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CHAPTER 1

AI’s AI Research Proposal

Most research projects start with a research proposal. In our case of AI research, it would be interesting to

consider how AI systems would compose such a research proposal. When this dissertation is written, people

are enjoying the feast of large language models (LLMs), which was brought about by a newly-launched

model—GPT-4. The company—OpenAI—that created this model claimed that GPT-4 “exhibits human-level

performance on various professional and academic benchmarks”, for example, Uniform Bar Exam, SAT,

GRE, and AP tests. Moreover, based on its predecessor ChatGPT 3.5—a pure language model, GPT-4 was

augmented to a multi-modal model, which takes both visual and text inputs. Besides basic multi-model tasks,

such as VQA datasets and visual naive physics, a research preview even shows that it is capable of capturing

the humor in its visual input, which has been considered unique to human thinking. In short, it seems that

GPT is more and more like a human assistant.

Therefore, to start my dissertation research, I asked GPT-4 to produce several research proposals and

evaluated it on this writing task that requires not only rigorous and critical reasoning but also creative thinking.

Table 1.1 shows my prompt and its response.

Given such a simple prompt, it produced a complete, meaningful, well-structured, and properly-worded

research proposal. Considering my effort to type this short prompt, such a research proposal is fairly satis-

factory. If the length of GPT-4’s response was not limited by its computational resources, it would probably

write a longer research proposal as we often did for real research projects.

Writing a research proposal is no doubt an intellectually challenging job for researchers. This is why I in-

cluded in my prompt keywords novel and important research question—GPT-4 is usually not as sophisticated

as a human assistant who will fill in the missing connotations and background knowledge of your prompt;

instead, to obtain the desirable response, the prompt should be as clear and specific as possible, i.e., Prompt

Engineering. Given its probabilistic nature, I drew multiple samples with the same prompt, and the one in

Table 1.1 is a very representative one among the these samples. Other research proposals’ titles are listed

below:

• Exploring the Interplay between Human Ethics and Artificial Intelligence: A Framework for Respon-

sible AI Development

• Towards Generalizable and Ethically Conscious Artificial Intelligence: An Interdisciplinary Approach

• Exploring the Ethical Dimensions and Human-Centric Development of Artificial General Intelligence
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Me: Give me a dissertation research proposal that explores novel and important research questions of
artificial intelligence.

GPT-4: (the following is a formatted version of GPT-4’s response)
Title: Exploring the Ethical Boundaries and Social Impact of Artificial General Intelligence

• Abstract: The advent of artificial general intelligence (AGI) has the potential to bring about unprece-
dented advancements in various fields, while also raising novel and critical ethical concerns. This
dissertation research proposal aims to explore the ethical boundaries and social impact of AGI, fo-
cusing on the development, deployment, and governance of these advanced systems. By employing a
multidisciplinary approach that integrates computer science, ethics, and social sciences, the research
will delve into the potential consequences of AGI on society, the environment, and the economy, with
the objective of providing actionable insights for stakeholders in the AI community.

• Objectives: Investigate the ethical principles and frameworks that guide the development and deploy-
ment of AGI, with a focus on transparency, accountability, and fairness. Assess the potential social,
economic, and environmental consequences of AGI adoption across various sectors, including health-
care, education, and transportation. Examine the existing governance structures and regulatory mech-
anisms related to AGI and propose enhancements to ensure responsible development and deployment.
Develop policy recommendations to address potential risks and maximize the societal benefits of AGI.

• Methodology: The research methodology will comprise both qualitative and quantitative approaches,
as follows:

– Literature review: A comprehensive review of relevant literature, including academic publica-
tions, white papers, and industry reports, will be conducted to establish a solid theoretical foun-
dation and identify key themes and gaps in the current understanding of AGI ethics and social
impact.

– Case studies: In-depth case studies will be conducted to investigate AGI applications in various
sectors, identifying best practices and challenges in the development, deployment, and regulation
of these systems.

– Expert interviews: Semi-structured interviews with AI researchers, ethicists, policymakers, and
industry practitioners will be conducted to gather insights on AGI ethics, governance, and poten-
tial societal impacts.

– Surveys and statistical analysis: Quantitative data will be collected through surveys and sec-
ondary data sources to assess the public perception of AGI and its potential implications on the
economy, society, and environment. This data will be analyzed using descriptive and inferential
statistical techniques.

• Expected Outcomes: A comprehensive understanding of the ethical considerations surrounding AGI
development and deployment, including transparency, accountability, and fairness. Identification of po-
tential risks and benefits associated with AGI adoption across various sectors, such as job displacement,
economic growth, and environmental sustainability. Assessment of existing governance structures and
regulatory mechanisms related to AGI, highlighting areas for improvement. Policy recommendations
for responsible AGI development, deployment, and governance, to ensure that the potential benefits are
maximized while minimizing risks to society, the environment, and the economy.

• Significance: This research will contribute to the growing body of knowledge on the ethical and social
implications of AGI, providing valuable insights for AI researchers, policymakers, industry practition-
ers, and other stakeholders. By exploring the ethical boundaries and social impact of AGI, the findings
will help inform responsible development and deployment practices, fostering a future where AGI is
used to enhance human well-being and protect the environment.

Table 1.1: A conversation with GPT-4 to ask it to produce a research proposal of AI research.
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• Exploring the Interplay between Human Ethics and Artificial Intelligence: A Framework for Respon-

sible AI Development

• Exploring Synergistic Approaches to Enhance Human-AI Collaboration: A Multidisciplinary Analysis

• Exploring the Ethical and Social Implications of Artificial General Intelligence: A Multidisciplinary

Approach

A very interesting observation about these proposals is that they all deal with AI research from ethical

or social angles, rather than the very technical and scientific nature of AI research. To make sure this is not

caused by my browser history or cookies, I tried it on different computers, in incognito mode, and in different

sessions with GPT-4. But the result remained the same. Admittedly, all of these proposals are important

research questions in their own right. But these six proposals are far from being novel or original; on the

contrary, the similarity between these proposal titles implies lack of diversity and bias towards certain aspects

of prompts.

Two more observations can be made at a finer level than titles and topics:

• Observation 1: The arguments in GPT-4’s response is too general and not supported by reasoning on

facts . It keeps repeating the same abstract ideas without clearly defining them or relating them to

details in reality, much less logical connections between these concepts.

• Observation 2: All the GPT4’s responses follow the same pattern at both sentence and paragraph

levels. For example, all of them start with a sentence that first agrees with the positive side of AI and

then questions the negative side of AI. This pattern-following behavior makes GPT-4’s writing insipid

to read (if you read six or seven of them in a row).

In a nutshell, what makes GPT-4’s proposals different from real human-written research proposals is

the diversity and creativity in thinking, when reflected in writing, and the ability to combine specific facts

and abstract ideas in a rigorous but creative way. Given the gigantic corpus that was used to train GPT-4,

the resulting distribution in GPT-4 leads to the mean or the average of responses that humans have made

in the corpus. However, the major criterion for assessment of a research proposal is whether this proposal

stays away from the mean and explores the frontier of the in-distribution area in a creative and rigorous way.

Human writers are clearly aware of the two different types of tasks—the average-response-needed task or the

research-proposal-like task, whereas GPT-4 is not designed to distinguish them, let alone accomplish them

effectively.

Admittedly, these observations are not GPT-4’s defects because GPT-4 is not designed to work like a

human content creator. GPT-4’s responses to requests for creative and rigorous content do point out an ideal
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direction for constructing future AI. To be creative, the AI system must either improve its understanding

of existing experience (e.g., training corpus or learned parameters) or establish new understanding

of new experience (e.g., user prompts to GPT-4). To examine GPT-4 for these abilities, I had another

conversation with GPT-4, shown in Table 1.2. In this conversation, I asked GPT-4 to count the letter “e” in its

last response. If you count the letter “e” in the response, you will find that there are 16 "e"; but GPT-4 replied

27. Then I asked another follow-up question to make sure that it has the concept of number and it can count

to 16. Obviously, the training dataset has imparted to GPT-4 necessary prior knowledge, such as how to greet

people and counting; but it failed to form new understanding on its existing knowledge when it was facing a

new challenge.

Me: Hi GPT-4, how is it going today?
GPT-4: Hello! As an AI language model, I don’t have feelings or experiences, but I’m here to help

you with any questions or information you need. What can I assist you with today?
Me: How many "e" are there in your last response?

GPT-4: In my last response, there are 27 instances of the letter "e".
Me: Can you count from 1 to 16?

GPT-4: Of course! Here are the numbers from 1 to 16: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Table 1.2: A conversation with GPT-4 to test its ability to combine existing knowledge in new ways.

As indicated above, another situation that entails creativity is where a human or an AI needs to establish

understanding of new experience. I had another conversation with GPT-4 to illustrate this point, as shown in

Table 1.3. This example is adapted from the pq-system, which was devised by Hofstadter (1979). It represents

integer addition in a typographical manner, for example “- - p - - - q - - - - -” corresponding to “2 plus 3 equals

5”. Although GPT-4 gave a quite long response in Table 1.3, it failed to capture this new form of addition. A

follow-up question was also asked to make sure that GPT-4 understands addition in its traditional form.

We now return to the initial topic of AI’s research proposal. In the above discussion about GPT-4’s re-

search proposal, I pointed out the absence of the most important features of research proposal—the accuracy

about details and the rigorousness of reasoning based on logical connections. Especially, the ability to reason

about complex conceptual structures is always deemed a hallmark of real intelligence. GPT-4, though adver-

tised as the most advanced AI system and costing billions1 to develop, shows a weak ability on such tasks

where rigorous reasoning is needed. For example, OpenAI included in their AI model testing framework ten

simple logic puzzles that GPT-4 (version: Mar 14, 2023) failed, as shown in Table 1.4.

Such inconsistency of GPT-4’s performance across different tasks, e.g., information retrieval and solving

logic puzzles, indicates there are still important missing pieces of the puzzle of AI. Among the ten puzzles

in Table 1.4, you can find extremely easy ones, such as Puzzle 1 and 6, and also the ones that might take

1OpenAI built their entire deep learning stack and a supercomputer to train deep learning models, which has more than 285,000
industrial CPU cores, 10,000 industrial GPUs and 400 gigabits per second of network connectivity for each GPU server.
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Me: Given valid strings "- p - q - -", " - - p - q - - -", "- p - - q - - -", "- - p - - q - - - -", and "- - - p - -
q - - - - -", is "- - - - - p - - - - - q -" valid? Why?

GPT-4: Yes, "- - - - - p - - - - - q -" is a valid string based on the pattern observed in the given strings.
The pattern consists of two characters, ’p’ and ’q’, separated by a varying number of hyphens.
For each subsequent string, the number of hyphens before ’p’, between ’p’ and ’q’, and after
’q’ increase by one.
Here is a breakdown of the given strings:
- p - q - - Hyphens before ’p’: 1 Hyphens between ’p’ and ’q’: 1 Hyphens after ’q’: 2
- - p - q - - - Hyphens before ’p’: 2 Hyphens between ’p’ and ’q’: 1 Hyphens after ’q’: 3
- p - - q - - - Hyphens before ’p’: 1 Hyphens between ’p’ and ’q’: 2 Hyphens after ’q’: 3
- - p - - q - - - - Hyphens before ’p’: 2 Hyphens between ’p’ and ’q’: 2 Hyphens after ’q’: 4
- - - p - - q - - - - - Hyphens before ’p’: 3 Hyphens between ’p’ and ’q’: 2 Hyphens after ’q’: 5
Now, let’s look at the provided string:
- - - - - p - - - - - q - Hyphens before ’p’: 5 Hyphens between ’p’ and ’q’: 5 Hyphens after ’q’:
1 The string "- - - - - p - - - - - q -" maintains the pattern of increasing hyphens between ’p’
and ’q’ and does not violate any rules observed from the given strings. Therefore, it is a valid
string.

Me: What is 5 plus 5?
GPT-4: 5 plus 5 equals 10.

Table 1.3: A conversation with GPT-4 to test its ability to establish understanding of new experience. Adapted
from the pq-system in Hofstadter (1979)

quite a while to solve, such as Puzzle 3 and 4. According to our experience with logic puzzles and interaction

with GPT-4, it seems that GPT-4 should be capable of solving logic puzzles because the the solving processes

require multiple reasoning steps and GPT-4 works in a similar way, i.e., repeatedly predicting/sampling the

next words given the already predicted/sampled words.

But why can’t GPT-4 solve them? Two characteristics might contribute to the difficulty of logic puzzles.

First, there exist infinitely many logic puzzles and infinitely many conceptual structures behind logic puzzles.

Therefore, although the corpus used to train GPT-4 goes beyond the knowledge of every single human being,

it still cannot capture all the possible conceptual structures, among which some could be extremely complex

and rare, not existing in the corpus. Let alone there are more logic puzzles that are to be discovered.

Secondly, some logic puzzles and some reasoning tasks are not solvable by purely executing operations

mechanically. Taking Puzzle 3 in Table 1.4 as an example, to solve this, we need to start from the person

who purported to have shaken hands with 99 truth-tellers, say Person 99. If Person 99 was telling the truth,

then she must have shaken hands with Person 0; but all the people shaking hands with Person 0 were liars;

thus, Person 99 was not telling the truth. We then move on to Person 98; since Person 99 is a liar, Person

98 must have shaken hands with Person 0; then Person 98 is liar. By repeating the same argument, we reach

Person 0 with Person 1 through 99 being liars; thus, Person 0 is a truth-teller. Such a solution does not seem

to pose a great challenge for mechanically-operation-executing models, like GPT-4. But you might have

noticed the wording “By repeating the same argument” in the solution. The key point is that we did not really
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Puzzle 1: Solve the following logical puzzle. Carefully think step by step, and show your reasoning. If there
is not enough information to solve the puzzle, conclude with ’There is not enough information.’
There are five students, Anna, Bob and Cynthia, Dan and Eliza. They all tell the truth. Anna is
taller than Cynthia. Bob says he’s taller than Anna if and only if Eliza is the shortest. Cynthia is
taller than Dan. Eliza is shorter than Dan. Who’s the tallest in the group? Let’s think step by step.

Answer: Anna > Cynthia > Dan > Eliza. But, based on Bob’s statement, there are still two possibilities:
1. Bob is taller than Eliza, making Eliza the shortest, making Bob taller than Anna, making Bob
the tallest. 2. Bob is shorter than Eliza: this would still be valid, as Eliza wouldn’t be the shortest
and therefore Bob isn’t taller than Anna. And Anna would be the tallest. So there’s not enough
information.

Puzzle 2: Laura thinks that Jessica thinks that Angie is only 23 years old. Angie thinks Josie knows where
Laura’s mother is. Jessica thinks Laura was once an engineer. Josie thinks Laura is friendly. Based
on the text, what thoughts do we know that Laura, Jessica, Angie, and Josie have?"

Answer: Laura thinks: Jessica thinks Angie is only 23 years old. Jessica thinks: Laura was once an engineer.
Angie thinks: Josie knows where Laura’s mother is. Josie thinks: Laura is friendly.

Puzzle 3: At a party, there are 100 people. Some always lie and some always tell the truth. They all know
which one of them is a truth-teller and which one is a liar. After the party, you ask each person how
many truth-tellers they shook hands with. Each person gives a different answer, ranging from 0 to
99. How many were truth-tellers and how many were liars?

Answer: There is 1 truth-teller and 99 liars at the party.
Puzzle 4: Two people want to cross a river. The only way to get across is with a boat that they find on one

side; but that boat can only take one person at a time. The boat cannot return on its own, and there
are no ropes to haul it back, yet both persons manage to cross using the boat. How did they do it?

Answer: The people are on different sides of the river, so the person on the same side as the boat originally
can cross first to bring the boat to the side with the other person, then that person can cross.

Puzzle 5 There are two men. One of them is wearing a red shirt, and the other is wearing a blue shirt. The
two men are named Andrew and Bob, but we do not know which is Andrew and which is Bob. The
guy in the blue shirt says, ’I am Andrew.’ The guy in the red shirt says, ’I am Bob.’ If we know that
at least one of them lied, then what color shirt is Andrew wearing?

Answer: Andrew is wearing the red shirt.
Puzzle 6: Which word does NOT belong with the others? A. index B. glossary C. chapter D. book
Answer: D. book
Puzzle 7: The day before yesterday, Chris was 7 years old. Next year he’ll turn 10. How is this possible?
Answer: Assuming today is January 1st of any given year: Two days ago, on December 30th, Chris was 7

years old. On December 31st, Chris celebrated his 8th birthday. On December 31st of this year,
Chris will celebrate his 9th birthday. By the end of this year, on December 31st, Chris will be 10
years old. Therefore, on January 1st of the following year, Chris will be 10 years old.

Puzzle 8: Inhabitants of an island lie consistently on Tuesdays, Thursdays, and Saturdays, and they tell the
truth on the other four days of the week. You have forgotten what day of the week it is, so you ask a
passerby. ’Saturday,’ he answers. ’And what day will it be tomorrow?’ you inquire. ’Wednesday,’
he replies. Can you tell what day it is today?

Answer: Based on answer 1, today cannot be M, W, F, Su, or Sa (lying day). Based on answer 2, today
cannot be M, W, F, Su, or Tu (lying day). So, today must be Thursday.

Puzzle 9: You are on an island populated by two tribes. Members of one tribe consistently lie. Members of
the other tribe always tell the truth. Tribe members can recognize one another, but you can’t tell
them apart. You meet two people, C and D on the island. C says, ’Exactly one of us is from the
liars tribe.’ Which tribe is D from?

Answer: D is from the Liars tribe.
Puzzle 0: There are five people in a room. Each person will either always tell the truth or always tell a lie.

Each person is asked the following question: How many liars are among you? The answers are:
öne,̈ ẗwo,̈ ẗhree,̈ f̈our,̈ f̈ive.̈ How many liars are in the room?

Answer: There are four liars.

Table 1.4: Ten logic puzzles that GPT-4 (version: Mar 14, 2023) failed.
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repeat the same argument from 99 to 1; instead, this argument made our observation to a higher level and

observed a pattern outside the system of basic reasoning operations. This is where the difficulty comes in.

Once the system of operations is fixed, it is difficult for it to make observation about itself from a third-party

view. Thus, it is always possible to create new logic puzzles or reasoning task based on a mechanical model’s

current operations to attack it. For example, if Puzzle 3 does not stop at 0 and requires induction to negative

integers or even to negative infinity, then mechanical execution will not be able to solve the puzzle. On the

flip side, one may argue that a machine could have built-in meta-operations that supervise basic operations

from a higher level to extract patterns for induction. But what can be used to supervise meta-operations if

puzzles are built upon meta-operations? What if an induction of induction is needed to solve the puzzle?

Using an AI research proposal composed by AI as a starting point, this introduction gives a flavor of the

specific research questions that I investigate in the following chapters of this dissertation. First, the current AI

systems show limited sign of creativity, originality, or novelty outside the training dataset; it failed to develop

new insights into old experience and establish understanding of new experience. In short, it generates content

from its training set, but does not invent content. Second, the current AI systems are generally limited in

dealing with the flexibility and complexity of abstract reasoning tasks. These abilities also correspond to the

core cognitive abilities that are often tested in human intelligence tests. Inspired by how these abilities are

studied in human cognitive science, I will propose the specific research questions in the large background of

incompleteness of current AI systems and the science of human cognition.
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CHAPTER 2

Research Questions

2.1 Problem Statement

In Chapter 1, we analyzed the difference between how the most advanced AI system generates research

proposals and how an ordinary human research (e.g., me) composes a research proposal.1 The human is fully

aware of what kind of task he needs to do and thus think about how to do the task before really doing it.

