple circuits with these defined features were interconnected by long-range 

excitatory connections, the resulting large-scale dynamics spontaneously generates 

temporally co-occurring bursts of synchrony. The drifting frequencies of each region 

harmonized with one another, leading to transient phase-locking within the gamma bursts. 

This coordination occurred not only between bursts with exactly matching main 

frequencies but also extended to cross-frequency interactions. The precision of phase-

locking notably increased within the periods of high cross-covariance between LFPs from 

the two circuit models. During these windows of high cross-covariance and peaked phase 

synchronization, significant information transfer, measured using transfer entropy, 

occurred. The direction of information transfer was dependent on the phase difference 

between the two circuits. It's crucial to highlight that even during periods of coarse phase 

synchronization, there remained a high degree of information transfer. This implies that 

the emergence of information transfer requires only a minimal degree of phase-locking. 

The outcomes of these simulations affirm that dynamic frequency-matching among 

interacting neuronal populations with transient synchrony is a robust and inherent 

characteristic. 

Thus, gamma oscillations can create rhythmic states that facilitate dynamic interaction 

across different brain areas. 
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8.2.5 Gamma oscillations and cell assembly formation 

 

As it was discussed previously, the induction of post-synaptic spiking and pursuing STDP 

requires a large convergent input, probably from different presynaptic neurons, in a short 

time window of 10-20ms. Based on this, a reader-neuron-defined cell assembly have 

been proposed which is defined as “a group of presynaptic neurons, whose spike 

discharges occur within the window of the membrane time constant of the reader-

integrator neuron and trigger an action potential in the reader neuron” (György Buzsáki 

2010).  The optimal time constant of cell assemblies should correspond to the temporal 

window of spike-timing-dependent plasticity, and as such it falls within the period of 

gamma and higher frequency oscillations. According to the ‘reader-centric’ framework, 

assemblies should effectively elicit discharges in downstream reader neurons. This has 

two implications: first, activation of an assembly should precede that of its reader within 

a brief time window, occurring more frequently than expected by chance; and second, 

this relationship should be dependent on the collective activation of the assembly. 

Recent evidence suggests that assembly–reader communication exist in amygdala-

prefrontal cortex network (Boucly et al. 2022). Studying assembly-reader pairs, it was 

shown that at time amygdalar assembly activations were consistently followed by 

prefrontal spikes, and vice versa, suggesting a bidirectional interaction between these 

two regions. More importantly, spiking in downstream neurons were selective for the 

collective activation of upstream assemblies with specific cell identities.  The results also 

yielded an endogenous time scale of up to ∼20-25 ms for effective cell assemblies. 

Consistent with this, previous hippocampal recordings in rodents and humans also 

indicated that organized firing occurs on time scales of roughly 10-30 ms (the period of 

the hippocampal gamma oscillation; (Harris et al. 2003; Umbach et al. 2022)). In humans, 

hippocampal cell assemblies were detected during a memory task. During cell assembly 

activations, gamma oscillatory power at 40 Hz peaked. The influence of this gamma 

oscillation on the cell assembly organization was demonstrated by showing that the 

majority of the cell assembly member neurons phase locked to this oscillation (Umbach 

et al. 2022).  
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Recently, direct evidence supporting the role of gamma in orchestrating cell assemblies 

within the hippocampal formation has been presented (Fernández‑Ruiz et al. 2021). 

Extracellular recordings were performed in the entorhinal cortex-dentate gyrus-CA3 

networks in rodents that were trained in two different tasks.  Cell assemblies were 

detected during task performance. While approximately half of the assemblies comprised 

cells of the same type, others featured combinations of GCs, MCs, and CA3pyr cells. The 

composition of neuronal assemblies was task-specific, with GCs playing a more 

prominent role during spatial learning, and CA3pyr cells contributing more during object 

learning. Optogenetic gamma perturbation disrupted the learning-induced organization of 

target neuron assemblies, emphasizing the crucial role of gamma in task-specific 

assembly dynamics (Fernández‑Ruiz et al. 2021). 

In conclusion, the findings presented here underscore the critical role of gamma 

oscillations in facilitating learning through the precise synchronization of specific cell 

populations in a task-specific context. This synchronization mechanism allows multiple 

presynaptic neurons to fire in a coordinated manner, resulting in a collectively stronger 

depolarizing impact on the target postsynaptic neuron compared to isolated firing events. 

This aligns with the idea that the coordination of firing over extended time scales hinges 

upon the integration of multiple neural assemblies orchestrated by the rhythmic dynamics 

of gamma oscillations. 