Chapter 1 is exactly an explicit manifestation of this thought process, which has been made implicit by most

human proposal authors. This kind of self-awareness is similar to the solving process of logic puzzles that

GPT-4 has failed, i.e., observing what is happening at a higher level and develop new understanding of the

current situation based on one’s existing knowledge of the world, e.g., extracting patterns from the operation

history. It is an instinct for humans, as intelligent beings, to think and behave this way, whereas almost all AI

systems, even the most advanced and sophisticated ones, have not realized these abilities yet.

This instinct is a main factor (or factors) that is measured by most human intelligence tests. It is a concrete

factor that has its solid genetic, biological, and psychological grounds. Unlike benchmarking an AI system

on typical datasets in a specific task domain, this latent factor is not exclusively associated with any specific

task, but is connected to all intellectual activities to different degrees. Thus, intelligence tests usually consists

of a wide range of tasks, such as visual puzzle, abstract reasoning, analogy making, arithmetic, vocabulary,

etc. On the flip side, similar to benchmarking AI systems, strict protocols for designing and administrating

intelligence tests must be followed to make sure that the testing result is valid and reliable. The most important

characteristic of the protocols is that the design of testing items should reduce the effect of non-intelligence

factors to a minimal level. For instance, if an intelligence test is designed to be used globally, the content

of the test should be insensitive to cultural and language background; if an intelligence test is designed for

preschoolers, it should not involve knowledge that is taught at elementary or middle schools. Intuitively, the

more the intelligence tests are independent on non-intelligence factors, the better the intelligence tests can

measure human intelligence.

An example of such intelligence tests, which is used with people of various occupations, in different

countries, and at all ages, is the Raven’s Progressive Matrices (RPM). In recent years, it has received more

and more attention from AI researchers, mostly because statistical analysis shows that RPM is located at the

1It is very possible that some human writers’ writing are extremely similar to the GPT-4’s output. Some people might even uncon-
sciously imitate GPT-4’s writing as they are more and more using GPT-4 in their daily works, because they might think GPT-4, as a
machine, will always give the most correct answer, like a calculator. This indeed raises a concern that AI systems, like GPT-4, will be
an obstacle for humans to be exploratory and creative.
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Figure 2.1: An example of RPM-like item. (Kunda et al. (2013))

center of all intelligence tests, that is, exhibiting strongest correlation with all other intelligence tests. Also

AI research is generally shifting from task-specific ability to Artificial General Intelligence (AGI). Figure 2.1

shows an example of RPM items. It is a multiple-choice problem; to solve the item, one needs to select an

answer choice that best completes the matrix. The answer to this example item is No. 4, for if you take union

of the first two entries in each row (or column) at the pixel level, you will have the third entry.

RPM measures exactly the instinct of human intelligence mentioned above. First, for the test result of

RPM to be valid, the participant should not have any prior experience with RPM. In particular, the participant

should not be specially trained on RPM before the test. This is true for all human intelligence tests. Second,

the administrator should not provide any information about meaning, purposes, or criteria of solving RPM

items, Instead, the administrator only tells the participant that she needs to select an answer choice that

best completes the matrix without explaining what “best” means. In a very special case where the RPM

test is given nonverbally, for example, the administrator does not speak the language of the participant, the

administrator uses body language, such as pointing, nodding, and shaking head, to convey the idea that the

participant needs to select an answer choice that fits in the matrix. I will discuss more about psychometrics

of RPM and the intelligence testing theory in Chapter 2. The key point here is that the participant is facing an

completely unfamiliar situation without clear instruction, in which she needs to establish an understanding

of the situation based on her existing knowledge of the world and react accordingly, i.e., using the instinct

mentioned above.

Consider the example in Figure 2.1. Suppose that the administrator has told the participant verbally that
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she needs to select an answer that best completes the matrix. The participant would consider what “best

completes” means; what are the criteria of a correct answer; she would inspect the matrix row by row or

column by column; she would compare the matrix entries and superimpose one on another; this way she

would probably notice the relation of taking union in the first rows; she would then verify if the relation holds

in the second row; she would finally take union of the first two entries of the third row and find an unique

answer, i.e., No. 4; given the uniqueness, she would be pretty confident that she got it correct. Before seeing

this RPM item, the participant must have some knowledge about matrix, i.e., rows and columns are formed

according to some rules; she knows that images can be superimposed on one another and compared at pixel

level; she probably knows the concept of union; however, she has never seen these elements being pieced

together; to solve this item, she needs to establish an understanding of the unfamiliar situation based on her

existing knowledge. All RPM items are designed this way, i.e., using common sense, common concepts,

common knowledge, and innate mental abilities to create unfamiliar situations for participants to understand.

If we compare human intelligence testing and AI testing, we can find a major difference between them—

human intelligence tests measure specific cognitive abilities that underlie all intellectual tasks, whereas AI

testing measures performance on specific clearly-defined tasks that involve almost all cognitive abilities. An

unavoidable problem is that if the ultimate goal of AI research is AGI, a method will be needed to measure

AI’s cognitive abilities, rather than task-specific performance, sooner or later. But the difficulty for test AI’s

cognitive abilities is that it is hard to find a single clearly-defined test that if we build an AI system that

perfectly pass the test, then we can say that we are done with the cognitive abilities that are tested by the test.

That is, the success on this specific test guarantees success on all possible tests that require the same set of

cognitive abilities; at least, failures are not caused by lack of these cognitive abilities.

As indicated above, RPM is located at the center of all intelligence tests and the intelligence factor that

RPM measures is exactly the ability that the most advanced AI systems lack. Therefore, an ideal first step

toward measuring AI’s cognitive abilities can be taken by translating RPM tests to AI tests, including not

just the test content but the administration protocols. If this is possible, then the new tests can guide the

development of AGI systems in a more reasonable direction. On the flip side, if we can build an AI system

that solves RPM or RPM-like tests in a similar way that human participants solve them in intelligence testing

sessions, then this system is more likely to exhibit task-nonspecific cognitive abilities in many different tasks

than RPM. Therefore, the core proposal of this dissertation research is to build cognitively-inspired AI

systems that can solve RPM or RPM-like tests in a similar way that human participants solve them

in human intelligence testing. This core proposal can be better addressed by decomposing it into several

research questions, which will be discussed in the remaining sections of this chapter.
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2.2 Research Question 1: From Psychometrics to Artificial Intelligence

Since the core proposal is derived from RPM, it is necessary to explore the psychometric origin of RPM and

the computational works based on RPM and RPM-like tasks. In particular, the following specific research

questions should be explored:

• What does RPM measure exactly? And how does RPM measure it?

• What are the entire task domain that RPM represents? i.e., what are the other tasks in the task domain?

• How do current AI systems solve RPM and RPM-like tasks?

2.3 Research Question 2: The Interplay between Perceptual and Conceptual Processing in Visual

Abstract Reasoning

RPM is a classical visual abstract reasoning task. As many other visual abstract reasoning tasks, it requires

reasoning about abstract concepts (e.g., union in Figure 2.1) which are represented by raw perceptual/visual

elements (e.g., different geometric shapes and colors in Figure 2.1). In the case of trivial generalization, the

combinations of abstract concepts and perceptual elements are the same across testing and training. This

case corresponds to the common situation in machine learning where the distributions in training and testing

datasets are the identical or similar. The difference is that, in common machine learning tasks, there is usu-

ally no clear distinction between abstract concepts and perceptual elements when collecting or creating the

dataset, and thus no explicit control over abstract concepts and perceptual elements. In the case of nontriv-

ial generalization, as the name indicates, the combinations of abstract concepts and perceptual elements in

training are different from the ones in testing. For example, before seeing the example in Figure 2.1, the AI

system knew the geometric shapes, colors, and the concepts of union, but never saw them combined together.

Although visual abstract reasoning tasks, like RPM-like datasets, can be presented to AI systems in either

trivial or nontrivial manners, a reasonable criterion for evaluating AI systems should include both of them.

Thus far, the nontrivial generalization in visual abstract reasoning poses a greater challenge for AI than the

trivial one. The nontrivial generalization is fundamentally different from the classical views of learning tasks,

such as approximating high-dimensional functions, and/or generalizing to similar probability distributions.

Consider a neural network trained to classify images containing two geometric shapes (one on the left and

the other on the right) according to the relation between these two shapes. We assign an image a positive

label (1) if the size of the left shape is larger than that of the right one or (2) if the color of the two shapes

is the same; otherwise, we assign it a negative label. If the neural network was well trained, it should have

proper representations of size, color, “larger” and “same”, but only in pairs of (size, “larger”) and (color,

“same”). If the network really learned the abstract concepts of “larger" and “same”, then it should also be
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able to handle the pairs of (color, “larger”) and (size, “same”). This kind of generalization is particularly

difficult because once the training was finished, the representations are fixed, but generalizing to the new

pairs of (color, “larger”) and (size, “same”) actually gives new meanings to old perceptual elements—color

and size—and new interpretations to the old abstract concepts—“larger” and “same”.

Intuitively, in order for such nontrivial generalization to work, we need to either consider the possible

new meanings and interpretations during training or design architectures that allow dynamically forming new

meanings and interpretations when the new pairs are observed during testing. This intuition inspires me to

consider the dynamics interplay between perceptual and conceptual processing. In particular, without the

interplay, the perceptual and conceptual processing are just encoding abstract concepts and visual stimuli, re-

spectively; with the interplay, the perceptual and conceptual processing are possibly encoding the underlying

processes of applying abstract concepts on perceptual stimuli and deriving perceptual stimuli from abstract

concepts. I hypothesize that the interplay between perceptual and conceptual processing could be a key to

nontrivial generalization. It needs to be pointed out that there might exist other keys to nontrivial generaliza-

tion and also that the interplay might not be a sufficient key (but just a necessary component). Nonetheless,

I decided to investigate the effect of the interplay between perceptual and conceptual processing on visual

abstract reasoning tasks. That is, my second research question is to what extent the interplay mechanism

between perceptual and conceptual processing can help solve visual abstract reasoning tasks, especially

nontrivial generalization, in AI systems.

2.4 Research Question 3: Computational Imagery

An introspection of how we humans solve RPM would arguably tell that we are solving RPM, a visual

abstract reasoning task, visually. In cognitive psychology parlance, we can use mental imagery to solve

RPM. Mental imagery is an imagistic representation that can be manipulated mentally. The advocates of

mental imagery argue that the way mental imagery functions in human brain is the biological/neural basis

upon which other higher cognitive abilities are built. Mental imagery is important for human cognition and

for building AI systems because it allows abstract concepts to be incarnated and applied on visual stimuli

to generate mental images. This is possible even when such application of abstract concepts is impossible

or nonexistent yet in reality. Thus, mental imagery is an important cognitive ability for robustness and

generalizability in unfamiliar situation and for creativity. Given these advantages of mental imagery, the third

research question is whether imagery, when implemented computationally in AI systems, is sufficient

for solving visual abstract reasoning tasks.
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2.5 Research Question 4: From Generative to Productive

However, mental imagery is probably not the only basis of human cognition. In the community of cognitive

science. the ongoing debate over imagery has been lasting for decades and never got resolved. Another ma-

jor competitor is the propositional representation. Beyond cognitive science, AI researchers are also facing

a similar debate over different representations. The difference between human cognition and AI is that no

matter what representation (imagery or proposition, or both) human cognition uses, it supports robust intel-

lectual ability in all situations, but choosing one representation against another in AI systems usually means

significant limitations in some scenarios. Thus, the interesting of using imagery in AI system is to see how

we can use it in a way that is as robust as in human cognition.

A possible direction is to extend the pure imagery-based system to an imagery-based production system.

And interestingly, it seems that the work can be started from the generative models, such as autoencoder,

GANs, transformers, and diffusion models, that have become especially popular in recent years. These

models can be considered as prototypical imagery-based production systems in that they usually do not

involve multi-step reasoning about complex structure of abstract concepts and rendering the outcome of each

reasoning step in images. Consider the situation where a human subject solves RPM: she would inspect matrix

entries row by row and column by column, apply the image operations, and generate many intermediate

results; she would also make an analogy between rows and columns, which is at a higher level than the

concepts embodied by rows and columns; when multiple concepts and perceptual elements were involved,

she would iteratively process each of them, possibly retracting previous results and redoing them. Current

generative models are not able to implement all these procedures and orchestrate them effectively. Thus,

the fourth research question is how to extend a generative model to a production system that is able to

produce a flexible reasoning trajectory in imagery.

2.6 Summary

According to the above discussion, we have the following research questions:

1. How are RPM and RPM-like tests used in human intelligence testing and in AI research?

2. To what extent the interplay mechanism between perceptual and conceptual processing can help solve

visual abstract reasoning tasks, especially nontrivial generalization, in AI systems

3. Is imagery, when implemented computationally in AI systems, sufficient for solving visual abstract

reasoning tasks?

4. How can generative models be extended to imagery-based production systems that are able to produce

a flexible reasoning process in computational imagery?

13



Chapter 3 presents a comprehensive literature review of related works to answer Research Question 1. Chap-

ter 4 through 6 will elaborate on Research Question 1, 2, and 3, respectively, including the works that have

been done and the ones that could be done in future.

14



CHAPTER 3

From Psychometrics to Artificial Intelligence: An Introduction to Raven’s Progressive Matrices

As being widely used to measure human intelligence, Raven’s Progressive Matrices tests also pose a great

challenge for AI systems. There is a long line of computational models for solving RPM, starting from 1960s,

either for understanding the involved cognitive processes or solely for problem-solving purposes. Due to the

rapid development of AI technologies, especially the advent of deep learning models in the last decade, the

computational studies on RPM have also changed a lot. Therefore, this chapter look back at this long line

of research. As the title—“An Introduction”—indicates, this chapter provides an all-in-one presentation of

computational models for solving RPM, including the history and intelligence testing theory of RPM, RPM-

like tasks, a conceptual chronicle of computational models for solving RPM, which reveals the philosophy

behind the technology evolution of these models, and suggestions for transferring human intelligence testing

to AI testing.

3.1 Introduction

Most AI researchers, if not all, must have ruminated on fateful questions, which are disturbing but cannot be

answered yet, such as “how far are we on the way to achieve the human-level AI?” and “how long does it

take for us to fully understand the fundamental mechanism of intelligence?” Some are more pessimistic, like

“will human-level AI be realized in my lifetime?” Though these questions cannot be answered for now, every

AI researcher is glad to see these questions being raised and attempts being made to answer them, because,

whether optimistic or pessimistic, these questions represent the scientific conscience of AI research.

Works to answer these questions are mainly centered around comparing AI systems and humans on daily

tasks that are considered indicators of intelligence. Among these works, the most direct way is to evalu-

ate AI systems on human intelligence tests. The scope of intelligence tests is larger than the ability tests

used in clinical setting. For example, SAT and MAT can be considered as intelligence tests. In addition,

many developers and publishers do not name their tests intelligence tests for some people consider the word

“intelligence” elitism and racism, and prefer to use more accurate words, like “tests of learning abilities”,

“assessment of memory and attention”, and “development motor scales”. Intelligence tests are usually clas-

sified into two categories—single-format tests and battery-types tests. The single-format test contains items

of the same format while the batter-type test contains multiple subtests of different formats. As current AI

systems require the problem format to be clearly defined, evaluations of AI systems on intelligence tests are

mainly on the single-format tests or a subtest of battery-type tests.
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Raven’s progressive matrices (RPM) are a family of single-format tests that have been used to test AI

systems in a substantial amount of works. Meanwhile, RPM has also become an impetus for developing

more intelligent systems that could solve RPM as well as humans. The length of this research line dates back

to 1960s; the width of this research line ranges across multiple disciplines, such as AI, cognitive science,

neuroscience, psychometrics and so on. However, there has been lacking a work that inspects this research

line in a joint view of its entire temporal and spatial span and establishes the theoretical depth of it. Given the

recent development of this research line, we believe now it is a good point to do this a work.

We will start this work by reviewing the basics of RPM in the context of human intelligence testing

in Section 3.2. The purpose of section is to answer the two theoretical questions that one would first ask

about RPM—what RPM measures and how RPM measures it. The answers go well beyond the ones like

“it measures human intelligence” and “it asks participants to solve problems”. By answering these two

questions, we intend to explain the rationale of using RPM as a human intelligence measure. We believe this

is necessary for analyzing the rationale of using RPM as a AI measure, and, more generally, for establishing

the theoretical foundation of AI testing.

We extend the discussion to the entire problem domain represented by RPM in Section 3.3. This domain

includes several more tasks that are similar to RPM and also used for human intelligence testing and AI

testing. To distinguish them from original RPM, we refer to them as RPM-like tasks. In these tasks, while

items for human intelligence testing are mostly handcrafted by human experts, algorithmically-generated

items are more and more useful in some special testing scenarios such as computer-based, adaptive, large-

scale and/or repeated testing. Algorithmically generated items are also a realistic incentive for studies of deep

learning models for solving RPM-like problems. Thus, in the second half of this section, we also reviewed

the important works for algorithmic generation of matrix reasoning items, which exactly replicate the format

of original RPM. In this section, we intend to (a) provide our readers with different choices of tasks and

problem/data sets for different research purposes, (b) provide practical guidance for building algorithmic

item generators, and (c) pave the way for the discussion of learning models in the following sections.

In Section 3.4, we propose a framework to collate all computational models for solving RPM and RPM-

like tasks. We refer to this framework as a conceptual chronicle because it emphasizes the conceptual connec-

tions between computational models and the underlying logic for technological development. It is neither like

the reviews that use specific taxonomies of reviewed works nor the ones that compile the reviewed works into

a chronological order. Instead, it simulates the process of how a beginner’s understanding of this field would

naturally evolve as she knows more and more about this field. In a sense, it is more like chapter organizations

of textbooks. We believe such a presentation is the best way for readers to gain a coherent understanding of

this field.

16



1 2 3

4 5 6

(a)

1 2 3 4

5 6 7 8

(b)

1 2 3

4 5 6

(c)

1 2 3 4

5 6 7 8

(d)

Figure 3.1: RPM examples of different formats and stimuli.

In Section 3.5, we zoom away from the computational models and address more general topics of AI

testing. We first tackle the fundamental issue in this research field—i.e., the validity of using intelligence

tests and similar tests to evaluate AI systems. The discussion is based on the initial idea that AI systems

could be measured by these tests as human intelligence is measured by them. Unless this issue is properly

resolved, the practice of applying these tests on AI systems would be restricted into pure problem solving for

specific problems, rather than deepening our understanding of human intelligence and AI. Secondly, on the

flip side, we also discuss the implications of human intelligence manifested on intelligence tests for building

AI systems. The generalization ability and robustness of human intelligence on intelligence tests are far better

than what current AI systems could achieve. We believe such a discussion is crucial for future works in this

research field.

3.2 Raven’s Progressive Matrices

For readers who are not familiar with RPM, Figure 3.1 shows some examples of RPM items. The original

RPM tests contain items of four formats as shown in Figure 3.1. The items are presented as multi-choice

problems. The context can be a single image with one piece missing (Figure 3.1a), or a 2×2 or 3×3 matrix

with the last entry missing (Figure 3.1c, 3.1b and 3.1d). To solve an RPM item, one needs to select an answer

from the answer set to complete the context matrix. In original RPM tests, the answer sets contain 6 choices

for single-image and 2×2 matrices and 8 choices for 3×3 matrices.

Given different perceptual stimuli that populate the matrix, the item requires different cognitive abilities

and skills. For example, the items in Figure 3.1a and 3.1b tap into cognitive abilities of perceptual processing.