 

9. Chapter 3: The organization of cell assemblies in the hippocampus 

 

For the final chapter of this dissertation, I performed multi-channel laminar recordings 

within the hippocampal CA1 region of two female macaques while they engaged in a 

freely-behaving sequential memory task, as well as during sleep. Laminar recordings of 

local field potentials (LFPs) and ensemble unit activity provided several advantages, 

enabling me to achieve the following objectives:  1) Identify distinct layers within the CA1 

region in macaques and estimate the cell bodies of the recorded units with respect to the 

layers. This led to the stratification of the pyramidal cell groups and characterization of 

different putative inhibitory cell groups. 2) Detect hippocampal cell assemblies and 
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investigate the composition of these assemblies at a cellular level. Collectively, these 

allowed for the in-depth exploration of sub-layers specific dynamics within the macaque's 

CA1 region. In the next section, I will interpret the results of chapter 3 within the framework 

of cell assembly theory. 

 

9.1 Cell assembly theory: what Donald Hebb had dreamed 

 

Hebb recognized that beyond the level of individual synapses and neurons, several 

higher-order levels of organization in the brain, particularly neural assemblies, played a 

crucial role. Hebb proposed that neurons forming these cell assemblies, collectively 

respond to sensory input, and create a transient closed-loop system in which activation 

reverberates after the initial stimulus subsided. While Lorente de No´ had previously 

observed reverberatory activity lasting for around half a second (Sejnowski 1999), Hebb 

took this notion further by suggesting that the activity generated by each cell assembly 

could propagate and sequentially activate connected cell assemblies, forming what he 

termed a phase sequence. He posited that this phase sequence was at the core of how 

the brain represents perceptual information derived from sensory stimuli (Wallace and 

Kerr 2010). 

The quest to identify cell assemblies presents significant technical challenges, primarily 

due to the vast number of neurons that have the potential to contribute to these 

assemblies, the exact count or locations of which remain largely unknown. Consequently, 

the increasing ability to record a growing number of neurons simultaneously is 

advantageous, as it supplies the necessary dataset to investigate the simultaneous firing 

of neuron populations and the constitution of cell assemblies. This is the primary reason 

why direct tests of Hebb's hypotheses were significantly delayed, only becoming feasible 

after large-scale brain recordings became accessible several decades later (György 

Buzsáki 2004). Today, there are numerous studies on cell assemblies conducted in 

different brain regions (Luczak, Barthó, and Harris 2009; Nicolelis et al. 1995; Laubach, 

Wessberg, and Nicolelis 2000; Harris et al. 2003). However, it is worth noting that even in 

the present day, studies on hippocampal cell assemblies in primate brains remain limited 
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in number. There’s only 1 study that directly test cell assemblies in human hippocampus 

(Umbach et al. 2022) and none in the monkey hippocampus. Therefore, the current 

results present the first evidence on cell assembly formation in the nonhuman primate 

hippocampus. 

While much attention has been dedicated to exploring the connection between the 

activation of cell assemblies and memory, less focus has been directed toward 

investigating the internal organization of these assemblies, including their topology, and 

cellular composition. Determining features of cell assemblies like their dimensions, 

cellular membership, connectivity, dynamics, and the relevance of these features to 

perception and cognition, continues to be an engaging field of research. In my 

dissertation, I explicitly investigated the cellular composition of detected cell assemblies 

in terms of their member pyramidal and inhibitory cell types. 

A prominent hallmark of these cell assemblies is the synchronized activity among a 

network of interconnected neurons. Despite the typical irregularity in the firing patterns of 

individual neurons, it has been postulated that at least a portion of information 

transmission takes place through synchronous activity within these cell assemblies 

(Stevens and Zador 1998; Luczak, Barthó, and Harris 2009; Salinas and Sejnowski 

2001).  The methods used in the current dissertation were designed to identify cell 

assemblies and their constituent neurons based on the criteria of precise spike 

synchronization exceeding chance levels. However, it's important to acknowledge the 

limitation of these methods, which require defining a specific temporal window for 

synchronization. Alternative methods have been developed that can detect assembly 

structures at multiple temporal scales, with arbitrary constellations of time lags, levels of 

precision, and with arbitrary internal organization (Russo and Durstewitz 2017). The 

deliberate choice of the method was made to enable a meaningful and fair comparison 

between the current findings and those from rodent studies. 
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9.2 Cell assembly activations during sleep 

 

Sleep constitutes an essential part of our daily life, and among its numerous functions, 

memory formation emerges as a vital function (Klinzing, Niethard, and Born 2019). 

Memory formation is an active process that involves selecting novel experiences to 

integrate into an existing memory structure, which must be preserved and modified 

simultaneously (Robin and Moscovitch 2017; Gilboa and Marlatte 2017). While we are 

awake, this process takes place amid a continuous influx of new sensory information, 

however, sleep offers a unique opportunity for the brain to organize and reinforce newly 

acquired memories without the constant input of external information (Girardeau and 

Lopes‑Dos-Santos 2021). According to the two-step theory, during an experience, a 

specific group of coordinated CA3 and CA1 cells form interconnected cell assemblies 

linked to the new information. Subsequently, during sleep, these CA3 assemblies 

spontaneously trigger SWR events, reactivating the associated CA1 ensembles and 

enhancing their connections, ultimately leading to memory consolidation (G Buzsáki 

1989). Disturbing the synchronized activity during sleep, particularly the sharp-wave 

ripple, significantly impairs memory (Ego‑Stengel and Wilson 2010; Girardeau et al. 

2009). The emergence of sharp-wave ripple events during offline states and the 

accompanying phase-locked increase in cell firing rates has previously been documented 

in nonhuman and human primates during sleep (Bukhtiyarova et al. 2022; Kaplan et al. 

2016; Skelin et al. 2020; Y. Y. Chen et al. 2020; William E Skaggs et al. 2007; Le Van 

Quyen et al. 2008; Hussin, Leonard, and Hoffman 2020). Chapter 3 replicated these 

findings for different cell types and extended these results by showing that the 

synchronous activation of cells during sharp-wave ripples form member-specific cell 

assemblies. The specific recruitment of cells into cell-assemblies may be able to support 

the specificity of memories at the cognitive level. 

Although it’s tempting to relate this cell assembly activation during sleep to rodent replay 

studies, several important distinctions should be made. Cell assembly 

activation/reactivation is methodologically, and biologically separate from cell assembly 

replay (Tingley and Peyrache 2020; Z. S. Chen and Wilson 2023). Activation/reactivation 
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refers to population-level synchronization episodes in which groups of cells with specific 

identity, cell assemblies, show correlated spiking activity; however, this correlated activity 

does not need to be temporally ordered. In replay, cell assembly activations should 

maintain a specific temporal order which correspond to the same sequential activity 

during experience. A recent study directly investigated the functional dissociation 

between reactivation and replay in the hippocampus (C. Liu et al. 2023). Optogenetic 

stimulation was used to perturb the fine temporal coordination of hippocampal place cell 

firing in a novel environment while maintaining global network dynamics, single-cell 

spatial tuning and rate coding properties. During sleep after the novel experience, task-

related cell assemblies encoding discrete maze locations were reactivated in SWRs, 

unaffected by the manipulation. However, their sequential structure did not reproduce the 

order in which they were active in the task, resulting in impaired sequential replay for the 

perturbed trajectories. At the behavioral level, while context-reward associative learning 

in a conditioned place preference task was unaffected, flexible memory–guided 

navigation in a foraging task was impaired, suggesting that sequential replay might only 

be instrumental for some but not all types of learning and memory. The same 

manipulation did not disrupt replay of familiar trajectories, suggesting that the precise 

temporal coordination of place cell firing during learning mediates initial plasticity required 

for subsequent replay (C. Liu et al. 2023). Consistent with this, an earlier study showed 

that disrupting theta sequences, but not behavioral time scale sequences, during novel 

experience results in impaired subsequent sleep replay (Drieu, Todorova, and Zugaro 

2018). These findings support the view that nested temporally ordered sequences during 

experience underlie the initial formation of memory traces subsequently consolidated 

during sleep. Recently, in the human hippocampus, it was shown that during awake 

assembly activations in a memory task, the participating members of a cell assembly fire 

in a consistent temporal order. The strength of this temporal ordering was positively 

correlated with the recall fraction observed during the corresponding session supporting 

the mnemonic relevance of firing order consistency (Umbach et al. 2022). The evidence 

for phase sequence of cell assemblies and replay during offline states is yet to be 

recorded in the primate hippocampus. 
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9.3 Topology of cell assemblies in the CA3-CA1 and memory 

 

How is assembly-specific synchronous activity generated in CA1? In vivo studies in 

behaving rats reveals that that CA2/CA3 cells fire synchronously preceding CA1 (Oliva et 

al. 2016). In the hippocampal CA3 region, synaptically connected neurons exhibit a 

notably higher likelihood of engaging in synchronized spiking activity compared to other 

pairs of neurons (N. Takahashi et al. 2010). Interestingly, the primary factor influencing 

this synchronization appears to be not the direct synaptic connection between neurons, 

but rather the correlated synaptic inputs originating from multiple shared presynaptic 

neurons. This is reinforced by the observation that, in contrast to unconnected pairs, 

synaptically linked neurons share a greater number of common presynaptic neurons and 

receive more correlated excitatory synaptic inputs (N. Takahashi et al. 2010). Based on 

these observations, CA3 cell assemblies are formed from the synchronized activity of 

synaptically connected neurons that share common inputs. 