Particularly, Figure 3.1a requires processing perceptual continuity to interpolate the missing piece in (or

match the answer choices to) the context image; Figure 3.1b requires processing perceptual progression

to extrapolate the missing image. The other two items in Figure 3.1c and 3.1d differ from the first two

because they requires not only the perceptual processing abilities, for example, perceptual decomposition
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and organization, but also abstract inductive reasoning, which involves constructing abstract symbols from

raw perceptual stimuli and reasoning about these symbols.

Figure 3.1 represents the most typical designs of original RPM. It needs to be pointed out that RPM-like

tasks are not restricted to these designs and that various designs have bee used in the RPM-like task to test

different cognitive abilities and verify cognitive theories (more details in Section 3.3).

It has been claimed that RPM tests are the best single-format intelligence test that one can have. This claim

is based on the statistical evidence that the test scores on RPM are highly correlated with all other common

intelligence tests. RPM could be visually considered located at the center on the map of all intelligence tests

(Snow et al., 1984), implying that the underlying trait behind RPM tests is also central to the traits that are

measured differently. For this reason, while RPM receives much attention in clinical settings, it also receives

a great deal of attention in research settings, especially in the communities of cognitive science and artificial

intelligence.

3.2.1 What RPM Measures?

What RPM measures exactly? This simple question must have been haunting many researchers who are not

psychologists or cognitive scientists for the first several years of their research on RPM. Well, the answer

to this question may be quite straightforward to some researchers—it measures intelligence. But the others

simply do not understand why these “drop in from the sky” items can tell about a person’s intelligence. This

question is probably better to be rephrased as “why and how does solving these problems composed of simple

geometric patterns measure a person’s intelligence?”

The answer is not a simple one, given the complex nature of human intelligence testing. First of all, RPM

represents a type of intelligence tests that are theory-motivated. That is, the test development is inspired

and guided by some abstract theories about intelligence, which involve factors that are not observable. In

contrast, our stereotypical impression of tests is the ones that are related to our daily experience and pragmatic

purposes. For example, SAT contains sections of writing, verbal comprehension, and mathematics because

competence on them is necessary for students to perform well in college and graduate; the Armed Services

Vocational Aptitude Battery contains sections of electronics, auto, shop, mechanical comprehension, and

assembling objects, because these knowledge and skills are necessary for the technical positions in army.

The development of these tests starts off with clear purposes and understanding of what specific behavior

should be measured.

However, RPM, as an intelligence test, is to measure intelligence—a factor that is not clearly defined,

directly observable, or measurable. Thus, theories have been constructed to explain the relation between

intelligence and observable and measurable behavior. When RPM is not introduced to someone without
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clarifying the theories, she would have the question at the beginning of this subsection. In particular, John

C. Raven, the author of RPM (Raven, 1936, 1941), had studied with Charles Spearman, who noticed that

a person’s performances on tests of different cognitive abilities are correlated and thus hypothesized that a

factor—general intelligence g 1—underlies all cognitive abilities. Spearman further pointed out that the g

factor is composed of two abilities — eductive ability and reproductive ability. Eductive ability is the ability

to make meaning out of confusion and generate high-level, usually nonverbal, schemata which make it easy

to handle complexity. Note that the process of “eduction” is more often referred to as inductive reasoning.

Reproductive ability is the ability to absorb, recall, and reproduce learned information and skills.

To test eductive and reproductive abilities, Raven developed RPM and Mill Hill Vocabulary Scale, re-

spectively. In contrast to the pragmatic tests, the development of these tests started off with the author’s

personal understanding of these abilities. But, it is important to point out that the development of theory-

motivated tests are not idiosyncratic because the developer needs to prove that the test indeed measures what

it is expected to measure. The proof is usually achieved by collecting statistical evidence that the test score is

correlated with certain measurable behavior and other tests, which are determined by the purpose of the test

and interpretation of test score. For example, if the test is for recruitment, the test score should be correlated

with future job performance; if the test is a general intelligence test, the test score should be correlated with

cognitive ability tests and medical data such as fMRI data of the brain. In the terminology of psychometrics,

the developer needs to validate the test to make sure it measures what it is expected to measure. However, the

studies of RPM validity would make a new book; we simply claim that RPM is well-validated test of general

intelligence.

Readers might have already noticed that there are two abilities under the umbrella of g and correspond-

ingly two tests. What about the reproductive ability and its test? Why is RPM considered as the best single-

format test for general intelligence instead of the other? Is eductive ability more important than reproductive

ability? In his theory of general intelligence, Spearman did not treat these two abilities as separate factors. On

the contrary, he believed that there is only a single factor—g—underlying all cognitive abilities, and eductive

and reproductive abilities are two “analytically distinguishable components” of g (Raven, 2008). Eductive

and reproductive abilities are better treated as two interwoven general cognitive processes, through either of

which g can be measured. Since the test scores of RPM are best correlated to other intelligence tests, RPM is

considered the most effective single-format intelligence test.

Now is a good point to compare to another two relevant concepts that pervade the literature of intelligence

testing and our readers are probably more familiar with them. In the theory of general intelligence by Cattell

(Cattell, 1941, 1943, 1963, 1987), he proposed that there are two general factors (emerging from factorial

1Spearman referred to g as general cognitive ability because he thought the word intelligence had been abused by many people.
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analysis) subtending intellectual performance—fluid intelligence and crystallized intelligence. Fluid intel-

ligence, g f , is the ability to discriminate and perceive complex relationships when no recourse to answers

is already stored in memory. Crystallized intelligence, gc, consists of judgmental, discriminatory reason-

ing habits long established in a particular field, originally through the operation of fluid intelligence, but

no longer requiring insightful perception for their successful operation. The definitions of fluid and crystal-

lized intelligence resembles the ones of eductive and reproductive abilities. Moreover, fluid and crystallized

intelligence are frequently used as synonyms of eductive and reproductive abilities in literature. But these

two sets of terms are conceptually different. In particular, Spearman considered eductive and reproductive

abilities as two components, while Cattell treated fluid and crystallized intelligence as factors. When we say

components of a system, we mean that the components must work together for the system to work; if either

of eductive and reproductive component does not work, the whole system does not work. But when we say

factors (especially in factorial analysis), we mean different dimensions that each exert separable influence on

experimental outcome and thus can be studied separately. We can calculate what percentage of the variation

in the data is caused by which factor (using procedures in analysis of variance), but it is conceptual wrong to

do so in component systems because the components’ influences are not separable. Note that this does not

mean that factors are completely independent because two factors can still correlate and jointly contribute to

a proportion of variation. A good example is height and weight of an athlete, which are correlated, but still

two different concepts and factors. As factors, their private and shared contribution to athletic ability can be

determined statistically if we collect data of athletes. Therefore, when we are using these two sets of terms

interchangeably, we need to be clear about which theoretical assumption about them are made and thus have

different conclusions for the experiments if necessary.

Beside the conceptual issue behind terminology, another issue is that the boundary between theory-

motivated and pragmatic tests is not so clear in practice. As more and more research is conducted on a

pragmatic test, theories will be invented to explain human responses on the tests. Similarly, as a theory-

motivated test is proven to be a valid measure for some mental trait, it is also possible to use it for pragmatic

purposes. For example, RPM was once used for military recruitment in UK during World War II (Burke,

1958).

3.2.2 A Brief History of RPM

This review would be an incomplete one if we did not say something about the history of RPM, which is

almost 100 years long. Admittedly, not every detail of this history is relevant to our research of RPM in

the context of AI. However, the development of RPM in human intelligence testing would provide potential

enlightenment for the future of AI testing, which is largely undefined yet. We will introduce the whole family
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of RPM in this subsection2, and discuss the the motivation behind each RPM test and the connection between

them.

Raven (1936) developed the first RPM test in 1930s when he was studying with Lionel Penrose, who

was a geneticist and psychiatrist. This test was used to study the genetic and environmental determinants of

intellectual defect. As other genetic studies, this study required a large population of subjects, including adult

parents and children at all ages, being tested at different places, such as home, school, and workplace. It is,

therefore, infeasible to administer full-length intelligence tests, such as Binet tests and Wechsler tests, which

require hours for a session. In addition, because some subjects then were illiterate and many workplaces were

too noisy for verbal questions, the testing items had to be nonverbal and as self-evident as possible. These

practical requirements together led to the design of the first RPM test.

As we have mentioned, the development of RPM was theoretically inspired by the Spearman’s theory

of intelligence. Although the theory is instructive for understanding intelligence, the overarching g factor is

a latent variable, which is not directly observable and measurable. This makes its measurement inherently

complicated because one needs to identify the measurable activities and decide how they relate to the latent

variable, for example, it can be calculated by weighting scores on multiple cognitive ability tests. To simply

its measurement, Raven mentioned in his personal notes that he intended to develop “a series of overlapping

homogeneous problems whose solutions required different abilities” (Carpenter et al., 1990). In particular,

these items are homogeneous in the types of perceptual stimulus and abstract relations, but their difficulty

varies in a wide range. If these homogeneous items are arranged evenly in an increasing order of difficulty,

they together will form a ruler of intelligence. That is, a subject is less likely to be able to solve an item if

she cannot solve the items before it. As the test is administered to more and more people and more data are

collected, the item difficulty is determined more accurately (relative to people’s ability to solve it; through

psychometric procedures). Now, the outcome of this multi-ability, homogeneous, and increasing-difficulty

design is that we can measure the latent variable g with a single single-format test. Intuitively, the RPM tests

make the g factor directly measurable and the scores more interpretable as we use a tape measure to measure

height and a thermometer to measure temperature.

RPM is a family of progressive matrices tests, including three main tests—Standard Progressive Matrices

(SPM), Coloured Progressive Matrices (CPM), and Advanced Progressive Matrices (APM), and each test has

multiple versions consisting of different items. The first RPM test is the SPM test published in 1938 (Raven,

1941), which is the ancestor of all the following RPM tests. Including the first version of SPM, all the SPM

tests are composed of 60 items, which are organized into 5 set (A, B, C, D, and E) according to their difficulty.

2This subsection is mainly based on the manuals of RPM tests. For readability, we will not insert citations of the manuals in this
subsection. Otherwise, it would be everywhere.
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The item difficulty increases within each set and from Set A through Set E. Meanwhile, each set has a distinct

theme manifested by the perceptual stimuli and conceptual relations of items in this set.

To spread the scores and have a better precision at the lower and upper ends of the ability range, the first

versions of CPM and APM were developed and published in 1947. CPM reused the Set A and B of 1938

SPM and placed a transitional set of 12 items—Set Ab—between Set A and B. The items in this set were

constructed to be intermediary in difficulty between Set A and Set B. Thus, CPM has had 36 items organized

into three sets. As the name indicated, CPM is printed in color to appear interesting as it is often administered

to children under 11. CPM can also be administered to mentally retarded persons, the elderly, and people

with brain injury. Different from SPM and APM, CPM was published in two forms — the book form (i.e., a

the paper-and-pencil test) and the board form. In the board from, each item is a board with a part removed and

movable pieces as answer choices to complete the board. The board form has been proved to be equivalent to

the book form, tapping the same cognitive process. Moreover, the board form has two advantages. First, the

board form can be better administered without verbal instruction because the administrator can demonstrate

the expected response by manipulating the board and answer pieces. This is important for people who are

deaf people or unable to communicate for some reasons.

The APM was originally drafted in 1943 for use by the British War Office Selection Boards, who needed

a more difficult RPM test that could provide better discrimination at higher levels than SPM. The APM test

was published in 1947, consisting of two sets — Set I and Set II. Set I comprises 12 items covering all themes

and sampled on the full test of SPM. In practice, Set I can be used to familiarize people with the test, sorting

people into the “dull” 10%, “average” 80%, and “bright” 10%, and decide whether SPM or Set II should be

used next. The 1947 Set II consisted of 48 items, which resembled the items in Set C, D, and E of SPM in

presentation and argument. In 1962, 12 items making no contribution to the score distribution were dropped

from Set II and the remaining 36 item re-arranged.

In the last decades, there has been a significant and steady increase in many intelligence test scores,

including the SPM scores. Among all RPM tests, SPM is designed to cover the widest ability range. But this

increase causes SPM to be less discriminative at upper levels of ability range (i.e., ceiling effect). In 1998,

a new SPM test—SPM plus—was published to restore its discriminative power at the upper levels, and,

meanwhile, keep its discriminative power at the lower levels unchanged. In particular, SPM plus includes all

the items in Set A and B of SPM and replaces moderately difficult items with more difficult items in Set C,

D, and E.

As a result of its simple self-evident format, insensitivity to culture and language, and centrality among

all intelligence tests, RPM has been the most widely studied single-format intelligence test and has large

amounts of testing data available for research. This, however, raises a concern that the test has become too
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well known and the participants could be coached for solving them or memorizing the answers. This is

problematic when important decisions (such as educational opportunity and job recruitment) are made upon

the test results. Therefore, parallel versions of CPM and SPM was developed in 1998. These versions are

designed to be parallel to the classic SPM on an item-to-item and overall score basis so that the existing data

of classic SPM and CPM could be used to analyze the data of the parallel versions.

The administration procedure of RPM tests is relatively flexible compared to other intelligence tests. RPM

tests can be administered both individually and in groups. In individual test, one administrator guides one par-

ticipant through the test. In group test, one administrator proctors the participants as in normal school exams.

Individual tests introduce emotional factors which are not present in group testing or self-administration, and

thus the scores are slightly lower than group tests, in which participant work on their own. But individual

tests allow the administrator to make sure the participant understands what to do and observe the partici-

pant to collect more data, such as whether the participant uses a trial-error strategy. Thus, individual test is

recommended when important decisions are made upon the test result. In both group and individual tests,

instructions can be given verbally or using gestures such as pointing, nodding, and shaking head. In most

cases, RPM tests are given in an untimed manner or with sufficient time to attempt every item since, when

timed, the validity of scores is reduced according to statistical evidence. Moreover, it has been argued that

RPM is neither a speed test nor a power test, or a combination of both. There is an exception that, after

familiarization with Set I of APM, Set II of it was administered with a time limit to measure the speed of

intellectual work.

To sum up, RPM is a big family of tests, including SPM, parallel SPM , SPM plus, CPM (with two

forms), parallel CPM, and APM. All the RPM tests that are used today have gone through many revisions as

more and more data are collected in different countries and from different groups of people. There also exist

different procedures to administer the tests, which result in qualitative different results. When studying RPM

in the context of artificial intelligence, it is important to point out which RPM test is used and how it is used

in terms of the administration procedures.

3.2.3 What RPM measures exactly?

At the beginning of this section, we have tried to answer the question “what RPM measures” from a theoretical

perspective. In short, RPM measures eductive ability, which is a component of general intelligence (i.e, the

g factor or genera cognitive ability), and thus can be used as an index of general intelligence. However,

the answer is still too abstract and does not land on the concrete items in RPM tests. To be honest, the

answer at the beginning could apply to almost every test of eductive ability, fluid intelligence, or general

intelligence. To tell the whole story of RPM, we further reify the answer by inspecting the concrete items and
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the administration procedures.

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

4 5 6

(c)

1 2 3

4 5 6

(d)

1 2 3 4

5 6 7 8

(e)

1 2 3 4

5 6 7 8

(f)

1 2 3 4

5 6 7 8

(g)

1 2 3 4

5 6 7 8

(h)

Figure 3.2: Example SPM item series.

We have indicated in previous section that the test design is the outcome of an iterative process, in which

the revised tests are repeatedly administered to people so that data can be collected to further revise the

test.Since RPM is also a theory-motivated test, the test design is also determined by by the theory of intel-

ligence and how it is implemented in the test. We take SPM as an example. To protect the secrecy of RPM

tests, we created several new items (Figure 3.2) that simulate the item series in SPM. As mentioned, there are

five sets in SPM (Set A, B, C, D, and E). The eight items in Figure 3.2 simulate the way how the item design

varies from the first item of Set A to the last item of Set E. At the beginning of Set A, a participant will see an

item similar to the one Figure 3.2a. The role of this item is to give the very basic idea of the test. This item is

a good starting point in that no prior knowledge is required to solve the item and its solution is self-evident

to almost every participant. In the standard administration procedure, this item is used for teaching trial. The

administrator explicitly tells (possibly in a nonverbal way) the participant that “only one of answer choices

can complete the pattern correctly” and which one it is correct for this item.

Note that in every administration procedure in the manual of RPM tests (individual or group, verbal or

nonverbal), the administrator only tells the participant which answer choice is correct, but never explains why

it is correct or the thinking process to solve it. This point is extremely important for the testing to be valid.

The teaching trials are to help the participant with the format of the test, i.e., one needs to select an answer

to complete the pattern, but not the content of the text, i.e., what pattern it is and how it is completed. The

content part is just what the test measures—eductive ability. An even stronger but similar argument (Raven,
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2008) is that it is not correct to describe RPM items as “problems to solve”. The instruction that an answer

has to be selected does not means that it is a problem. Instead, only when the participant has made some

meaning out of the item can the participant sees the item as a problem to solve. The meaning-making part is

the core of RPM items, which measures the eductive ability.

After the items for teaching trials, the participant will see an item similar to the one in Figure 3.2b. This

item takes an important transitional role that shifts the participant’s attention from the test format to the test

content. In particular, this item explicitly exhibits the nature of the test content—relational reasoning. That

is, to solve the following items, the participant needs to consider the relations between the objects rather

than, for example, repeating the raw perceptual input in the teaching trials. In addition, the transitional role

also lies in the appearance of the items: the teaching-trial items and the transitional items are not presented

as matrices, but the transitional items are one step closer to the matrix structure in the following items (see

Figure 3.2c through 3.2h), because the relations in transitional items happens in both the horizontal and

vertical directions. These transitional items are necessary because they assure that the participant give valid

responses to the following items based on the understanding accumulated in the previous items.

After the transitional items, the test enters 2×2 items like the one in Figure 3.2c and 3.2d, in which,

geometric objects are separated into the disconnected matrix entries. These 2×2 matrices start with the ones

that more rely on low-level perceptual processing (Figure 3.2c) and are relatively easy. After the participant

is familiar with the format of 2×2 matrix, it and gradually move on to the ones that involves more abstract

relations (Figure 3.2d) and are thus more difficult than the perceptual items.

The four items in Figure 3.2a through 3.2d represent the test design in the first two sets of SPM. The

following three sets follow the same logic—each item is like a rung of a ladder that makes it possible for

the participant to step on the next rung, and the maximum height the participant can reach depends on her

strength for climbing the ladder. As a real ladder rung, an item cannot be two far from the previous one. For

example, the participant will find an item similar to the one in Figure 3.2e, which is used to introduce the 3×3

structure. This item only differs from some items in Set A and B in the matrix size but underlying perceptual

processing remains the same. After the participant gets familiar with the 3×3 structure, SPM moves on,

as in the Set A and B, from perceptual items to the items that involve more abstract relational concepts,

such as number (Figure 3.2f), binary logical operation (Figure 3.2g), and ternary permutation (Figure 3.2h).

Moreover, the number of relations in item also gradually increases in the last three sets of SPM. For example,

the items in Figure 3.2e, 3.2f, and 3.2g each contain only one relation; the item in Figure 3.2h contains two

relations—permutation of object shape and permutation of filling texture.

The example series in Figure 3.2 epitomizes the design of SPM. Through this example, we can see the

motivation behind the test design is to provide an ability ladder for the participant to climb. The rungs/items
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are distributed evenly so that the ladder is climbable. Furthermore, the ladder is climbable to participants

for people at every ability level since it starts from the “ground”—i.e., the beginning trivial items requiring

no prior knowledge—and guides the participant to move in the expected direction through conceptually con-

nected items. Once the “field of thought” is established, how far the participant can go depends on her ability

in this field.