CA3 units within functional assemblies send convergent projections onto the selective 

population of CA1 neurons (N. Takahashi et al. 2010). However, this doesn’t mean that 

CA3 activation can always lead to CA1 spiking outputs. The reason is that it is very 

unlikely that a single CA3 spike depolarizes every target cell beyond threshold (Sayer, 

Redman, and Andersen 1989; Sayer, Friedlander, and Redman 1990), since it forms few 

contacts on each of them (Li et al. 1994). Consistent with this, it has been shown that only 

a fraction of spikes of a single CA3 pyramidal cell are monosynaptically related to the 

micro-field EPSPs of CA1 neuron populations (Fernández‑Ruiz et al. 2012). These 

findings suggest that to generate an output response in CA1 neurons, CA3 neurons in a 

cell assembly should emit synchronous spikes (N. Takahashi et al. 2010; 

Fernández‑Ruiz et al. 2012). Additionally, under some behavioral conditions, CA1 

ensemble activity appear before CA3 indicating that CA1 ensemble activity can also 

emerge independently of CA3, probably  via  the  direct  projections from entorhinal cortex 

(Stefan Leutgeb et al. 2004). 
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Another feature of population synchrony in CA3-CA1 network is the power-law scaling of 

synchronization (Mizuseki and Buzsáki 2013; György Buzsáki and Mizuseki 2014; N. 

Takahashi et al. 2010). This implies that most of the time, synchronization results from 

the simultaneous firing of a relatively small proportion of neurons, whereas the network 

occasionally exhibits larger synchronous events. This dissertation provides multiple lines 

of evidence that reinforce the existence of such small-world network organization in the 

primate hippocampus. In the context of SWR, the participation probability of many CA1 

pyramidal cells was less than 10%, indicating a highly selective recruitment of these cells. 

While certain inhibitory cell types exhibited a relatively higher participation probability, 

only a few specific groups had members with participation probabilities exceeding 50%. 

More directly, the rate of assembly participation among neurons from all cell groups 

averaged less than 10% with inhibitory cell groups showing lower participation rate than 

the pyramidal cells. These findings suggest that at any given time, only a limited number 

of neurons play a role in the synchronization episodes.  

The activation of different cell assemblies in CA3-CA1 is task specific (Fernández‑Ruiz et 

al. 2021; Dragoi and Buzsáki 2006; Guzowski, Knierim, and Moser 2004), and disrupting 

the learning-induced assembly organization by gamma oscillations perturbation can lead 

to impairments in spatial and object learning tasks (Fernández‑Ruiz et al. 2021).  Hebb 

postulated that, during memory formation, connections between population of neurons 

that fire together should strengthen (Hebb 1949). In line with this, a recent study used 

novel genetic tagging tools to investigate the synapses between engram cells in the CA3 

and CA1 regions, which were activated during a contextual fear conditioning task in rats 

(Choi et al. 2018). While the total number of engram cells remained unchanged during 

memory formation, there were notable modifications in the structural connectivity between 

CA3 and CA1 engram cells. Specifically, the density of synapses between CA3 and CA1 

engram cells increased, and this was not observed in non-engram cells. Additionally, the 

size of the dendritic spines associated with these synapses increased, and this 

enlargement was positively correlated with the strength of memory. As a result, the 

presynaptic transmission between CA3 and CA1 engram cells enhanced suggesting 

increased release probability from CA3 engram inputs to CA1. These results 
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demonstrated that synaptic populations that fired together during memory formation 

showed the strongest connections. 

By considering the CA3-CA1 circuit as an illustration, we can understand that during 

memory formation, a coherent input (possibly sensory from entorhinal cortex) can 

converge on a selective population of cells that form a cell assembly by virtue of their 

synaptic connectivity and activate them synchronously. These segmentally synchronized 

pulse packets can then propagate to target specific cell assemblies in downstream areas. 

This coactivation can result in structural changes that strengthen the memory. This raises 

the question of whether the coordinated activity of cell assemblies extends across diverse 

brain regions and whether this interplay between inter-areal cell assemblies is associated 

with memory. 

In a recent study, multi-regional large-scale electrophysiology were performed in the 

amygdala, ventral hippocampus, and  prefrontal  cortex during a fear memory in rats. The 

local ensembles activated during the acquisition of fear memories and displayed inter-

regional coactivation during subsequent sleep which relied on brief bouts of fast network 

oscillations. During memory retrieval, the coactivations reappeared, together with fast 

oscillations (Miyawaki and Mizuseki 2022). In another study, ensemble dynamics in 

Amygdala and mPFC were shown to form selective cell assemblies that are dynamically 

reconfigured. These inter- regionally coupled cell assemblies were selectively modified 

upon associative learning, indicating that they were plastic and could  become  bound  to  

behaviorally  relevant  variables (Boucly et al. 2022).  Using brain-wide high-throughput 

phenotyping across 247 regions in mice during a contextual fear memory, 117 cFos+ 

brain regions were identified holding engrams with high probability (Roy et al. 2022). 