In a sense, SPM is different from problem-solving tests that everyone has taken at school. Instead, SPM is

a miniature that simulates a collection of all tests from elementary level to college level because one need to

graduate from every level sequentially. Although the duration for these two types of testing is vastly different,

both of them measure the learning potential of the participant. Note that the word “potential” here is more

suitable than “ability” because the “potential” means a latent quality that develops under the influence of

environmental factors. Since the environment factors can be better controlled in intelligence tests than in the

education system, SPM is probably a better measure of learning potential. Moreover, potential is more than

ability since the desire to learn knowledge and the courage to conquer new problems are also part of potential.

In general, RPM is much more than problem solving. Even the word “test” is misleading because of our

stereotypical impression of test. RPM tests are a system for evaluating eductive ability through measuring

the learning potential. However, the common practice of using RPM or RPM-like tests as purely problem-

solving tests and making extravagant claim about corresponding abilities of AI systems in many AI studies

have been a big misuse of these tests.

3.3 RPM-Like Tasks

In this section, we extend our discussion to the entire problem domain represented by RPM, which includes

RPM-like tasks that inherited the basic elements of original RPM tests and implemented them in more en-

riched manners. Such RPM-like items can be found in almost every modern intelligence test. In contrast to

the theoretical analysis in the last section, we take a more pragmatic approach in this section to describe these

tasks. In particular, We surveyed four intelligence tests 3 that are widely used in clinical setting and/or fre-

quently related to RPM in literature—Cattell’s Culture Fair Intelligence Test (CFIT), Cognitive Assessment

System-Second Edition (CAS2), Wechsler Adult Intelligence Test-Fourth Edition (WAIS-IV), and Leiter

International Performance Scale-Revised (Leiter-R). Through this survey, we summarized five tasks in the

problem domain—matrix reasoning, figure series, analogy making, contrastive classification, and open clas-

sification. In addition, We further survey the methods for algorithmically generating matrix reasoning items,

which are a prerequisite for the discussion in the following sections of data-driven AI models for solving

3There are many more important intelligence tests, such as Kaufman, Stanford-Binet, and Wookcock-Johnson tests. But because of
the limited access to these commercial tests and resemblance among their RPM-like items, we surveyed only four of them.
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RPM-like tasks. As we have mentioned, the items in intelligence tests are mostly handcrafted and thus in a

very limited number, which is far below the need of current data-driven models. This section could provide

options of existing RPM-like items and suggestions of algorithmically creating new RPM-like datasets for

different research purposed.

3.3.1 RPM-like Tasks in Intelligence Tests

Although the theories of intelligence behind the four intelligence tests are different, the RPM-like tasks in

these tests are consistent to some degree in terms of what is measured. For example,

• the RPM-like tasks in CFIT measures the general cognitive ability, i.e., the g factor, and stresses that

the g factor “reaches its purest expression, i.e., high g loading, whenever complex relationships have to

be perceived” (Cattell, 1950);

• the RPM-like tasks in CAS2 measures the simultaneous processing ability in the PASS theory of intel-

ligence (Das et al., 1994), i.e., the ability to “integrates stimuli into (conceptually) interrelated groups

or a whole” (Naglieri et al., 2014);

• the RPM-like tasks in WAIS-IV “involves fluid intelligence, broad visual intelligence, classification

and spatial ability, knowledge of part-whole relationships, simultaneous processing, and perceptual

organization” (Wechsler et al., 2008);

• the RPM-like tasks in Leiter-R measure “fluid reasoning, deductive and inductive reasoning, and the

ability to perceive fragments as a whole, generate rules out of partial information, perceive sequential

patterns, and form new concepts” (Roid and Miller, 1997).

From these descriptions of RPM-like tasks in these tests, we can see that they all more or less involve measur-

ing eductive ability or fluid intelligence. Given this internal connection between RPM-like tasks, it would be

unsurprising to see common elements shared between them. For perceptual elements, to distinguish eductive

ability (or fluid intelligence) with reproductive ability (or crystallized intelligence), they must not be unique

to certain cultural groups. There are not too many choices satisfying this requirement, for example, elements

from nature like sun and moon, human body (hand and foot), and common shapes and colors. Similarly, com-

mon conceptual elements, such as symmetry, topological relations, and number concepts, are also frequently

used to create RPM-like items. Now, it is already very hard for test developers to design novel elements for

RPM-like items because most of the appropriate elements have already been used in intelligence tests. If one

comes up with novel perceptual and conceptual elements that can be used in RPM-like tasks, it will be a great

contribution to intelligence test development. Exploration for proper perceptual and conceptual elements for

RPM-like tasks is also helpful for building and evaluating AI systems working in this problem domain.
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In addition to perceptual and conceptual elements, there are different formats to present these elements.

According to these formats, we classify the RPM-like tasks in the four intelligence tests surveyed into five

groups—matrix reasoning, figure series, analogy making, contrastive classification, and open classification.

These formats are equally interesting to the perceptual and conceptual elements, as each format is a delicate

way to present the same set of elements so that they can be instantly perceived as a problem to be solve but

not a trivial one.

3.3.1.1 Matrix Reasoning

Since the the four tests are battery-type tests, they all have multiple subtests, including the RPM-like subtests.

Therefore, to keep the whole test in a reasonable length, the RPM-like subtests are briefer than the original

RPM tests. In particular, these RPM-like subtests do not necessarily implement the “ladder” design men-

tioned in Section 3.2.3, which is an import feature of the original RPM tests. Nevertheless, three of the four

tests surveyed contain subtests that replicate the matrix format of original RPM: Test 3 of Scale 2 and 3 of

CFIT, Matrices of CAS2, and Matrix Reasoning of WAIS-IV. To distinguish them with the following RPM-

like tasks that we will discuss in later sections, we refer to them as matrix reasoning. Figure 3.3 summarizes

matrix reasoning tasks through a diagram.

Part A Part B

a11 a12 a1n

a21 a22 a2n

am1 am2 amn

b1

b2

bk

Background area (optional)

Given matrix entry (optional)

Hidden entry (optional)

Missing entry

Answer choice

Configuration

m, n : matrix dimensions

k : answer choice number
locations and numbers of : 
- hidden and missing entries in the matrix 
- bj's relative to Part A 

Figure 3.3: A diagrammatic summary of matrix reasoning task

As shown in Figure 3.3, there exist two parts in a matrix reasoning item—the context of this multi-

choice problem (Part A) and answer choices (Part B). Part A provides the contextual information through a

background and a matrix as foreground. Examples of the background can be found in the items of Figure 3.2a

and 3.2b. The matrix varies in size from 1×1 to 4×4 in most tests and has at least one missing entry. To

increase the difficulty, there can be some entries, which are intentionally hidden but need not to be completed.
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As indicated in the Configuration in Figure 3.3, the locations and numbers of these two types of entries can

also be customized for each item. Part B consists of 5 to 8 answer choices in most tests. The reason that

we separate answer choices from the context is not only that their functions are different but also that where

answer choices are located relative to the context has an influence on the distribution of choosing each answer

choices according to human experiment data. Therefore, this is a design choice that need to be considered in

test development. This is also a noteworthy point when evaluating AI on RPM-like tasks. That is, it requires

more investigation if AI systems behave differently when answer choices are located differently relative to

the context and relative to each other.

Although the matrix reasoning tasks replicate the format of original RPM (with slight modifications

such as hidden entries and different locations of missing entries), the content of them are more diverse than

original RPM. For example, the difficulty of original RPM mainly lies in extracting conceptual relations, and

the requirement for perceptual processing is relatively low; but, due to different underlying theories about

intelligence, some RPM-like items are designed to load more on perceptual processing abilities, for example,

mentally rotating complex 3D objects and the abstract conceptual relations are built upon such demanding

perceptual processing.

3.3.1.2 Figure Series

Essentially, what makes RPM items meaningful testing questions is the relations between figures and how

these relations are arranged in the 2D structure of matrices. There is no particular reason for using matrix

structure. That is, as long as the spatial structure makes sense to the relations, one can use any suitable spatial

structures (one could use a circular structure if the relations proceeds and comes back to itself, like modulo

addition +1modN and the circle of music keys). Thus, it would not be surprising to see a more fundamental

structure—series—to be used in RPM-like tasks, such as Test 1 of Scale 2 and 3 of CFIT, Sequential Order

and Repeated Pattern of Leiter-R, and part of Matrix Reasoning of WAIS-IV. We refer to RPM-like items of

this structure as figure series. A diagram was given to summarize figure series items in Figure 3.4.

Figure series has the several characteristics that make it different from other RPM-like tasks. First, the

structure of series determines that one or more relations are repeating themselves along the series. Note that

the relation is not necessarily a binary relation and it could involve more than two consecutive entries in the

series. Second, to provide sufficient contextual information, the figure series are usually longer than a row or

a column of matrix reasoning. Third, there could be one or more missing entries in the series. In particular,

the missing entry is not necessarily the last one.

Figure series could also be considered a special case of matrix reasoning task by restricting the dimen-

sions of the matrix, but it is also conceptual different from matrix reasoning task. In matrix reasoning, there
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Part A

Part B

a1 a2 an-1a3 an

b1 b2 bk

Given entry

Missing entry

Answer choice

Configuration

n : series length

k : answer choice number
locations and numbers of : 
- missing entries in the series 
- bj's relative to Part A 

Figure 3.4: A diagrammatic summary of figure series task

can be multiple distinct relations along the rows and columns of the matrix. In most cases, the row relations

are different from the columns one. One needs to figure out the relations in both row and and columns direc-

tions and assemble them to uniquely determine the answer. In figure series, multiple relations are repeating

themselves in a single direction.

3.3.1.3 Analogy Making

Besides modifying the format of original RPM (as in figure series), the context of it could also be viewed from

different angles. An important view is from an important human cognitive ability—analogy making. That is,

by viewing the matrix entries as analogs, analogies can be drawn between rows, between columns, or between

diagonal lines. The correct answer is thus the one that makes the best analogies out of the matrix. Therefore,

the nonverbal analogy-making task could be considered as a close relative of RPM. A classic example of this

task is the goemetric analogy problems (find images in (Lovett et al., 2009)) published in the 1942 edition of

the Psychological Test for College Freshmen of the American Council on Education. These analogy-making

items can also be found in intelligence tests we surveyed, such as Design Analogy of Leiter-R and part of

Matrix Reasoning of WAIS-IV. A diagrammatic summary of this task is given in Figure 3.5.

In the analogy-making task, the context is explicitly separated into two parts, Part A and A’ in Figure 3.5,

which are composed of analogs from two different domains. Part A and A’ correspond to the base and the

target domains in general analogy making situation, where the base domain is usually a familiar one and the

target domain is an unfamiliar one which is to be understood through the knowledge in the base domain.

The analogy-making task simulates this situation by arranging the analogs in Part A and A’ in the same way

and removing one or more analogs in the Part A’. Note that, although the analogs in Figure 3.5 are listed in

series, this does not mean that the same relations are repeating itself in the series as in Figure series. The

analogs could be arranged in any spatial layout when the layout make senses to the relations between analogs.

Since the analogs are usually in two series in most intelligence tests, the analogy making task resembles the

30



Part A (Base)

Part B

a1 a2 an-1a3 an

b1 b2 bk

Given analog

Missing analog

Answer choice

Configuration

n : analog number
k : answer choice number
numbers of  missing analogs in the Part A' 

Part A' (Target)

a1 a2 an-1a3 an
' ' ' ' '

locations of: 
- Part A, A' and B relative to each other 
- each bj relative to Part A and A' 

internal layouts of Part A and A', which
must be identical

Figure 3.5: A diagrammatic summary of analogy making task

figure series task. But these two tasks are conceptually different and requires different cognitive abilities.

The analogy-making task is also conceptually different from matrix reasoning task even when we artificially

separate the rows or columns of a matrix into two parts. This is because, to make an “interesting” analogy,

the base and target domains must be perceptually distant from each other and higher-order relations must be

extracted from both domains. In matrix reasoning, this means that the rows (or columns) must be sufficiently

perceptually different. These conditions are not always satisfied in matrix reasoning items, especially when

there exist relations in both horizontal and vertical directions.

3.3.1.4 Contrastive Classification

Classification has long been used to probe human and artificial intelligence. It requires the participant to

extract an abstract concept such that the given stimuli can be classified into these concepts. When these

stimuli are like the ones in RPM, classification can be regarded as an RPM-like task as they both reason about

the relation between multiple visual stimuli. In intelligence tests, classification tasks can be presented in a

contrastive manner. That is, two groups of stimuli are presented and the two groups represent two contrastive

but related concepts, for example, large-small, concave-convex, and high-low. But note that classification is

not limited to antonym pairs for it also uses concept pairs like pentagon-hexagon and more random concepts

like topological structures. The advantage of being contrastive is obvious: it allows the usage of complex and

diverse concepts (rather than simple concepts describing perceptual attributes) to make the test intellectually

interesting to participants; meanwhile, the complex and diverse concept would not make the item too open to

solve as the concept is uniquely determined by a unique difference between the two groups.

The most representative contrastive classification is the Bongard Problems. It requires the participant to
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Part A (Concept A)

Part B

a1 a2 ana3

b1 b2 bk

Given instance of Concept A

Given instance of Concept A'

Instance to classify

Configuration

n : number of instances of Concept A
m: number of instances of Concept A'
k : number of answer choices 

Part A'  (Concept A')

a1 a2 ama3
' ' '

locations of Part A, A', and B 

'

(a) Explicit contrastive classification

Part A

a1 a2 aqa3 a4 a5 a6 a7 a8

Given instance of Concept A Given instance of Concept A'

Configuration

l : number of instances of Concept A and A'

locations of instances relative to each other 

(b) Implicit contrastive classification

Figure 3.6: A diagrammatic summary of contrastive classification task
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verbally describe the conceptual difference between the two groups. In most intelligence tests, contrastive

classification is usually multi-choice problems, in which answer choices are selected to be a member of a con-

ceptual group, i.e., identifying instances of the concepts drawn out of the two groups. The contrastive classi-

fication are usually presented in two manners—explicit and implicit ones. For explicit ones (Figure 3.6a), the

two stimulus groups are explicitly separated, for example, the Bongard Problems and Test 2 of Scale 1 and

CFIT. Explicit contrastive classification tasks are also used to evaluate AI system, for example, the SVRT and

PSVRT datasets (Stabinger et al., 2021). For implicit contrastive classification (Figure 3.6b), the stimuli from

two conceptual groups are mixed together and the participant needs to separate the them into two groups, like

the famous Odd-One(s)-Out tests and Test 2 of Scale 2 and 3of CFIT. Note that, in contrastive classification

tasks, spatial layout of stimuli is less important compared to matrix reasoning and figure series. The only

requirement is that group membership is clearly indicated in explicit contrastive classification.

3.3.1.5 Open Classification

Part A

Part B

a1 a2 ana3

b1 b2 bk

Given instance of a concept

Instance to classify

Configuration

n : number of given concepts

k : number of instances to classify 
locations of Part A and B 

(a) Explicit open classification

Part A

a1 a2 ana3
Given instance of a concept

Configuration

n : number of given concepts

(b) Implicit open classification

Figure 3.7: A diagrammatic summary of open classification task

Classification task is naturally not contrastive in our daily cognitive activities. That is, the object to clas-

sify is not always accompanied by instances of another contrastive concept. Instead of being contrastive, the

real-life setting of classification is more based on perceptual and conceptual similarity. Thus, we referred to

it as open classification. In particular, the concepts involved in an open classification item can be completely

unrelated. There could be only one single concept. For example, in the verbal similarity subtest of WAIS-IV,
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one would see an item like “in what way are dolphins and elephants alike” 4. A possible answer is that they

are both animals and a better answer is that they are both mammals. Different answers are scored differently.

The more specific the answer, the higher the score. As shown by this example, verbal open classification

items require a certain amount of prior knowledge to be intellectually interesting. When open classification

is in nonverbal form, it could be considered as a RPM-like task. In the intelligence tests we surveyed, exam-

ples of nonverbal open classification include Test 4 of Scale 2 and 3 of CFIT and Classification Subtest of

Leiter-R.

Similar to the contrastive classification, the open classification can also be presented in explicit or implicit

ones, as summarized in Figure 3.7. The explicit open classification (Figure 3.7a) consists of two parts. Part A

provides instances of multiple concepts (not necessarily contrastive or even related) with each instance repre-

senting a distinct concept. Part B consists of instances to classify into the concepts in Part A by matching to

the instances in Part A. The implicit open classification (Figure 3.7b) is similar to the verbal open classifica-

tion example except that the dolphins and elephants are replaced by nonverbal stimuli. The response format

and scoring are also similar to the dolphin-elephant example.

3.3.1.6 Summary

The five categories of RPM-like tasks that we summarized from the intelligence tests are by no means com-

prehensive. The purpose of them is to expand our attention to the entire problem domain represented by

RPM so that the AI research is closer to the nature of the problem domain rather than focusing only solve the

original RPM or specific tests. The problem domain is much more diverse and larger than the approximately

100 original RPM items. The problem domain spreads out to all visual stimuli and relations among them that

are proper to test people with certain prior knowledge and experience.

In item writing of intelligence test , a good “taste” is extremely important. Firstly, a good item first has to

be straightforward for the participant to realize that this item is a problem to solve. This point seems saying

nothing because any intelligence test item is a problem to solve. The word “problem” here should not be

understood literally. In particular, the item is a problem to solve not because the the administrator tells the

participant it is so or the participant knows that a test is composed of problems. Instead, the participant should

realize this by observing the item and forming a conjecture that there should be underlying patterns based on

the observation. This conjecture is more of feeling rather than a complete understanding of the solution or

patterns, which means that it is based on a rough idea of what should be paid attention to solve the item. This

characteristic to give the participant this feeling is important because it makes the item intellectually inter-

esting and attractive to the participants and the participant is thus motivated to solve the item. Without this

4This item requires the participant to classify the objects into one of the many concepts that she knows.
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characteristic, the participant would possibly give invalid responses, for example, giving random responses

without thinking.

The second point in item writing is that the scope of item content should allow a large range of difficulty.

Specifically, it should allow to create rather difficult items to test highly intelligent individuals. This point in

itself is not an issue because there exist a huge amount of sophisticated abstract relations and patterns if one

delves into any specific field. But, when combined with the first point—straightforward as a problem, this

poses a great challenge because these points are contradicting to each other in many cases. A master of item

writing is one who can reconcile these two points and achieve a combined effect that when the participant sees

the item, she immediately understands in what way it is problem to solve and invests effective intellectual

effort to solve it, and when a correct answer is reached, it would be an aha moment that the participant

strongly believes that the problem is solved. In this sense, the five categories of RPM-like items mentioned

above are masterpieces of item writing. But this does not mean that the problem domain is limited to these

categories, and more efforts are needed to further explore the problem domain.

3.3.2 Algorithmic Item Generation of Matrix Reasoning

Algorithmic Item Generation (AIG) refers to approaches using computer algorithms to automatically create

testing items. AIG was initially introduced to address the increased demand for testing items in the special

test settings:

• Large-scale testing, for example, repeated tests in academic settings and longitudinal experiments,

where many parallel forms are needed due to the retest effect.

• Adaptive testing, in which the next items are determined by the responses to previous items, which is a

more efficient and reliable testing form, but also requires larger item banks.

• Computer-based and internet-based testing, which makes standardized tests more accessible to the

public and brings the exposure control issue to a new level.

For AIG to work, test developers must have a deep understanding of what is measured and the corresponding

problem domain, from which items are generated. In addition, test developers also need to examine the testing

properties of generated items, such as validity and reliability, as they are examined in handcrafted tests. AIG

has been studied and used in different areas, such as psychometrics, cognitive science, and education. It can

be used to a wide range of testing items from domain-general tests, such as human IQ tests, to domain-specific

tests, such as medical license tests (Gierl et al., 2012).