These brain-wide neuronal ensembles were reactivated during recall. Optogenetic 

manipulation revealed that many of these local neuronal ensembles were functionally 

connected to hippocampal or amygdala engrams.  Simultaneous chemogenetic 

reactivation of multiple engram ensembles conferred a greater level of memory recall than 

reactivation of a single engram ensemble. 
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These results indicate that locally detected cell assemblies associated with a specific 

memory may be coordinated across multiple brain regions, making a unified engram 

complex. 

 

9.4 Cellular composition of cell assemblies and segregated functional circuits 

 

The hippocampus assumes a critical role in various cognitive domains, including tasks 

such as spatial navigation, temporal associations, and contextual learning. Therefore, a 

fundamental question arises as how are hippocampal cell assemblies organized to 

effectively underpin learning and memory across highly distinct experience-specific 

contexts? One possibility is that hippocampal pyramidal cells form segregated functional 

modules with parallel channels of information processing to accommodate a broad 

spectrum of cognitive demands (Ivan Soltesz and Losonczy 2018). This possibility can be 

put to the test by comparing various attributes of pyramidal cells in the hippocampus, 

including their fundamental physiological characteristics, their interactions with inhibitory 

microcircuits, their connectivity within and beyond the hippocampus, their behavior-

related firing patterns, and their engagement in cell assemblies. Nonuniformity in these 

metrics can indicate that hippocampal pyramidal cells constitute distinct subpopulations 

tailored to different functions. 

Along the radial axis of the rodent hippocampus, superficial (CA1sup) and deep 

(CA1deep) pyramidal cell types demonstrate sublayer-specific dynamics (Mizuseki et al. 

2011; Harvey et al. 2023; Gu et al. 2023; Berndt et al. 2023). The findings of this 

dissertation demonstrates that, similarly, in the monkey hippocampus superficial and 

deep pyramidal cells have distinct basic physiological properties such as firing patterns, 

burstiness, sharp-wave ripple depth of modulation and phase of firing. One important 

question is to what extent the circuit-level organizational differences between CA1 

pyramidal cell type populations are relevant to behavior. Ca2+ imaging in head-fixed mice 

demonstrated that superficial CA1 pyramidal cells (CA1sup) form more stable spatial 

maps compared to their deep counterparts, with more reliable discrimination of contexts 

at both single-cell and population levels (Danielson et al. 2016). Silicone probe recordings 
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further indicated that CA1deep firing fields were tightly linked to individual sensory stimuli, 

while the superficial layer contained cells representing a global spatial context (Geiller, 

Royer, and Choi 2017; Harvey et al. 2023). Recent in vivo recordings of molecularly 

identified pyramidal cell subclasses highlighted the efficient spatial information 

representation by Calbindin-positive (CB+) cells, mainly corresponding to CA1sup, 

compared to CB− place cells, albeit with lower firing rates during running epochs (Gu et 

al. 2023). In a learning task, CA1deep exhibited greater stability than during random 

foraging, and the representation of the goal by CA1deep proved more predictive of task 

performance than that by superficial neurons (Danielson et al. 2016). Additionally, deep 

CA1 place cells track changes in reward configuration (Harvey et al. 2023). 

Among intrahippocampal afferents, deep and superficial CA1PCs receive stronger inputs 

from the region CA2, and CA3 respectively. Novel object presentation induces global 

remapping of place fields in CA2 (Alexander et al. 2016), making CA2 ensembles more 

responsive to subtle contextual changes compared to CA1 and CA3 (Wintzer et al. 2014). 

The strong connectivity between CA2 and CA1deep may explain why deep cells show 

instantaneous responses to landmark manipulations, persist through change of context, 

and encode landmark identity and saliency (Geiller et al. 2017). In addition, in proximal 

CA1, strong MEC and weak LEC inputs favor CA1deep, whereas in distal CA1, strong 

LEC and weak MEC inputs prefer CA1sup (Masurkar et al. 2017). MEC provide 

predominantly spatial information and the LEC provide primarily nonspatial information to 

CA1PCs (Knierim, Lee, and Hargreaves 2006; Knierim, Neunuebel, and Deshmukh 

2014). These results provide a potential circuit mechanism for the findings that CA1deep 

are more likely to have place fields during spatial navigation, due to the stronger excitation 

of CA1deep by MEC inputs, at least in the proximal part of CA1. The increased stability 

of superficial place maps—where proximal cues and landmarks are more relevant—is 

also consistent with the preferential innervation of CA1sup by LEC.  

Do cells with such segregated anatomical, physiological, and functional properties also 

form separate assemblies? One possibility is that while hippocampal pyramidal cells 

exhibit distinct spatio-temporally localized functional dynamics, these differences do not 

extend to the level of cell assemblies. The other scenario posits that functionally distinct 
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neurons are recruited to specific learning-related assemblies, each with a biased 

organization toward one group of functional cell types or the other. 