As RPM-like tasks are more and more used in human intelligence testing and AI testing, the demand

for RPM-like items has been increasing rapidly. In particular, since data-driven AI systems were applied on
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RPM-like tasks, the scale of this demand has been changed from hundreds to millions, which is impossible

for human item writers to satisfy. Thus, AIG of RPM-like items has been receiving more and more attention.

However, AIG of RPM-like items have been studied separately in different research fields. In this subsection,

we aggregate these works from different fields together and systematically explore how AIG of RPM-like

items works in both human intelligence testing and AI testing. To have a thorough discussion on technical

details and theoretical implications, we focus on the matrix reasoning task, which is the most widely studied

RPM-like task in both human intelligence and AI. In the rest of this subsection, we first review the AIG works

of matrix reasoning for human testing. Then, we switch to the ones for AI testing.

3.3.2.1 Algorithmically Generating Matrix Reasoning Items for Human Intelligence Testing

Human intelligence tests consist of items which are carefully handcrafted by strictly following the procedures

of psychometrics and theories of human intelligence. In particular, Handcrafted items must go through iter-

ations of evaluation and calibrating for good psychometric properties before being included in the final item

bank. The attrition rate could be up to 50% (Embretson, 2004). A variety of efforts in AIG have been made

to free item writers from this onerousness. In the following, we discuss the typical AIG works of matrix

reasoning for human intelligence testing. The title of each reviewed work is followed by a keyword of its

most outstanding characteristic. The technical details of the works are summarized in Table 3.1.

3.3.2.1.1 Rule-Based Item Construction—Human-Based AIG

The term “algorithmic item generation” is more often “automatic item generation” in literature. The word

“automatic” alludes to the usage of computer. But the algorithms and the theories of what to measure that

support the algorithms are the very essence of AIG, rather than the computer. As it will be shown in this

first reviewed work, computer is not necessary. Hornke and Habon (1986) conducted one of the earliest

studies, if not the earliest, on AIG of matrix reasoning items. They created a procedure for item generation,

hired university students to manually execute the procedure, and created 648 3×3 items. Each step in this

procedure has finite clearly defined options so that the student can choose between them randomly. Although

the diversity and complexity of these items are not comparable to ones handcrafted by human experts, no one

had ever “automatically” created so many items before Hornke and Habon (1986).

Hornke and Habon considered the item writing task as the reverse of solving, which can be decomposed

into three types of cognitive operations, which address three independent dimensions of the solving process.

To generate items, Hornke and Habon thus designed a procedure that sequentially make choices on the three

dimensions by selecting from finite sets of options:

• Variation rules of geometric elements: eight options are provided (see the first 8 matrices in Figure 3.8
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Identity Addition Subtraction Intersection

XOR Orientation Progression Closed Shape Variation Open Shape Variation

Separation Integration Embedding

Figure 3.8: Example items created by following Hornke and Habon’s AIG procedure.
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for examples)—identity, addition, subtraction, intersection, exclusive union (or symmetric difference),

progression, variation of open/closed gestalts (i.e. permutation of three hollow/solid shapes).

• Analogical directions: a variation rule proceeds in row or column direction.

• Perceptual organizations: this dimension addresses how multiple variation rules are combined into

a stimulus in a matrix entry. Three options are provided (see the last 3 matrices in Figure 3.8 for

examples): separation, integration, and embedding. Separation means that separate geometric elements

are used for different variation rule; integration means that different attributes of a single geometric

element are used for different variation rules; and embedding means that different parts of a single

geometric element are used for different variation rules.

In their experiment, the hired students were given a set of geometric shapes (e.g. differently sized squares

and triangles) and instructed to create items by jointly sampling the 3 dimensions and geometric shapes

from the given set. The students were told to create each item by combining at most two variation rules.

Therefore, the resulting item bank contained only 1-rule and 2-rule items. Human experiments on this item

bank showed that the cognitive operations corresponding to these 3 dimensions explained approximately 40%

of the item difficulty. As for the unexplained 60%, other early studies (Mulholland et al., 1980) indicated that

the numbers of elements and rules were also major sources of difficulty. Although this “human-based” AIG

work looks a bit primitive compared to the computational power today, the way it decomposes the generating

process has a long-lasting influence on the following works.

3.3.2.1.2 Cognitive Design System Approach—Combination of Cognitive Modeling and Psychomet-

rics

Embretson (1995, 1998, 2004) introduced the Cognitive Design System Approach. Different from other

AIG works that focus on generating items, this approach focuses on human testing by integrating cognitive

modeling and psychometric models and theories (such as IRT theory and models) into a procedure that

is similar to how human experts create and validate intelligence tests. A matrix reasoning item bank was

generated as a demonstration.

This approach starts with cognitive modeling of the solving process of an existing cognitive ability test

at the information-processing level. In the demonstration, Embretson (2004) reused the cognitive model

proposed by Carpenter et al. (1990), which have also been used in many other AIG works of matrix reasoning.

However, Embretson (2004) also pointed out that the cognitive model did not include perceptual encoding or

decision processes in the solving process. Thus, Embretson (2004) incorporated three extra binary perceptual

stimulus features—object overlay, object fusion, and object distortion—in the generation procedure, which
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represent three different types of mental decomposition of the complete gestalt into its basic parts. Object

overlay and fusion are similar to separation and embedding in Figure 3.8, while object distortion refers

to perceptually altering the shape of corresponding elements (e.g. bending, twisting, stretching, etc.). A

software—ITEMGEN—was developed based on this approach.

Once the cognitive models are determined, the stimulus features are accordingly determined. It then

integrates these features into psychometric models to estimate item properties (e.g. item difficulty and item

discrimination), formulated as parameterized functions of the stimulus features. The function parameters are

initially set by fitting the psychometric models to human data on the existing cognitive ability test. Thereafter,

the item properties of newly generated items (by manipulating the stimulus features) can be predicted by these

functions. The prediction and empirical analysis of the newly generated items are compared to further adjust

the parameters. Once the functions are sufficiently predictive, the psychometric model can be integrated into

an adaptive testing system to replace a fixed item bank and generate items of expected properties in real-time.

To sum up, the Cognitive Design System Approach is more than constructing an item generator; it also takes

into account the psychometric properties of the generated items.

3.3.2.1.3 MatrixDeveloper—4-by-4 Matrices

MatrixDeveloper (Hofer, 2004) is an unpublished software for generating matrix reasoning items. It has been

used in a series of psychometric studies of algorithmically-generated matrix reasoning items (Freund et al.,

2008; Freund and Holling, 2011a,b,c). According to the limited description in these studies, the MatrixDe-

veloper is similar to the Cognitive Design System Approach in terms of variation rules (e.g. the five rules of

the cognitive model of (Carpenter et al., 1990)) and perceptual organizations (i.e. overlap, fusion, and distor-

tion). The difference is that it generates 4×4 matrix items, which are uncommon for matrix reasoning task.

Theoretically, it can thus accommodate more variation rules than 3×3 or 2×2 matrices so that the differential

effects of variation rules can be better studied.

3.3.2.1.4 GeomGen—Perceptual Organization

The early cognitive modelings of solving handcrafted matrix reasoning items tend to characterize the items

by the numbers of elements and rules and types of rules, for example, (Mulholland et al., 1980; Bethell-

Fox et al., 1984; Carpenter et al., 1990). This characterization is consistent with the firsthand experience

of working on the items and direct measures of human behavior (such as accuracy, response time, verbal

protocols, and eye-tracking). In addition, the rationale of this characterization could be explained through

the working memory theory of Baddeley and Hitch. However, for creating new items, we need to consider

at least one more factor—perceptual organization (Primi, 2001). It tells how geometric elements and rules
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are perceptually integrated to render the item image. For example, the third dimension in the procedure of

Hornke and Habon (1986) is a specific way to deal with perceptual organization. More generally, perceptual

organization involves the Gestalt grouping/mapping of elements using Gestalt principles such as proximity,

similarity, and continuity. This factor is less clearly defined and no systematic description of this factor

has ever been proposed. But, to create new items, one has to adopt some formalized ways to manipulate

perceptual organization.

(Arendasy, 2002; Arendasy and Sommer, 2005) proposed a generator program—GeomGen—that adopted

a binary perceptual organization, which was reused and extended in many following works.The perceptual

organization in GeomGen provides two options—classical view and normal view. In classical view, the ap-

pearance of geometric elements changes while numbers and positions of them remain constant across matrix

entries. In normal view, numbers and positions of elements change while the appearance of them remain

constant across the matrix entries. An obvious difference between the two views is how the correspondence

between elements from two matrix entries is established. And this difference is important because it leads

to items that requires different cognitive processes at the very first step of correspondence finding before the

rules between matrix entries are considered.

The taxonomy of perceptual organization in GeomGen is only a specific way to define perceptual organi-

zation but by no means the unique way. For example, (Primi, 2001) proposed another important taxonomy—

harmonic and nonharmonic, which, together with GeomGen taxonomy, forms a more comprehensive descrip-

tion of perceptual organization that is adopted in many following AIG works.

Primi (2001) describes “harmonic organizations as visually harmonic items display perceptual and con-

ceptual combinations that represent congruent relationships between elements, whereas nonharmonic orga-

nizations tend to portray competitive or conflicting combinations between visual and conceptual aspects that

must be dealt with in reaching a solution.” Primi (2001) mentioned that, in the practice of AIG, the non-

harmonic items could be derived from the harmonic ones by manipulating the geometric elements to cause

misleading Gestalt groupings, as shown in Figure 3.9. The correct Gestalt grouping/mapping (i.e. element

correspondences) are obvious in harmonic items, whereas nonharmonic items requires extra cognitive effort

to resolve the conflict between competing gestalt groupings and mappings.

In summary, the contributions of all the aforementioned factors—the number of elements, the number

of rules, the type of rules, and perceptual organization—to item complexity could be explained by their

effect on the central executive component of working memory. But the ways they exert their influences

are different. The number of elements and rules relate to the short-term memory management and goal (or

strategy) management, whereas the type of rules and perceptual organization relate to selective encoding

and short-term memory management Primi (2001). According to the literature of AIG of matrix reasoning,
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A row from a harmonic
item, involving independent
variations of two elements.

Color is changed, but not
governed by any rule,
weakening similarity gestalt
grouping/mapping.

Position is changed, but
not governed by any rule, 
weakening continuity
gestalt grouping/mapping.

Figure 3.9: An example of deriving nonharmonic items from harmonic items.

the type of rules and perceptual organization are less investigated and might be important for understanding

the solving process of matrix reasoning and the item difficulty. Several human studies came to the same

conclusion Primi (2001); Arendasy and Sommer (2005); Meo et al. (2007), while other researchers might

have different opinions on this (Embretson, 1998; Carpenter et al., 1990).

3.3.2.1.5 Sandia Matrix Generation Software—High-Fidelity SPM Generator

The previous works study AIG more from the perspective of cognitive science and psychometrics. Less

details about algorithms and software development were given in the works. But, in practice, we are also

interested in how these ideas are implemented and, especially, accessibility of the generator software. Matzen

et al. (2010) provided in their work a representative example of this that could “recreate” the 3×3 SPM with

high fidelity—Sandia Matrix Generation Software.

Matzen et al. (2010) identified two basic types of 3×3 items in SPM— the element transformation and

the logic problems. An element transformation refers to a progressive variation of a certain attribute of the

element. There could be multiple variations in different directions, for example, a color variation in the

row direction and a size variation in the column direction. However, in every single direction, there is only

one attribute varying. This is because, on one hand, it is so in the original SPM, on the other, multiple

attributes varying in the same direction does not increase complexity of the problem (to human participants)
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compared to only one attribute. The attributes considered for transformation problems are shape, shading,

orientation, size, and number, each of which takes values from an ordered categorical domain. The logic

problems involve operations such as addition/subtraction, conjunction (AND), disjunction (OR), or exclusive

disjunction (XOR) of elements. Each generated item is either a transformation one or a logic one, but not

both.

In addition, Sandia Matrix Generator generates answer choices in a way of the original SPM problems.

An incorrect answer choice could be (a) an entry in the matrix, (b) a random transformation of an entry in

the matrix, (c) a random transformation of the correct answer, (d) a random transformation of an incorrect

answer, (e) a combination of features sampled from the matrix, or (e) a combination of novel features that did

not appear in the matrix.

The item difficulty was studied through an item bank of 840 generated items. The problem set contained

problems of 1, 2 or 3 rules (in row, column or diagonal direction). Note that the original SPM problem

does not contain 3-rule problems. The generated problem set and the original SPM were given to the same

group of college students. Experimental data showed that the generated items and the original SPM had very

similar item difficulty. In particular, the data further showed that the item difficulty was strongly affected

by the number of rules, analogical directions, and problem types (i.e., transformation problems versus logic

problems).

3.3.2.1.6 CSP Generator—First-Order Logic Representation

A more important thing about AIG is to give a general formal description of the generating process, rather

than developing various specific generator software. Wang and Su (2015) made such an effort to formalize

the generating process of matrix reasoning items through the first-order logic, and turned AIG into a con-

straint satisfaction problem (CSP) by formulating the “validity”5 of RPM items into a set of first-order logic

propositions.

In particular, a variation rule is represented as an instantiation of Equation (3.1) and (3.2),

∃α∀i∈{1,2,3}∃oi1,oi2,oi3P(α,oi1,oi2,oi3) (3.1)

P(α,oi1,oi2,oi3)=Unary(τ(oi1,α),τ(oi2,α),τ(oi3,α))∧ (3.2)

Binary(τ(oi1,α),τ(oi2,α),τ(oi3,α))∧

Ternary(τ(oi1,α),τ(oi2,α),τ(oi3,α))

where α is a goemetric attribute, oi j is a geometric elements in the figure of Row i and Column j, τ(α,oi j)

5Not exactly the same definition of validity in psychometrics
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is the value of α of oi j, and P is a predicate that describes the variation pattern of attribute α in each row.

In Equation (3.2), the predicate P further equals a conjunction of three predicates—Unary, Binary, and

Ternary—representing three categories of relations commonly used in matrix reasoning, as illustrated in

Figure 3.10.

x1        f(x1)       g(f(x1)) (x1      y1)            f(x1,y1)

(x2      y2)            f(x2,y2)

(x3      y3)            f(x3,y3)

x1            y1            z1

x2            y2            z2

x3            y3            z3

f(x1,y1,z1)=C

f(x2,y2,z2)=C

f(x3,y3,z3)=C

Unary Binary Ternary

x2        f(x2)       g(f(x2))

x3        f(x3)       g(f(x3))

Figure 3.10: Three categories of relations commonly used in matrix reasoning (Wang and Su, 2015).

An interesting observation of Figure 3.10 is that, mathematically, the unary relation is a special case of

the binary relation, which is a special of the ternary relation. That is, the ternary relation is theoretically

sufficient to generate all the items. However, interpreting the same variation as unary, binary and ternary

relations requires different working memory abilities and thus leads to different difficulties. Therefore, these

three categories are cognitively different, and need to be separately included in a generator program to achieve

a better control over psychometric properties.

Equation (3.1) and (3.2) represent only the variation pattern of a single attribute α . There could be

multiple variation patterns of different attributes in a matrix, i.e., multiple different instantiations of Equation

(3.1) and (3.2). Meanwhile, it is also possible that some attributes are not assigned any instantiations of

Equation (3.1) and (3.2). In this case, they could be given either constant values or random values across

matrix entries. Random values may cause distracting effects in the generated items, which is similar to the

nonharmonic perceptual organizations in (Primi, 2001).

To generate an item through Equation (3.1) and (3.2), the generator program samples values from finite

domains to determine (a) the number of rules (i.e., the number of the instantiations of Equation (3.1) and

(3.2)), (b) the attribute α for each rule, (c) the values of τ(α,oi j), (d) the specific types of Unary, Binary,

and Ternary relations. The matrix image is rendered from the instantiations of Equation (3.1) and (3.2), and

each incorrect answer choice is generated by breaking an instantiation of Equation (3.1) and (3.2) (i.e., using

values not satisfying them).

The generated items and the APM test were also given to a small group of university students. The

experimental data showed that the overall difficulty and rule-wise difficulty (number of rules) were similar
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to the items in APM. However, as the author pointed out, their generator could not synthesize all the items

in APM for some underlying transformations were hard to implement. When the items were created with

distracting attributes, the generated items became much more difficult for human subjects.

3.3.2.1.7 IMak Package—Open Source

Although there have already been many works on AIG of matrix reasoning, the generator software and the

source code are usually not easily available to the public. This makes it hard to reproduce and build upon

these works. Blum and Holling (2018) realized this point and released their generator as an R package—IMak

package—that is globally available via the Comprehensive R Archive Network. The source code and detailed

documentation of their work come with the R package. New items could be obtained by simply three lines

of R code in the R interpreter—one for downloading the package,one for importing the package,and one for

generating the items.

The author’s purpose of developing the IMak package is to study the effect of types of variation rules

on item difficulty. The generator was thus designed to manipulate the types of rules while keeping other

factors constant, and, thus, the generated items look quite different from the generated items of the generators

mentioned above. For example, Figure 3.11 shows some example items that we created through this package,

each of which exemplifies a basic rule type. With the current release (version 2.0.1), the geometric elements

are limited to the main shape (the broken circle plus the polyline in it), the trapezium that is tangent to the

main shape, and the dot at one of the corners of the polyline. Furthermore, the size and shape of these element

are fixed for all generated items, but the position, orientation and existence would vary according to 5 basic

rules.

As shown in Figure 3.11, there are 5 basic rules in IMak. All the rules are in the outward analogical

direction (i.e. row and column). For example, in Figure 3.11a, the main shape is rotated counterclockwise by

45 degrees in the first row; the main shape is rotated counterclockwise by 90 degrees in the first column. Then

the correct answer would be a counterclockwise rotation of the main shape by 135 (45 + 90) degrees compared

to the top left one. Similarly, all the other 4 examples follow the same analogical direction. Each item could

contain up to 4 rules (because mains shape rotation and reflection are conflicting). This design seems to

excessively simplify the RPM-like problems, but it does serve the very purpose of study the differential effect

of rules by fixing other factors.

Besides open-source accessibility and the special design of geometric elements, IMak has four other

distinctive features that are inspiring for following works. Firstly, IMak generates 2×2 format of AIG of

matrix reasoning. Being affected by the famous work of (Carpenter et al., 1990) on RPM, the vast majority

of AIG works would only generate 3×3 matrices. The 2×2 items have largely been neglected in the AIG
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Figure 3.11: Example items generated through the IMak package. Each item exemplifies a single basic rule.
The correct answer is set to the first answer choice for demonstration.

works of matrix reasoning. Secondly, the answer set contains two more meta-choices “no correct answer”

and “I don’t know”, which encourage subjects to solve the items more constructively rather than eliminating

responses. Thirdly, the variation of one element could depend on the variation of another element. For

example, the dot’s moves depend on the variation of the main shape, since the dot only moves along the

polyline in the main shape. This kind of variation rule is rare in matrix reasoning items, but common in

real-world problem-solving, and it represents an extra complexity factor of matrix reasoning.

Last but not least, IMak used a rule-dependent strategy to generate incorrect answer choices. For 1-rule

items, 4 distinct values of the attribute of the rule are sampled, including the correct value; since all other

attributes remain constant in the matrix, another random attribute is chosen and sampled for 2 values. The

resulting 8 (4×2) combinations make the 8 options in the answer set. For 2-rule items, 3 values are sampled

for each of the 2 attributes of the 2 rules, resulting in 9 combinations, and one of them is discarded. For 3-rule

items, 2×2×2 combinations are sampled in the same way. For 4-rule items, 2×2×2×2 combinations were

sampled in the same way, and half of them are discarded.

In a human experiment, 23 generated items were administered to 307 participants from Germany, In-

donesia, and Argentina. Reliability, validity and unidimensionality were initially verified by the experiment
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results. Particularly, item difficulty could be partly predicted from the number and type of rules based on

psychometric models. As a summary, the open source software is a more recommended way to publish AIG

works, especially for research purpose, as it can be shared across research groups around the world. More

importantly, the studies should not be restricted to a fixed set of items but the way the generator is designed.

3.3.2.2 Algorithmically Generating Matrix Reasoning Items for AI Testing

We now review two AIG works of matrix reasoning that were specially for AI testing. The datasets generated

in these two works are extremely influential on the data-driven AI models for solving RPM-like tasks because

almost all of them were tested on one or both of these two datasets. In addition, we also review the works

that address the context-blind issue of the algorithmically generated datasets reviewed, which is a special and

important issue for data-driven AI models.

3.3.2.2.1 Procedurally Generated Matrices

Based on the five rules in (Carpenter et al., 1990), Barrett et al. (2018) continued the first-order logic ap-

proach of Wang and Su (2015) and created a large-scale (1.2M items) dataset of matrix reasoning items—

Procedurally Generated Matrices (PGM). Since the generator program and source code are not publicly avail-

able, our discussion is based on the description in (Barrett et al., 2018) and our observation of the dataset.

In PGM, an instantiation of Equation (3.1) and (3.2) in the first-order logic approach was denoted by a

triplet [r,o,a] of relation r, object o 6 and attribute a. These three factors are not independent. Particularly,

Figure 3.12 summarizes their dependencies in the generator of PGM. Figure 3.12 consists of 29 paths from

the left to the right, corresponding to 29 [r,o,a] triplets7.

As shown in Figure 3.12, the objects in PGM are classified into two disjoint subsets—shape and line. In

the shape subset, closed shapes are arranged in 3×3 grid (fixed positions in this case) inside each matrix entry

(do not mistake this with 3×3 matrices). In the line subset, line drawings spans the whole area of a matrix

entry and are always centered in the matrix entry. A PGM item can include both shapes and line drawing, with

the shapes superimposed on the line drawings, but the reasoning about these two are completely independent.

Thus, in Table 3.1, we split PGM into two rows to describe it more clearly.

The generation procedure of a PGM item could be described by 5 steps: (a) sample 1 to 4 triplets from the

29 triplets described in Figure 3.12 (number triplets and position triplets can not be selected simultaneously);

(b) determine the analogical direction for each triplet: row or column; (c) sample attribute values for each

triplet from their domains (Different sampling methods are specifically implemented for different rules and

6Geometric elements in the AIG works for human intelligence tests are commonly referred to as goemetric “objects”, or objects for
short, in AI works. We thus use the term “object” in the discussion of AIG works for data-driven AI models.

7This number—29—equals the number of triplets mentioned in the work of Barrett et al. (2018), which, however, did not provide a
list of the 29 triplets. Therefore, we could only conjecture that the 29 triplets here are the ones used in PGM.
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Figure 3.12: Left: The dependencies among relations, objects, and attributes used to generate the Procedu-
rally Generated Matrices (PGM) dataset (Barrett et al., 2018). Each path from left to right corresponds to
a [r,o,a] triplet representing a variation pattern in the matrices. As one can check, there are 29 paths, i.e.
[r,o,a] triplets, in the graph. Note that Barrett et al. (2018) did not differentiate between “shape_type” and
“line_type” and referred to both of them as “type”. But these two are treated as two distinct attributes in
PGM’s implementation. Right: The dependencies among relations, nodes, and attributes used to generate the
RAVEN dataset. Note that we listed “distraction” as a rule in this graph to indicate that uniformity and ori-
entation are distracting attributes. The paths from constant through number and position to layout are treated
as a single rule in RAVEN’s implementation. Therefore, there are 15 paths/rules in the graph.

attributes); (d) determine the attribute values for unspecified attributes (either constant or random); and (e)

render all attribute values into a pixel image of the matrix.

The relations used in the PGM dataset, which are also referred to as rules in other literature, stem from

the 5 rules of APM summarized in (Carpenter et al., 1990), as follows:

• Constant in a row.

• Quantitative pairwise progression.

• Figure addition or subtraction, i.e. the set union and set diff (not arithmetic addition and subtraction),

which could also be considered as the logical operator OR and XOR.

• Distribution-of-three-values, i.e. the consistent union.

• Distribution-of-two-values, i.e. the logical operator XOR.

Comparing the PGM relations to the above rules, we found that they are almost equivalent. The “constant in

a row” corresponds to the without-distraction mode in PGM. The “distribution-of-three-values” corresponds

to the consistent union in PGM. The “figure addition or subtraction” and “Distribution-of-two-values” are

logical operator OR and XOR in PGM. However, the PGM has one more relation—AND—in addition to the

5 rules in (Carpenter et al., 1990) to be more complete.

3.3.2.2.2 Relational and Analogical Visual rEasoNing

The spatial configuration, as an important dimension of perception organization, is highly restricted in

PGM—3×3 grid for the shape subset, all-centered for the line subset, and superimposing a shape item on a
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line item. To enrich the spatial configuration of AIG of matrix reasoning, Zhang et al. (2019a) developed a

new generator and generated the Relational and Analogical Visual rEasoNing (RAVEN) dataset. In particular,

RAVEN includes 7 hardcoded spatial configurations, as shown in Figure 3.13. The source code of RAVEN’s

generator is available online8. The discussion of RAVEN is thus based on the inspection of the RAVEN’s

generator’s source code.

Figure 3.13: 7 hardcoded spatial configurations—center, 2x2Grid, 3x3Grid, Left-Right, Up-Down, Out-
InCenter, and Out-In2x2Grid—are used to arrange objects in each matrix entry in the RAVEN dataset. Each
configuration is represented by the bounding boxes that objects could occupy. The position and size of each
bounding box are hardcoded in the generator program. An example matrix for each configuration is given
in the first row (image obtained by running the generator code). Note that not every bounding box has to be
occupied, but every object has to be in one of the bounding boxes.

The 7 configurations are derived from a more general symbolic representation framework for images—

Attributed Stochastic Image Grammar (A-SIG). In A-SIG, an image is described by a tree structure, where

the conceptual granularity becomes finer and finer from root toward leaves. To generate RAVEN, the tree

structure is predefined as a general A-SIG tree as shown in Figure 3.14, which consists of 5 conceptual

levels—scene, structure, component, layout, and entity—and uses a stochastic tree-traversal process to gen-

erate images. In general, the main idea of an A-SIG tree is that, while traversing the tree, if the current node

has dashed edge to its child nodes, then expand a single random child node; if the current node has solid edge

to its child nodes, then expand all its child nodes. Attributes and their attribute value domains are attached

to nodes so that images can later be generated by sampling from these domains after the tree structure is

determined. Such a stochastic traversing process from the root to leaves would generate a skeleton of a class

of images—i.e. a spatial configuration. However, the 7 configurations in RAVEN were hardcoded in the

language of A-SIG, rather than generated through this stochastic traversing process, which could otherwise

have made RAVEN more diverse in spatial configuration.

To compare with the PGM dataset, we represent PGM items also in A-SIG, as shown in Figure 3.15. The

line configuration of PGM is basically the same as the center configuration of RAVEN except that the entity

8https://github.com/WellyZhang/RAVEN
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Figure 3.14: The general A-SIG tree and 7 specific A-SIG trees used in the RAVEN dataset (image adapted
from (Zhang et al., 2019a) by adding more technical details from the source code of the generator). The root
node denotes the scene that the image describes. The structure nodes are the containers of different spatial
structures. A structure is composed of components that could be overlaid with each other. Each component
has its own layout and, more importantly, variation rules, which are independent of other components. The
layout node, as its name indicated, contains the attributes specifying the number and positions of geometric
objects. Entities represent geometric objects with attributes, not including number and position.

types (shape) are different. The shape configuration of PGM is almost the same as the 3x3Grid configuration

of RAVEN except that bounding box sizes are slightly different. The shape-over-line configuration of PGM is

also conceptually similar to the double-component configurations of RAVEN. The general difference between

PGM and RAVEN lies in the layout and entity nodes. As shown in Figure 3.15, the PGM dataset is not able

to separate the concepts of “entity” and “entity layout” by using triplets [r,o,a]. That is, the object o takes the

roles of both layout and entity nodes, but could not play the roles effectively and simultaneously.

RAVEN inherited all the five rules from (Carpenter et al., 1990). Moreover, the “addition-and-subtraction”

rule is extended in RAVEN containing not only figure addition and subtraction (i.e., the set operations “OR

and XOR”) but also arithmetic addition and subtraction, which were not discussed in (Carpenter et al., 1990).

Since these two operations are conceptually different, we refer to the arithmetic addition and subtraction as

“arithmetic”, and the figure addition and subtraction as “OR and XOR”. In addition, the “distribution-of-

three-values and distribution-of-two-values” from (Carpenter et al., 1990) are merged into a single rule in

RAVEN by considering the latter as a special case of the former with a null value for one of the three values.

Therefore, RAVEN has a slightly different rule set compared to PGM. Similarly, we could represent the vari-

ation rules of RAVEN also as triplets — [r,n,a] where n represents nodes (layout or entity) in A-SIG trees,
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Figure 3.15: The spatial configurations of PGM represented in A-SIG to compare with RAVEN. There are 3
spatial configurations in PGM—line, shape, and shape-over-line—in PGM. The example matrix is given for
each configuration at the bottom (images taken from PGM dataset).

and r and a are relations and attributes, being the same as PGM. Then Figure 3.12 shows the dependencies

among r, n and a.

PGM and RAVEN generators are similar in some aspects. In particular, they share two similarities.

First, their choices of attributes, attribute domains, and rule types are similar. For example, they both forbid

number-rule and position-rule from co-occurring in an item because these two attributes would probably

conflict with each other. Second, although RAVEN has more spatial configurations, these configurations are

not structurally different from PGM (as can be seen from the comparison of their A-SIG trees). Meanwhile,

PGM and RAVEN are different in two aspects. First, they are different in the number of rules in an item.

In PGM, 1 to 4 triplets were sampled from the 29 triplets. In contrast, in a RAVEN item, every attribute is

governed by a rule except the two distracting attributes (uniformity and orientation). Thus, there are 4 rules

(for number/position, type, size, and color, respectively) in each RAVEN item. Second, the rules in RAVEN

are all row-wise while the rules in PGM are either row-wise or column-wise.
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3.3.2.2.3 Context-Blind Issue

The answer sets in RAVEN were generated in a similar way to the way in the first-order logic approach. That

is, each incorrect answer choice is created by modifying a single attribute of the correct answer. RAVEN

is slightly different from (Wang and Su, 2015) because RAVEN has only 5 attributes (not including the

distracting attributes) whereas (Wang and Su, 2015) has 15 attributes. Hence, in (Wang and Su, 2015), every

incorrect answer has a unique attribute on which it differs from the correct one; but RAVEN has to reuse

some of the 5 attributes to generate 7 incorrect answers, i.e. an attribute is given different values to generate

multiple incorrect answers.

This method of creating incorrect answer choices reaches the maximum level of distracting and confusing

effect, because one must identify all the variation rules to solve the problem. On the contrary, ignoring any

rule would lead to multiple choices. However, this design has a major drawback—it fails the context-blind

test for multi-choice problems. In a matrix reasoning item, the incomplete matrix is the context of the multi-

choice problem that provides information for solving the problem. Failing the context-blind test means that

it is possible for human participants or computational models to solve the item while turning blind to the

context.

Two works (Hu et al., 2021; Benny et al., 2021) separately pointed out the context-blind issue of RAVEN.

They provided evidence that data-driven AI models can achieve high accuracies (from 70%+ to 90%+) when

only given access to the answer sets of RAVEN. The context-blind performance of some data-driven AI

models is even better than the normal performance with full access to the items. This implies that data-driven

AI models are capable of capturing the statistical regularities in the answer sets. The reason for this context-

blind issue obviously lies in the generating process of answer set. In particular, since each incorrect answer

choice is a variant by modifying a single attribute of the correct answer choice, the correct answer must be

the one that possesses every common feature among all the choices (or, equivalently, the one most similar to

every other choice).

Both Hu et al. (2021) and Benny et al. (2021) proposed their own solutions to this issue—the Impartial-

RAVEN and RAVEN-FAIR datasets. These two datasets have the same context matrices as the original

RAVEN and regenerated the answer sets in different ways. The similarity and difference between these three

versions can be clearly illustrated by putting them in simple graphs. If we represent each answer choice as

a vertex and each modification of an attribute as an edge, then the answer sets of the three versions can be

depicted by the graphs in Figure 3.16. The answer set of the original RAVEN is created by modifying an

attribute of the correct answer. Thus, its graph is a star centered at the correct answer (the solid vertex). And

what the aforementioned computational models in the context-blind test captured was the unique center of
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the star structure.

Figure 3.16: The answer sets of three versions of RAVEN datasets depicted in graphs. Each vertex is an
answer choice and two adjacent vertices differ by one attribute.

Hu et al. (2021) proposed the Impartial-RAVEN, in which the answer set can be represented by a 3-

regular graph in Figure 3.16. To create such a graph, three independent attributes are randomly chosen from

the five attributes of RAVEN, and three values of the three attributes are sampled from the three attribute

value domains, respectively, so that the newly sampled values are different from the ones of the correct

answer. Then, by assigning new values to these attributes combinatorially, we would have 23=8 answer

choices, including the correct one. The relations among these 8 answer choices form the 3-regular graph in

Figure 3.16.

Benny et al. (2021) proposed a less regulated procedure to generate answer sets. Starting from an initial

answer set consisting of only the correct answer, an answer choice is randomly selected from the current

answer set, and then an attribute of the selected answer choice is randomly altered to alter to create a new

answer choice; repeat this process until we have 8 answer choices. This procedure results in tree structures

similar to the one in Figure 3.16.

These two enhanced versions of RAVEN were tested by context-blindly training the baseline model in

(Zhang et al., 2019a) and the CoPINet model in (Zhang et al., 2019b). The accuracy decreased to below

20%. Ideally, a human subject or computational model who context-blindly works on the RAVEN items

should perform as well as a random guess, i.e. 1/8=12.5%, which implies that the answer set per se does not

provide any useful information for solving the item. However, in the practice of item writing, to maintain a

certain level of distracting and confusing effect of incorrect answer choices, the majority of incorrect answer

choices must share some similarities among themselves, with the correct one, and the context matrix, which

would raise the performance of random guess a bit. On the flip side, without this design, it would be quite

easy for subjects to find the correct answer, because incorrect answers would be very much perceptually

distinct from the context and other answer choices. Therefore, a reasonable context-blind performance would

be slightly higher than random guess. The balance is determined by the item writer’s judgment.

A subtle difference between the two enhancements of RAVEN could be found by comparing their graphs
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in 3.16. If we consider a single trial (in a probabilistic sense) where we context-blindly give a participant

(or an AI model) an item from Impartial-RAVEN and an item from RAVEN-FAIR, the probability that this

participant solves the Impartial-RAVEN item would be almost the same as the probability of solving the

RAVEN-FAIR item. However, if we repeat this with different items again and again, the performance on

RAVEN-FAIR would probably exceed the performance on Impartial-RAVEN, assuming that the participant

is intelligent enough to figure out the graph structures behind the answer sets, and thus makes an educated

guess by selecting the “center” (or the max-degree vertex) of trees in a probabilistic sense. In this case, we

would say that the RAVEN-FAIR is context-blind valid at the item level, but not at the dataset level.

3.3.2.3 Summary

In this subsection, we reviewed AIG works of matrix reasoning items. We classified the works into two

groups by their purposes—whether it is for human intelligence testing or for AI testing. The works in the first

group aim at not only generating items but also good psychometric properties. As the classical studies on

intelligence tests, these works are usually based on cognitive models and psychometric models. The choices

of stimulus features are thus determined by the cognitive and psychometric models. Particularly, the factors—

the number of elements, the number of rules, the type of elements, types of rules, analogical directions, and

perceptual organizations—are usually considered in this line of research. Among these factors, the types of

elements and rules and perceptual organization are the less investigated ones due to the difficulty in defining

and formalizing them.

The works in the second group can be seen as the continuation of the first group, but the psychometric

aspects are less emphasized. For example, in an human experiment of PGM, in which 18 items were ad-

ministered to human participants, participants without prior experience failed almost all the items, whereas

participants with prior experience scored above 80%. Such a result is definitely not what a psychometrician

would expected from a test for eductive ability, fluid intelligence, or general intelligence. In contrast, the

result appear to be a result from a test of reproductive ability or crystallized intelligence. Generally speaking,

this result implies that the datasets for AI testing do not necessarily qualify for human intelligence testing.

More importantly, this gives rise to another interesting question—how do we assess the performance of

data-driven AI models on the large datasets such as PGM and RAVEN? On one hand, some data-driven AI

models indeed perform well on AIG items that pose great challenges to human subjects; on the other hand,

training on the large-scale datasets specially prepares the AI models for a highly restricted subset of the

problem domain, but human subjects, who are not trained at all, or just trained on several examples from this

subset, could perform well in the entire problem domain.

Similar questions were asked when AI systems first entered the area of human testing (Detterman, 2011).
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Efforts have been made to address these questions. (Bringsjord and Schimanski, 2003; Bringsjord, 2011)

address this issue by incorporating AI testing into a general concept—psychometric AI. Hernández-Orallo

et al. (2016) proposed that (a), instead of collecting items, we should collect item generators, and (b) the

generated items should be administered to machine and human (and even other animals) alike (universal

psychometrics). All these propositions are constructive and, meanwhile, suggest much higher requirements

for AIG studies.

Current AIG datasets are far below the level of flexibility and diversity that human item writers can

achieve. For example, the spatial configurations in PGM and RAVEN are fixed; inter-element variation, in

which the variation of one element depends on the variation of another element, is also very rare; so are per-

ceptually and conceptually ambiguous analogies. A more promising methodology for AIG of RPM-like tasks

for AI testing is to study the problem domain and human cognition, rather than construct ad hoc generator

programs. Huge uncharted territories lie in the complexity factors such as the types of elements and rules

and perceptual organization, and how the nature of problem changes as different administration/evaluation

protocols are used for human subjects and AI models.

3.4 Computational Models for Solving RPM and RPM-Like Tasks

In previous sections, we have established the basic understanding of the problem domain represented by

RPM, which lays the foundation for us to discuss the core topic of this article—computational models for

solving the problems. Similar to the way in the previous discussion, we start from the origin of the research,

keep the prerequisite knowledge at a minimal level, and unfold our discussion in a manner that reveals the

philosophy behind technical development in simplest language.

The ultimate purpose of this section is to help our readers develop a solid understanding rather than enu-

merating as many previous works as possible in chronological order or in an arbitrary taxonomy. Therefore,

we use a narrative, which simulates the process of how an novice’s understanding of the solution to the

problem domain would naturally evolve if not influenced by the external conditions (such as computational

power) and other relevant research works. This narrative is not real history but specially designed to reduce

the complexity for understanding. In particular, the computational models that arise late in this narrative

might arise early in reality, and vice versa. Examples like this are common in scientific research: the original

concepts behind some cutting-edge technologies might have been there for decades before these technologies

are implemented, but some alternatives to the original concepts, due to being easy to implement, might have

already been implemented before the cutting-edge technologies; when we look back at these concepts, we re-

arrange the order to make the concepts more coherent and understandable. Thus, this narrative is a conceptual

chronicle for understanding rather than a real chronicle for recording.
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In this conceptual chronicle, we divide the development of computational models for solving RPM into

five stages—imagery-based approach, logical reasoning, neuro-symbolic reasoning, learning approach, and

data manipulation. With hindsight, we found that an upward-spiral pattern is looming out of these five stages.