Similar to recent observations in rat hippocampal CA1 (Harvey et al. 2023), the cellular 

composition of detected cell assemblies within monkey CA1 revealed a pronounced 

anatomical bias. In majority of the assemblies, all members belonged to the same 

sublayer of the hippocampus, superficial or deep, indicating a higher synchronization 

among cells from the same sublayer. This indicate that across species, the anatomical 

identity of pyramidal cells is a major organizing principle of CA1 assembly dynamics. This 

might not be the case for all hippocampal subfields. In CA3, neurons within a given cell 

assembly are sparsely distributed, and the distribution of distances between neurons 

within the same assembly does not differ from that of neurons in different assemblies, 

indicating an absence of spatial bias in synchronous spike patterns (N. Takahashi et al. 

2010; Harris et al. 2003). During sharp-wave ripples, similar to rat findings (Harvey et al. 

2023; Valero et al. 2015), monkey CA1sup cell assemblies activated with significantly 

higher strength compared to CA1deep cells. CA1sup also had a significantly higher 

participation probability compared to their deep peers. The functional gradient of 

superficial and deep is speculated to rely on timed PV-mediated perisomatic inhibition 

(Valero et al. 2015). In rodents, GABAergic inhibition is consistently stronger in deep cells 

(Valero et al. 2015; S.‑H. Lee et al. 2014). Because SWR active interneurons, such as 

PV+ basket cells and bistratified cells, enable the phasic firing of active pyramidal cells 

during ripple cycles (Stark et al. 2014), the variability in activation strength and 

participation probability might be explained by unbalanced target-selective inhibition in 

local connections in CA1 pyramidal cells. This can also potentially explain previous 

observations on the heterogeneous contribution of hippocampal cells to memory replay. 

Previous reports identified a subset of CA1 pyramidal cells whose reactivation dynamics 

after a new experience or during learning remained relatively unaltered. On the other 

hand, a different subset of CA1 pyramidal cells were selectively recruited into 

postexperience memory replay (Grosmark and Buzsáki 2016; Hall and Wang 2022). The 

rigid and plastic subpopulations of pyramidal cells can correspond to the deep and 

superficial cells. 
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Differences in long-range projection specificity in deep and superficial CA1 pyramidal 

cells further amplify their segregated functional roles. Earlier studies have demonstrated 

that during hippocampal SWRs, the reactivation of cell ensembles in several target 

regions are synchronized (Peyrache et al. 2009; Girardeau, Inema, and Buzsáki 2017; 

Sosa, Joo, and Frank 2020; Siapas and Wilson 1998; Nitzan et al. 2020; Opalka et al. 

2020). However, until recently, it was not known whether memory representations 

broadcast by SWRs are similarly read out in all cortical target regions or whether these 

show selective responses. Recent studies in rats suggest that distinct behavior-

contingent information is processed in parallel by subpopulations along the radial axis of 

the hippocampus and is selectively routed to distinct target regions during sharp-wave 

ripples (Harvey et al. 2023). CA1sup cells mainly target MEC monosynaptically, while 

much sparser projections to PFC originated from CA1deep cells, with minimal overlap 

between the two subpopulations. Moreover, MEC responds preferentially to SWRs 

enriched in CA1sup spikes, while PFC responds preferentially to SWRs dominated by 

CA1deep activity. Furthermore, the temporal dynamics of MEC and PFC ensemble 

reactivation were better predicted by the activity of CA1sup and CA1deep, respectively, 

indicating selective cortical responses to SWRs depending on the anatomical distribution 

of the hippocampal cells generating them (Harvey et al. 2023). Several lines of evidence 

suggest that target-selective segregation of function might also exist in the primates. Both 

monkey and human hippocampal ripples are associated with widespread modulation of 

cortical and subcortical activity (Cox et al. 2019; Kaplan et al. 2016; Turesson, 

Logothetis, and Hoffman 2012; Skelin et al. 2020). Additionally, CA1 efferents in 

monkeys have a radial organization. Projections from the medial prefrontal (Barbas and 

Blatt 1995; Insausti and Muñoz 2001; Roberts et al. 2007) and orbitofrontal cortices 

(Cavada et al. 2000) mainly stem from the deep CA1 layer and projections to the  medial  

temporal  cortex originates from the superficial CA1 layer (Yukie 2000; Insausti and 

Muñoz 2001).  Given that the neural dynamics of the orbitofrontal cortex support reward 

processing, reward-associated signals from these deep pyramidal cells may reach the 

orbitofrontal cortex in primates. These anatomical findings combined with the current 

results in this dissertation suggest that, in primates, similar to rodents, cell assemblies 

arise from functionally distinct cell types in the hippocampus, are differentially activated 
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during SWRs, and possibly interact with different downstream areas during these network 

oscillatory episodes. 

The organization of pyramidal cell assemblies during learning is sculpted by the intricate 

operations of the inhibitory circuits in the hippocampus (Assisi, Stopfer, and Bazhenov 

2011; György Buzsáki 2010). I found that putative inhibitory cell groups form significant 

members of some of the assemblies in the macaque hippocampus. The assembly 

participation rate of inhibitory cell groups was significantly lower than pyramidal cell 

groups indicating a selective role in formation of cell assemblies. The role of inhibitory 

microcircuits in dynamics reconfiguration of cell assemblies have previously been 

investigated in the rodent hippocampus (Dupret, O’Neill, and Csicsvari 2013). 

Hippocampal cell assembly patterns in these animals can alternate rapidly between the 

representation of different maps across consecutive theta oscillatory cycles when 

environmental cues or task parameters are abruptly changed (Kay et al. 2020; Jezek et 

al. 2011; Jadin Jackson and Redish 2007; Brandon et al. 2013). During the course of 

learning, the expression strength of the new assemblies improve, suggesting their 

refinement (Dupret, O’Neill, and Csicsvari 2013). The firing rate of many interneurons 

also fluctuated on a fast time scale that followed this assembly alternation. Some CA1 

interneurons exhibited significant positive correlations and increased their instantaneous 

rate at times when the new representation was preferentially expressed while the ones 

with negative correlation decreased their firing during the same moments. These firing 

associations, manifested by rapid fluctuations of the interneurons firing rate, were 

mirrored by changes of their monosynaptic connection weight. Interneurons that 

increased their firing associations to new pyramidal assemblies overall received 

strengthened inputs from pyramidal cells that were members of a new assembly. 

Moreover, the opposite trend was observed for interneurons that decreased their 

associations to new assemblies, these received weaker local pyramidal inputs following 

learning. Importantly, this circuit reconfiguration took place during the learning session 

and it remained stable in subsequent sleep and memory probe sessions (Dupret, O’Neill, 

and Csicsvari 2013). These results provided direct evidence that learning engages circuit 

modifications in the hippocampus that incorporate a redistribution of inhibitory activity that 

might assist in the segregation of competing pyramidal cell assembly patterns in space 
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and time. A question that arises from these observations is whether all inhibitory cell types 

contribute indiscriminately to the cell assembly formation or inhibitory cell classes have 

behavioral-state dependent patterns that changes during state transitions? 

SOM-expressing, dendrite-targeting INs, including OLM and BiCs, and perisomatic-

targeting PV+ INs, which comprises basket and AACs are strongly modulated by 

locomotion (Geiller et al. 2020; Dudok, Klein, et al. 2021). On the other hand, NPY-

expressing and SOM-immunonegative, dendrite-targeting INs, which includes Ivy and 

neurogliaform cells, shows overall weaker modulation by locomotion (Geiller et al. 2020) 

and CCK+ basket cells (CCK BCs) are suppressed during running and non-locomotory 

movements (Dudok, Klein, et al. 2021). The CCK and PV GABAergic systems show 

precise inverse coupling that arises through powerful inhibitory control of CCK BCs by PV 

cells (Dudok, Klein, et al. 2021). While PV IN activity scales with activity of the CA1 

neuronal ensemble, CCK BC activity is inversely scaled. CCK BCs and PV+ INs have 

distinct synaptic properties that enables them to provide unique forms of perisomatic 

inhibition during discrete brain states. These fast-spiking PV cells have specific intrinsic 

and synaptic mechanisms that are optimized for rapid synaptic signaling and temporal 

precision of firing. PV-BCs receive a high density of excitatory inputs and provide highly 

divergent feedforward and feedback inhibition to pyramidal cells. In contrast to PV-BCs, 

CCK-BCs receive sparse excitatory inputs, which they integrate sequentially over a larger 

temporal window to provide feedback inhibition via asynchronous GABA release (Hu, 

Gan, and Jonas 2014; Armstrong and Soltesz 2012). During brain states with rapidly 

alternating rhythmic activity (such as theta, gamma, and ripple oscillations), perisomatic 

inhibition by PV BCs efficiently suppresses PC activity at specific oscillatory phases with 

high temporal precision and in some cases promotes subsequent rebound spiking 

(Klausberger et al. 2003; C. Varga, Golshani, and Soltesz 2012; Stark et al. 2013; 

Lapray et al. 2012; Gan et al. 2017). However, during episodes of irregular circuit activity, 

a perisomatic inhibitory tone provided by CCK BCs may exert prolonged control of PC 

firing, which is necessary even in the absence of strong excitatory inputs to suppress 

spurious noise correlations (Cardin 2018; Renart et al. 2010). Importantly, the firing of 

CCK-expressing interneurons, on average, shows no correlation to ripple episodes. 