That is, researchers are making process while visiting the same places again and again with better and better

understanding. The places could be specific research questions or a type of approach to answer the research

questions. The conceptual chronicle starts from a straightforward approach (imagery-based approach) which

is specific to the problem domain but very effective; it then moves on to more and more general approaches

(logical reasoning, neuro-symbolic reasoning, and learning approach); when these approaches is still inca-

pable of solving the problem domain perfectly, it returns to the study of the problem domain per se and solves

the problem in a similar way to the first approach, but uses completely different set of techniques. The same

upward-spiral trajectory could be described differently (e.g., different methodologies are alternatively dom-

inating the research of intelligence), but the pattern that it revisits the same places again and again until the

entire problem domain is perfectly solved remains unchanged.

In the rest of this section, we will use the acronyms of computational models for simplicity and please

refer to Table 3.2 for their full names.
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Table 3.2: Computational Models for Solving RPM and RPM-like Tasks

Acronym Full Name Article

- Gestalt Algorithm (Hunt, 1974)

ASTI Affine and Set Transformation Induction (Kunda, 2013)

ASTI+ Affine and Set Transformation Induction Plus (Yang et al., 2020)

- Fractal Model (McGreggor et al., 2014)

- FAIRMAN (Carpenter et al., 1990)

- BETTERMAN (Carpenter et al., 1990)

CogSketch+SME CogSketch and Structual Mapping Engine (Lovett et al., 2009)

- Anthropomorphic Solver (Strannegård et al., 2013)

- ANALOGY (Evans, 1964)

- Analytic Algorithm (Hunt, 1974)

ALANS2 ALgebra-Aware Neuro-Semi-Symbolic (Zhang et al., 2020)

PrAE Probabilistic Abduction and Execution (Zhang et al., 2021)

VAE-GPP Variational Autoencoder and Gaussian Process Priors (Shi et al., 2021)

TRIVR Two-Stage Rule-Induction Visual Reasoning (He et al., 2021a)

NVSA Neural-Vector-Symbolic Architecture (Hersche et al., 2022)

Pairwise-ADV* Pairwise Attribute Difference Vector (Mekik et al., 2017)

Triple-ADV* Triple Attribute Difference Vector (Mekik et al., 2018)

DeepIQ Deep IQ (Mańdziuk and Żychowski, 2019)

CNN+MLP - (Hoshen and Werman, 2017)

CNN+decoder* - (Hoshen and Werman, 2017)

ResNet+MLP - (Barrett et al., 2018)

Wild-ResNet+MLP - (Barrett et al., 2018)

WReN Wild Relation Network (Barrett et al., 2018)

LEN Logic Embedding Network (Zheng et al., 2019)

MXGNet Multiplex Graph Network (Wang et al., 2020)

multi-layer RN multi-layer Relation Network (Jahrens and Martinetz, 2018, 2019, 2020)

SRAN Stratified Rule-Aware Network (Hu et al., 2021)

MRNet Multi-Scale Relation Network (Benny et al., 2021)

Rel-Base Basic Relational Reasoning (Spratley et al., 2020)

Rel-AIR Attend-Infer-Repeat Relational Reasoning (Spratley et al., 2020)

CNN+LSTM+MLP - (Barrett et al., 2018)

Double-LSTM - (Sekh et al., 2020)

ESBN Emergent Symbol Binding Network (Sinha et al., 2020)

NTM Neural Turing Machine (Sinha et al., 2020)

ARNe Attention Relation Network (Hahne et al., 2019)

HTR* Hierarchical Transformer Reasoning (An and Cho, 2020)

NI Neural Interpreter (Rahaman et al., 2021)

SCL Scattering Compositional Learner (Wu et al., 2021)

4 VAE+WReN 4 variants of VAE plus WReN (Steenbrugge et al., 2018; van Steenkiste et al.,

2019)

generative-MRNet* - (Pekar et al., 2020)

LoGe Logic-Guided Generation (Yu et al., 2021)

MCPT Multi-label Classification with Pseudo Target (Zhuo and Kankanhalli, 2020)

PRD Pairwise Relations Discriminator (Kiat et al., 2020)

to be continued on the next page
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Table 3.2: (continued from previous page)

Acronym Full Name Article

LABC Learning Analogies by Contrasting (Hill et al., 2019)

CoPINet Contrastive Perceptual Inference Network (Zhang et al., 2019b)

DCNet Dual-Contrast Network (Zhuo and Kankanhalli, 2021)

ACL Analogical Contrastive Learning (Kim et al., 2020)

Meta-ACL Meta Analogical Contrastive Learning (Kim et al., 2020)

MLCL Multi-Label Contrastive Learning (Małkiński and Mańdziuk, 2020)

FRAR Feature Robust Abstract Reasoning (Zheng et al., 2019)

- Continual Learning (Hayes and Kanan, 2021)

DRT Dynamic Residual Tree (Zhang et al., 2019a)

- GAN (Hua and Kunda, 2019)

- Structural Affinity Method (Shegheva, 2018)

PGM Procedurally Generated Matrices (Barrett et al., 2018)

RAVEN Relational and Analogical Visual Reasoning (Zhang et al., 2019a)

* No Acronym was given in the original article. We created a name to clearly refer to it in our discussion.

3.4.1 Stage 1: Imagery-Based Approach

Visual mental imagery refers to mental images that play a functional role in human cognition(Kosslyn et al.,

2006). The most important characteristic of mental imagery is that human can experience mental imagery

in the absence of the concurrent sensory input. Try to answer this question “how many windows are there

in your house?” when you are not home (use another building you are). Most people answer this question

by imagining their houses. This imaginary house is a mental imagery. Some people count the windows by

mentally walking in and around their houses, while others do so by mentally rotating their houses. Whether

walking in and around the houses or rotating the horse, they inspect and manipulate on this mental represen-

tation, as they inspect and manipulate the real object. Further more, mental imagery can be unrealistic, for

example, some people rotate their houses upwards or downwards without the houses falling apart. For this

reason, the ability of using mental imagery is important for creativity. This point makes another important

characteristic of mental imagery.

Evidence from psychology and neuroscience (Kunda et al., 2013) suggests that mental imagery is fre-

quently used by human participants to solve RPM items. Intuitively, a human participant would inspect

objects in the matrix, compare them by mentally superimposing one on another, mentally transform the ob-

jects, and mentally estimate perceptual similarity. Without turning to more sophisticated techniques and

terminology, this description is the most immediate one that one can think of to describe the solving process

(although they might not use the term “mental imagery”). For this reason, imagery-based computational mod-

els (Hunt, 1974; Kunda et al., 2009, 2013, 2010; Yang et al., 2020; Yang, Yuan et al., 2022) were constructed
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to solve RPM and RPM-like items. In general, these models represent matrix entries by pixel images, apply

predefined pixel-level operations on the images (e.g., affine transformations and set operations) and calculate

pixel-level similarities between the images (e.g., Jaccard index and Hausdorff distance).

Although these systems have proven to be effective for solving the RPM items, they appear relatively late

in development of computational models for solving RPM and are still an underexplored approach in the AI

community. This is partly because directly working on raw perceptual input data, especially applying various

operations on pixel images and computing similarity, requires the computational power that was not available

at the beginning of this line of research. Another reason might be that the theory of mental imagery has been

studied mostly in cognitive psychology and received less attention in the AI community. Nonetheless, it is

still a promising approach for general problem solving.

Before we dive into Stage 2, it would be better to chew on the idea of imagery-based approach a bit.

The imagery-based approach provides an “in-place” solution, i.e., solving a visual reasoning problem “visu-

ally” without introducing auxiliary devices such as preprocessing of raw perceptual input. There is nothing

wrong for being parsimonious because being parsimonious is a general principle of problem solving (Oc-

cam’s Razor). On the flip side, a tacit consensus in artificial intelligence is that certain degree of abstraction

is desirable. That is, the approach must include steps that transform the raw perceptual input into a more

abstract form which reduces the complexity of problem solving. Abstraction is even deemed a hallmark of

valuable AI techniques—the more abstract, the more intelligent the approach is. According to this criterion,

the imagery-based approach is not intelligent at all. This could be another reason that imagery-based ap-

proach received less attention in the AI community. Because experiments also show that mental imagery

plays an important role in human cognition, this brings us into a dilemma of the criteria of being intelligent

in problem solving. Note that the “abstract” end of this dilemma is not proficiency in using the abstracted

information but the process or ability to abstract.

The most valuable contribution of imagery-based models is not on problem solving but bringing this

dilemma into light. Being mindful of this dilemma and criteria of being intelligence would put future AI

systems in a more promising direction. Although this dilemma is of vital importance to AI research, there

is not simple answer to it. A possible solution is that we can try to understand imagery and abstraction as

two factors, correlated or independent, rather than two options contradicting to each other. A simple analogy

could be made at this point to clarify this idea: in graduate math classes, instructors are undoubtedly teaching

knowledge that are quite abstract; experienced instructors are able to convey the abstract knowledge in very

visual languages so that it is more accessible to students. A stronger claim is that abstract concepts are

always associated with some imagery representations in human thinking. This claim might not be correct in

all cases, but indeed points out an important feature of human intelligence. This solution also resembles the
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psychometric treatment to human intelligence. AI systems can be evaluated in the both dimensions of the

two factors, as human intelligence is measured. And being intelligent means that the system needs to score

high in both dimensions.

Another similar solution is to view abstraction and mental imagery as two distinct and necessary cognitive

processes that complement and cooperate with each other. Which of them manifests depends on the task and

the subject; that a subject does not show one of them does not mean that this subject does not possess it.

Conditional arguments like this is quite common in the study of human intelligence. For example, mental

information processing speed (measured by special tasks) is greatly correlated with general intelligence test

performance of people who score lower in the test, while processing speed is not correlated with that of

people who score higher. But this does not mean the highly intelligent people cannot think fast. Either way,

the dilemma is resolved by stressing that these two options are not exclusive to each other.

3.4.2 Stage 2: Logical Reasoning

Based on the discussion at the end of the last subsection, the reason why we choose logical reasoning as

the second stage in this conceptual chronicle is obvious. The computational models using logical reason-

ing works on abstract representations of RPM-like items. For example, a entry image A in a matrix could

be described by a series of propositions such as “triangle(A)=True, triangle-large(A)=False, triangle-on-the-

left(A)=True, square(A)=True, square-small(A)=True, and so on”. In this example, these representations are

restricted to Boolean expression, but we can use more expressive formal logic like “color(A)=green, number-

objects(A)=3, texture(A)=dotted, and so on”. The abstract representations in these models are either manually

constructed or obtained through a preprocessing module. For example, the earliest computation model for

solving RPM-like items—ANALOGY (Evans, 1964)—consists of two modules and first part is for construct-

ing such representations9, whereas the influential models—FAIRMAN and BETTERMAN (Carpenter et al.,

1990)—use handcrafted logic representations.

Each computational model in this stage has a customized formal system for representing RPM-like items.

This system is either specially designed for solving a specific problem set of interest or reusing some standard

systems such as regional connection calculus and scalable vector graphics. Based on a formal representation

system, the three main components of logical reasoning are implemented. In the context of RPM, the entry

images in the matrix are the premise and the answer choices are possible consequences, whereas the rules are

to be determined. The models in this stages split into two branches according to how rules are determined.

9Interesting anecdote about Evans’ work: because the memory of computer at the time was so limited, the program had to be
separated into two modules which were executed serially. But the models in this stage and following stages are designed to be so.
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3.4.2.1 Rule Matching

The first branch is rule matching, in which the model hardcodes finite predefined rules and matches rows

and column to each of the predefined rules. For example, a predefined rule describing the number of objects

could be “number-objects(A)+number-objects(B)=number-object(C)”, in which A,B and C are entry images

in a row or column of a 3×3 matrix. If a rule applies to the first row(s) or columns(s), it is reproduced

on the last row or column to generate the formal representation of the missing entry. Many computational

models have been constructed this way to solve RPM-like items (Hunt, 1974; Carpenter et al., 1990; Ragni

and Neubert, 2012, 2014). This might look amazing from the current point of view because it simply would

not generalize due to the predefined rules. However, this is not true from the perspective of problem solving.

The readera who are skeptical about this can make analogies to other cases, like consider how many rules one

need to derive the integer field and to derive the real number field, and consider also the expressive power

of these number fields. The reason why these number fields can be represented concisely and completely

is that when we discuss them in math, the symbols (i.e., elements in these fields) does not need to bind

with concrete entities. In computational models of logical reasoning, the formal representation systems are

in charge of binding symbols with entities. Thus, it is very partial to argue that rule matching models are

not generalizable without referring to the formal representation system. If the geometric visual stimuli are

extremely simple (as in most general intelligence tests) or the formal representation system is extremely

powerful, the rule matching models will generalize as well to the whole problem domain as several rules can

produce the entire integer field and real number field. This conditional argument echoes with the discussion

about abstraction and imagery at the end of last subsection as they all are dealing with the problem of the

level of abstraction and the operations that can be implemented at that level.

Another observation on the rule matching models is that most of the works in this branch are for cognitive

modeling rather than problem solving. For example, the models in (Ragni and Neubert, 2012, 2014) are

implemented on the ACT-R cognitive architecture. The purpose of cognitive modeling based on cognitive

architecture lies at the information-processing level, i.e., modeling how information is exchanged between

multiple cognitive function modules. But how the information is processed exactly inside each module is

not really the focus of cognitive modeling. This corresponds to how a human or computation model comes

up with a rule that happens to be able to solve the item at hand. Thus, the use of predefined rules would

be understandable from the perspective of cognitive modelling. As a summary, the rule matching approach,

though might not be able to solve all possible items in the problem domain, fulfills its duty perfectly in

problem solving and in cognitive modeling.
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3.4.2.2 Rule Induction

In contrast to rule matching, the second branch—rule induction—is mainly studied for problem solving (Bo-

han and O’Donoghue, 2000; Davies and Goel, 2001; Ragni et al., 2007; Schwering et al., 2007; Strannegård

et al., 2013) with an exception that the analogy-making models are closely related to both cognitive modeling

and problem solving (Tomai et al., 2005; Lovett et al., 2007, 2009). Rule induction means that the models

need to discover the rules, i.e., how an entry is transformed to the next one or how the entries in a row or col-

umn are related, in a more open manner. In particular, the rules are represented as the identical and different

parts between the logical structures of entry images, and/or how the different parts are changed to identical

parts by transformations. The rules are also logical representations in nature. After the rules are discovered,

the models have two options—they can either reproduce the rules on the last row or column to generate the

answer and compare it to the answer choices, or insert each answer choice into the last row or column to

induct a rule for the last row or column and compare it to the previously inducted rules. These two options

corresponds to the two strategies—constructive matching and response elimination—commonly adopted by

human participants (Bethell-Fox et al., 1984). The latter one is more often adopted by analogy-making mod-

els as it is similar to how an analogy is drawn by human.

Rule induction is a larger topic that goes beyond the traditional format of logic reasoning. For exam-

ple, the goemetric objects and rules can be represented in a vector-symbolic architecture (Rasmussen and

Eliasmith, 2011), in which geometric objects are represented as vectors and rules are inducted and applied

through operations on the vectors, such as circular convolution. If we take a closer look at the details of cal-

culation, we would find that the calculation is a different way to implement the rule induction in the models

mentioned above (of course, vector-symbolic architecture has its own advantages and purposes). Another

example is that reinforcement learning methods can be used to train an agent to induct the rules in matrix

reasoning items (Raudies and Hasselmo, 2017), i.e., when the agent forms a correct rule (action in reinforce-

ment learning) when it attends to certain row or column in the matrix (state in reinforcement learning), the

algorithm rewards the agent.

The boundary between rule matching and rule induction is not always so clear in practice. To what extent

a model is performing rule matching or rule induction depends on how the potential rules are provided to

the model: if only several specific rules are provided, it is rule matching; if a huge rule space is provided

by specifying some “bases” or “generators” of it, it is rule induction; and there is a lot of places in between.

One can even argue that a rule induction model is in nature a rule matching model because it matches to the

whole or a subspace of the rule space in some implicit way, and, thus, there is no such distinction between

rule matching and rule induction. Nonetheless, there are indeed examples of rule induction that no one will
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consider as rule matching. For example, consider a free group in abstract algebra, in which finding an element

satisfying a specific condition could be so difficult even if the generators of this free group look so simple.

Other similar examples could be find in the problems of program synthesis and inductive programming.

3.4.3 Stage 2.5: Neuro-Symbolic Reasoning

The reason why we use a decimal in the title is that this stage is an intermediate stage that shares features

with both its predecessor and successor. Since the influence of its predecessor and successor is stronger than

this stage, this stage is relatively short and rapidly transits to its successor.

The models of neuro-symbolic reasoning consists of two modules—a neural perception frontend and a

symbolic reasoning backend. The neural perception frontend (implemented as neural networks in most cases)

extracts/approximates the distributions over the values of each entry in the predefined formal representation

system. The symbolic reasoning backend performs probability calculation according to a predefined set of

rules. In a sense, neuro-symbolic reasoning can be considered as a special case of rule matching in logical

reasoning. The probability formulae in the backend are determined by the predefined rules and the output

of the reasoning, such as the probability that a rule exist in rows or columns, the missing entry contains a

certain value in its representation, or a certain answer choice is correct. Similarly, different implementations

of frontend and backend have been used to construct probabilistic reasoning models, such as ALANS2, PrAE,

VAE-GPP, TRIVR, LoGe, and NVSA (Zhang et al., 2020, 2021; Shi et al., 2021; He et al., 2021b; Yu et al.,

2021; Hersche et al., 2022).

Compared to logical reasoning, neuro-symbolic reasoning clearly requires that a dedicated neural pro-

cessing module is used to construct the formal abstract representation of each entry image. In addition, it also

takes into account the uncertainty in perception by using probability to represent and reason. Technically

speaking, neuro-symbolic reasoning is only a small step forward compared to logical reasoning. The reason

why it is listed as a separate stage is that it is a natural watershed between knowledge-based approaches and

data-driven approaches, because the neural perception frontend requires training data while imagery-based

and logical reasoning are knowledge-based. In the next two subsections, we will elaborate on data-driven

approaches.

3.4.4 Stage 3: Learning Approach

An obvious characteristic of the first three stages is that they all rely on the predefined representation systems

of geometric objects and relations/rules between geometric objects. To reduce the reliance on such explicit

prior knowledge, the learning approach has been introduced into the field of RPM-like tasks. This section

reviews the learning models, especially deep learning, for solving RPM-like tasks. We divide the learning
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approach into four types according to the structures of learning models. For each type, we provide a high-level

functional description that applies to all the models of the type while trying not to complicate the discussion

with too much technical details. The purpose of this taxonomy is to reveal the structural evolution of the

learning models (from Type 1 to Type 4), analyze the reason why it evolves this way, and, more importantly,

provide a guidance for research works in this field.

3.4.4.1 Type 1

 

Rule 
Distribution 

Approximator

  A seq. of entries: 
  - an adjacent pair, 
  - or, a row, 
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  - or, a diagonal, 
  - ...
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Figure 3.17: Learning approach Type 1

A natural solution to reduce the reliance on the predefined representation system of geometric objects

and rules is similar to the upgrade from the logical reasoning to the neuro-symbolic reasoning: instead of

approximating the distribution of attribute values of entries, we can directly approximate the conditional

distribution of possible rules given multiple matrix entries (through standard or customized neural network

64



approximators). Therefore, the rules work only as labels to distinguish between different rules and no formal

representations of geometric objects and rules are involved in computation.