However, during single ripple episodes, the same CCK cell appears to be sometimes 
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specifically silenced and sometimes excited. Such an episode-dependent firing pattern 

might reflect a subtle balance of incoming excitation and inhibition. The participation of 

CCK cells in certain ripples may be influenced by the recent history of the network, as 

shown for pyramidal cells. Therefore, CCK-expressing interneurons might specifically 

contribute to selecting which pyramidal cells are active in a certain ripple episode as part 

of a cell assembly (Klausberger et al. 2005). This is consistent with the observation that 

during locomotion perisomatic-targeting PV+ INs exhibit less disinhibitory control (Geiller 

et al. 2020), and they participate in almost all SWR episodes (C. Varga, Golshani, and 

Soltesz 2012), suggesting that these INs predominantly regulate behavioral state and 

network oscillation-related activity dynamics of the overall pyramidal cell population 

(Geiller et al. 2020). In contrast, during locomotion, SOM+ dendrite-targeting INs are 

under strong disinhibitory control suggesting a close, bi-directional interaction of these 

INs with active CA1 ensembles during exploration and a major role for these INs in 

regulating experience and learning-related reorganization of CA1 dynamics (Geiller et al. 

2020). Moreover, axoaxonic cells may also be a part of inhibitory circuits that regulate the 

expression of specific cell assemblies. A subset of these inhibitory cell classes show 

suppression during SWR episodes and the postsynaptic effect of AACs on PC spike 

generation can remap place fields in the CA1 network (Dudok, Szoboszlay, et al. 2021). 

In a separate study, basket and ivy cells showed distinct spike-timing dynamics, firing at 

different rates and times during theta and ripple oscillations. Basket, but not ivy, cells 

changed their firing rates during movement, sleep and quiet wakefulness, suggesting that 

basket cells coordinate cell assemblies in a behavioral state–contingent manner, whereas 

persistently firing ivy cells might control network excitability and homeostasis (Lapray et 

al. 2012). 

In conclusion, the intricate orchestration of synchronized activity within the hippocampus 

results in the emergence of distinct spatiotemporally organized cell assemblies. These 

cell assemblies are formed by the interplay of functional cell types, such as pyramidal 

cells from different substrata, and the intricate regulation by inhibitory cells, thereby 

shaping the dynamic landscape of hippocampal neural circuits. The differential 

engagement of inhibitory and pyramidal cell classes in various behavioral states 

emphasizes the behavioral-state-dependent nature of hippocampal activity. 

https://sciwheel.com/work/citation?ids=714827&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9775856&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9775856&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=83633&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=83633&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9775856&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9775856&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9775856&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11913154&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=714800&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=714800&pre=&suf=&sa=0&dbf=0


175 
 

 

9.5 Summary 

 

In summary, this dissertation presented novel, fundamental insights into the neural 

organization of hippocampal CA1 in non-human primates. The findings emphasize the 

significance of studying complex behavior and cognition under less constrained task 

conditions and the importance of comparative electrophysiological approaches in 

elucidating the underlying neural mechanisms of flexible learning and memory. 

 

  



176 
 

Table 1 Physiological properties of superficial and deep pyramidal cells 

Study Baseline 

Firing rate 

CV2 Bursting SWR firing SWR 

participation 

Ripple 

phase 

mod 

Ripple 

phase 

Abbaspoor, 

Hoffman 

Sup>Deep Sup>Deep Deep>Sup Sup>Deep Sup>Deep - Differences 

in phase 

Harvey 2023 Deep>Sup Sup>Deep Deep>Sup Deep>Sup Deep>Sup - - 

Gu 2023 Deep>Sup 

(Run only) 

- Sup>Deep 

(all 

conditions) 

Deep>Sup Deep>Sup Sup> 

Deep 

No 

Differences 

in phase 

Valero 2015 Sup=Deep - - Sup=Deep Sup>Deep - - 

Mizuseki 

2011 

Deep>Sup 

(RUN, 

SWS, and 

REM) 

- Deep>Sup 

(all 

conditions) 

- - - - 

Berndt 2023 Deep>Sup - Deep>Sup - - - Differences 

in phase 

 

 

Table 2 Functional properties of superficial and deep pyramidal cells 

Study Prop. Place 

Cells 

Field 

Width 

Prop. Of 

multi-field 

In field 

firing rate 

Spatial 

Information 

content 

(bits/spk) 

Reward 

gain 

Context 

Selectivity 

Harvey 

2023 

Deep>Sup Sup=Deep Deep>Sup Deep>Sup Sup=Deep Deep>Sup Sup>Deep 

Gu 2023 Deep>Sup Sup=Deep Sup>Deep Sup=Deep Sup>Deep - - 

Mizuseki 

2011 

Deep>Sup - - - - - - 

Danielson 

2016 

Deep>Sup Deep>Sup - - - Deep>Sup - 

Sharif 

2021 

- - - - Sup>Deep - - 

Geiller 

2017 

- - Deep>Sup - - - Sup>Deep 
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