Two typical examples of Type 1 are Pairwise-ADV and Triple-ADV (Mekik et al., 2017, 2018) which

approximate distributions of random variables of binary and ternary rules, respectively. A binary rule variable

indicates whether a binary rule applies to two adjacent entries, for example, whether the objects in the two

entries are of the same color, while a ternary rule variable denotes whether a ternary rule applies to three

adjacent entries, such as the number of objects in Entry C equals the sum of geometric objects in Entry A and

B. Another example of Type 1 is DeepIQ (Mańdziuk and Żychowski, 2019), in which the variable of rules

between two adjacent entries is an ordered categorical variable (rather than binary), for example, the objects

in the two entries differ by 3 units in their sizes. The random variables used these two examples are similar to

using the different formal representation systems in the logical reasoning approach, but they are functionally

equivalent.

The parallelism heuristic—spatial parallelism implies abstract conceptual parallelism–is commonly used

to determine the combinations of matrix entries to present to the distribution approximator. According to the

parallelism heuristic, the rule distributions in parallel rows or columns should be the same or similar; thus,

probability metrics, such as KL-divergence, or general similarity metrics, like Euclidean distance, are used to

measure the similarity; the answer choice is chosen so that it gives a last row/column whose rule distribution

is most similar to the ones of the context rows/columns.

A diagram of Type 1 is given in Figure 3.17. Note that a entry-wise encoder is used to process each

input entry individually, which is similar to the perception frontend in probabilistic reasoning. But, unlike

the perception frontend, the entry-wise encoder does not necessarily output distributions over the predefined

representations of geometric objects. The entry-wise encoder is to represent any latent space that can be used

to approximate the rule distributions. After the entry-wise encoder encodes every entry in an input sequence,

the embeddings of these entries are further aggregated and processed by the rule distribution approximator;

the rule distributions of different sequences are finally compared to select the answer choice. The entry-wise

encoder and rule distribution approximator can be implemented based on various neural network modules,

such as CNN, ResNet and MLP. In practice, these two modules are jointly trained given the ground-truth rule

labels of entry sequences.

3.4.4.2 Type 2

Unlike the approaches in Stage 1, 2, and 3, Type 1 has avoided composing computing streams that explicitly

rely on the predefined formal representation systems. But it still relies on the ground-truth rule labels and the

parallelism heuristic. This issue is solved in Type 2, which is free of the reliance, as shown in Figure 3.18.
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This type converts an RPM into a classification problem, where the class labels are the correctness of each

answer choice. In particular, when only one answer choice is included in the input, it is a binary classification

problem; when all answer choices are included, it is a multi-class problem.

  entries of an item: 
  - all context entries, 
  - and, one or more 
   answer choices

 Encoder

Classifier 
Head

predicted
answer

label

Figure 3.18: Learning approach Type 2

Readers might have noticed a difference between Figure 3.17 and Figure 3.18—the entry-wise encoder

has been replaced by an encoder (not necessarily entry-wise). As the name indicates, the encoder takes as

input multiple entries and, thus, the relational information between entries are thus encoded into its output.

This difference gives rise to the difference between perceptual and conceptual processing. In RPM, perceptual

processing is the processing of each single matrix entry, whereas conceptual processing generally involves

reasoning about the relations between multiple matrix entries, i.e., the rules that govern the variation of

multiple matrix entries. If one wishes to explicitly separate these two types of processing, one would have

a module that attends to each entry individually and another module to aggregate the outputs of the first

module, as in Type 1. This design choice is important for building computational models for visual abstract

reasoning tasks. By changing the name to “encoder”, we implies that Type 2 does not necessarily require an

explicit separation of perceptual and conceptual processing.

Hoshen and Werman (2017) implemented the first Type-2 model using a CNN encoder and an MLP clas-

sifier, and tested it on simple figural series and RPM-like tasks. This CNN+MLP model has since been used
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Figure 3.19: Learning approach Type 2+

as a baseline to evaluate later works. Being influenced by popular works in image classification, the early

attempts to solve RPM-like tasks by learning models mostly follows the structure of Type 2, for example, the

Wild-ResNet+MLP model (Barrett et al., 2018) and the ResNet+MLP model (Zhang et al., 2019a), respec-

tively representing the binary and multi-class versions of Type 2. In the work of Hoshen and Werman (2017),

they also proposed the generative counterpart of the CNN+MLP model, by replacing the MLP classifier with

a deconvolutional module to generate the predicted answer image (no answer choice is provided as input in

this case). We include this modification in Type 2 by upgrading Type 2 to Type 2+, as shown in Figure 3.19.

3.4.4.3 Type 3

By following the formulation of image classification, Type 2 eliminates the reliance on the ground-truth rule

labels and the parallelism heuristic. However, visual abstract reasoning is a conceptually different tasks from

image classification. In particular, abstract high-order relations need to be built upon raw perceptual visual

input. The reason why a human participant thinks a visual abstract reasoning item difficulty is not because

she cannot recognize the simple geometric objects in the item, but because the abstract concepts and relations

could be complex, diverse, and hard to be extract from the simple geometric objects. In the latter case,

concrete concepts are built upon complex visual stimuli, for example, recognizing daily objects in various

backgrounds. Therefore, without further customization, the standard learning models for image classification
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is not able to give a satisfying solution to visual abstract reasoning.
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Figure 3.20: Learning approach Type 3

By comparing the Type 2 with its predecessors, which performs well on RPM (but rely on predefined

formal representation systems of goemetric objects and rules), we find that an unnecessary design in Type 2

is that it does not separate perceptual and conceptual processing, which has been proved to be beneficial for

visual abstract reasoning in many later works. This observation leads us to Type 3, as shown in Figure 3.20.

Note that one can argue that Type 3 as a special case of Type 2, by regarding everything before the classifier

head as a single module. But models based on this specification generally perform better than the typical

models of Type 2.

After the entry-wise encoder encodes every entry, these entry embeddings go through a combinatorial

process, in which subsets of these entry embeddings are selected and fed into next module subset by subset. In

Figure 3.20, we use two trapezoids of opposite orientations for the entry-wise encoder and this combinatorial
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process to indicate that the amount of information is compressed and decompressed (i.e., the number of

combinations is more than what are combined). As the name “combinatorial heuristics” indicates, Type 3

explicitly relies on some heuristics to take combinations, which include but not limited to the aforementioned

parallelism heuristic. Essentially, these heuristics inform the model of which entry embeddings, together as

a group, would make an instance of a rule. Each group is individually processed by a singleton rule encoder

to produce a rule embedding for the group. At last, all rule embeddings are aggregated for classification.

A typical example of Type 3 is the WReN model (Barrett et al., 2018). WReN takes as input all context

entries and one answer choice (thus solving binary classification). The entry-wise encoder is a small CNN

(plus tagging the entry embeddings with one-hot position vectors indicating the entries’ positions in the

matrix). For combinatorial heuristics, WReN considers all binary rules (i.e., relations between every two

entries). Note that WReN does not use the parallelism heuristic, which is commonly used in other models;

but the position-tagged entry embedding compensates this, because the rule encoder can easily find the non-

parallel sequences through position tags and output a specific rule-embedding to indicate this for the following

processing. The groups aggregator in WReN is simply a summation.
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Figure 3.21: Learning approach Type 3+

Following WReN, a series of models of Type 3 have been created, using different entry-wise encoders,

combinatorial heuristics, rule encoders and groups aggregators. For example, LEN (Zheng et al., 2019)

considers only ternary rules for combinatorial heuristics, i.e., groups every three entries together for rule
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encoding, and applies gating variables to each groups in aggregator instead of tagging positions of entries

(unsurprisingly, the experiment results showed that all gating variables but the ones of rows and columns

were zeroed); MXGNet (Wang et al., 2020) also considers ternary rules, uses CNN or R-CNN as entry-wise

encoder, relies on parallelism heuristic for combinatorial heuristics (instead of gating variables), and employs

a graph-learning-based rule encoder that regards the 3 entries as a graph and computes the graph embedding

as the rule embedding.

Different from the previous Type-3 models, multi-layer RN (Jahrens and Martinetz, 2020, 2019, 2018)

extends the relation encoding in WReN into a multi-layer form. This is, the relation embeddings of entry

groups are not aggregated into a single embedding for classification, but into multiple embeddings, which are

further fed into another combinatorial module and rule encoder. Therefore, one could visualize multi-layer

RN as a Type-3 model, repeating the middle three modules as many times as needed. Intuitively, higher-order

relations can better be extracted through this multi-layer design.

The SRAN model (Hu et al., 2021) adopts a more complicated encoding scheme by using multiple en-

coders and multiple rule encoders, where entries of two context rows/columns of 3×3 matrices (6 in total)

are encoded entry-wise, 3-entries-wise, 6-entries-wise by three different encoders, and the resulting entry-

embeddings, 3-entry-embeddings and 6-entry-embeddings are sequentially integrated by three rule encoders

into a single rule embedding, representing the rule of these two context rows/columns. The encoding scheme

of SRAN, though complicated, does not deviate too much from Type 3. But, in stead of using rule embed-

dings to solve the item as an classification problem, SRAN directly uses similarity metrics of rule embeddings

to select the answer, as in Type 1, which is also a common practice (just a different way to present the same

supervising signal). Thus, it gives us a more complete Type 3+, as shown in Figure 3.21.

MRNet (Benny et al., 2021) is another Type-3 model using multiple entry encoders and multiple rule

encoders, which process the input at multiple resolutions, determined by different layers’ output in a CNN

entry-wise encoder. The computational streams of different resolutions proceed separately and are aggregated

at the end for classification.

Both these two models—SRAN and MRNet—are examples of using multiple entry encoders and multiple

rule encoders. Another model—NSM (Shekhar and Taylor, 2021)—would be a better example to show

the flexibility of Type 3. In particular, NSM solves the analogy-making task through two different rule

encoders—a LSTM rule encoder and a modular network encoder—for the base domain and the target domain,

respectively. Moreover, the structure of the modular network depends on the output of the LSTM rule encoder.

These examples imply that, to build a Type-3 model, one can use not only multiple encoders but also different

types of encoders, and that the multiple encoders can be assembled in more complex ways, rather than being

parallel.
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Readers might have noticed the words “group” and “map” in the diagrams of Figure 3.20 and 3.21. By

these words, we intend to call attention to a mechanism that is pervasive in information processing for visual

abstract reasoning, i.e., which pieces of information should be grouped together and thus to be aggregated

later, and which pieces of information should be mapped 10 and thus to be processed in the same way11.

These two types of decisions are interdependent on each other; more precisely, they are better to be viewed

as two aspects of the same cognitive process. These decisions have to be made repeatedly at every level in

information processing. Unfortunately, there might not be a centralized or universal theory for this grouping-

mapping mechanism. As one can see in these Type-3 models, they all resort to some specific heuristics,

which might not be always incorrect for visual abstract reasoning tasks.

3.4.4.4 Type 4
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Figure 3.22: Learning approach Type 4

Now, it is a good time to look back at the path that we have walked down for reviewing data-driven

approaches and summarize how we come here:

10or aligned, or corresponded; we use “map” to resonate with structure-mapping theory of analogy making; i.e., if two entities in the
base and target domains are mapped to each other, then they are analogous to each other.

11i.e., processed by the same module to force the analogical relation between them.
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• From neuro-symbolic reasoning to Type 1: we eliminate the need of predefined representation systems

of geometric objects and rules, but introduce the need of ground-truth rule labels. Parallelism heuristics

is also inherited.

• From Type 1 to Type 2: we eliminate the need of the ground-truth rule labels and parallelism heuristics,

but the models do not perform well, because we use models for image classification, which is a funda-

mentally different task from visual abstract reasoning. The problem is solved in an image-classification

way.

• From Type 2 to Type 3: we separate perceptual and conceptual processing to make the model more

suitable for visual abstract reasoning. Although the models perform reasonably well, specific grouping-

mapping mechanism (or combinatorial heuristics) are needed for solving different RPM-like tasks.

In this path, every time we want to eliminate the need of some prior knowledge, we introduce one or more

neural networks modules to learn it from annotated data. This general solution in Stage 3 makes the procedu-

ral aspect, i.e., the process of computing, of solving RPM less of problem as the procedure can be interpolated

from the input and expected output, through learning. The critical research point of the learning approach that

determines the outcome of learning is thus shifted to the structural aspect. In visual abstract reasoning, the

structural aspect includes hierarchical structure of processing, for example, the separation of perceptual and

conceptual processing. With another layer of analogical processing (i.e., higher-order processing involving

multiple relations), it would make a more complete hierarchy. In another dimension, the structural aspect

also includes grouping-mapping mechanism we mentioned above. If one cannot abstract the task into these

factors in the structural aspect and identify the “atomic” ones that can be easily solved through learning, the

resulting learning model would not be effective and generalizable in the entire problem domain.

As indicated above, a remaining factor unsolved in Type 3 is the combinatorial heuristics. Type 4 attempts

to solve it by regarding grouping-mapping mechanism and rule encoding as a single “atomic” factor that can

be learned through a single module—reasoning module, as shown in Figure 3.22. The reason for combining

them is empirical and pragmatic, because they are interwoven and it is hard to say the former determines

the latter, or the other way around. Since the reasoning module of Type 4 contains no grouping-mapping

heuristics, its output does not necessarily indicate various rule among entries, and thus cannot be processed

as in Type 3/3+. Thus, supervising signals are directly applied on this output. If we go back to see the

structure of Type 2, you will find that Type 4 resembles Type 2 in appearance. Nonetheless, Type 4 is much

more effective than Type 2 on RPM and it takes many trials and errors to settle on this solution. It has now

become a relatively stable solution to visual abstract reasoning, and different core techniques have been used

to implement the reasoning module. We summarize the works into four categories using distinct reasoning

72



kernels.

3.4.4.4.1 Reasoning Kernel 1: CNN

CNN has been a basic tool to extract features from raw perceptual input, and the extracted features are not

only relevant for solving specific downstream tasks, but also representing correlations in the input. Solving

visual abstract reasoning tasks is also to process correlations among raw inputs. Theoretically, CNN would

have been an effective solution to RPM-like tasks. However, several early influential works (Barrett et al.,

2018; Zhang et al., 2019a,b) argued that CNN and CNN-based models are not capable of solving RPM-like

tasks. 12. Since then, the research has been mainly focusing on other solutions. Ironically, after several

years of exploration, Spratley et al. (2020) proposed two Type-4 models—Rel-Base and Rel-AIR—which

are all CNN-based models and perform well on both PGM and RAVEN. After comparing these two models

with the previous CNN models, we found that the difference is whether the conceptual processing and the

perceptual processing are separated. Taking Rel-Base as an example, its entry-wise encoder is a CNN module

and its reasoning module is also a CNN module; all the entry embeddings are first stacked together and then

convolved with convolution kernels in the reasoning module. But the baseline CNN-based models do not

have this artificial separation. Therefore, we conjecture that the outstanding performance of many non-

CNN models is not because they found better solutions than CNN, but because they separate perceptual and

conceptual processing. On the flip side, another implication is that when using a single CNN module for

both perceptual and conceptual processing, it is an extremely difficult task to learn this separation from data,

i.e., learn the hierarchical structure of the task and how the information at each level is correlated. However,

from the perspective of general problem solving, it would be impossible for us to know when the perceptual-

conceptual separation lies for every possible task; in this case, we would have to use a single huge monolithic

model; and how such a model can be trained effectively would be an important future research question.

3.4.4.4.2 Reasoning Kernel 2: LSTM

A typical Type-4 model is the CNN+LSTM+MLP model (Barrett et al., 2018). This model takes as input

all context entries and one or more answer choices. Each entry embedding is sequentially processed by an

LSTM reasoning module, and the final state of LSTM is fed into an MLP classifier to predict the answer. This

model is also used as a common baseline in many later works. LSTM has also been combined with other

modules: Double-LSTM (Sekh et al., 2020) uses two LSTM modules, which each specialize in different

rule types and are coordinated by an extra module trained to predict the rule type13; ESBN and NTM (Sinha

et al., 2020; Webb et al., 2020b), combining LSTM with external memory modules, can also be used as the

12This is also why the CNN+MLP and ResNet+MLP models have been constantly used as baselines.
13The reliance on ground-truth rule labels slightly deviates from our definition of Type 4.
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reasoning kernels in Type 4.

3.4.4.4.3 Reasoning Kernel 3: Self-Attention

Another commonly used reasoning kernel is the self-attention module, which is composed of a multi-head

attention and a feed-forward network (with residual connections and normalization). The most typical exam-

ple of this reasoning kernel is the ARNe model (Hahne et al., 2019). It extends the Type-3 model, WReN,

by inserting between the entry-wise encoder and the combinatorial heuristics a self-attention module. Note

that although ARNe inherits the combinatorial heuristic of WReN, it is no longer a Type-3 model because

the self-attended embeddings no longer represent individual entries. Instead, each self-attended embedding

contains information about all the matrix entries, and should better be considered as summaries of the whole

matrix from different angles. Therefore, the inherited combinatorial heuristics module and the following

modules of WReN can be considered similar to other general classifier heads, simply aggregating the input

and predicting the answer. With hindsight, a reasonable order should have been first testing the self-attention

module with a simpler classifier head rather than WReN.

A similar example is the HTR model (An and Cho, 2020), where an R-CNN entry-wise encoder is used

to extract all geometric objects in each entry and two self-attention-based sub-modules are used to move the

reasoning from object-level to entry-level and from entry-level to matrix-level. The first sub-module takes

as input the object embeddings in a single entry and sums up the self-attended object embeddings as the

entry embedding. Unlike ARNe and WReN solving RPM as binary classification, HTR solves it as multi-

classification. Therefore, the output of the second sub-module contains 8 embeddings corresponding to the 8

answer choice. These 8 embeddings are fed into a contrastive classifier head (Zhang et al., 2020) to predict

the answer label.

A more general example is the Neural Interpreter model (Rahaman et al., 2021), which implements its

most basic building block “function” as a self-attention module associated with two learnable vectors, which

affects the module’s computation and its access to input data, respectively. The self-attention modules are

analogous to functions in programming language (as the term “interpreter” indicates), with one vector defin-

ing the function body and the other defining the function signature (type-matching particularly). A neural

interpreter is composed of multiple iterations of a finite set of functions. As the original self-attention in

Transformer, it converts a set of embeddings into a set of corresponding embeddings decorated with relational

information. Neural interpreter was tested on RPM as binary classification. A CNN entry-wise encoder is

used to produce entry embeddings. As in BERT (Devlin et al., 2018), a classification token is included in the

input embeddings, whose corresponding output embedding was fed into a linear classifier head.
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3.4.4.4.4 Reasoning Kernel 4: Multi-Head Rule Detector

The last reasoning kernel is closely related to the rule encoder of Type 3. Recall that the combinatorial

heuristics module in Type 3 groups the entry embeddings into multiple groups, and each group is separately

processed by the rule encoder to obtain a rule embedding for this group. Although this rule encoder has

1-in and 1-out, it is responsible for recognizing and encoding all the possible rules that might occur in the

input. Recall that, by moving from Type 3 to Type 4, we intended to eliminate the reliance on combinatorial

heuristics. An natural alternative solution could be an “all-in-all-out” rule encoder (rather than 1-in-1-out),

which takes as input all the entry embeddings of a matrix (no grouping) and outputs all the possible rules.

The relationship between “1-in-1-out” and “all-in-all-out” is analogous to the relationship between image

classification versus object detection, where multiple objects exist in the image. Particularly, the new rule

encoder can have multiple output heads, where later supervising pressure can be applied to force each head

to represent a specific rule or specific rules. Therefore, we refer to this reasoning kernel as multi-head Rule

detector. This kernel is underrepresented because we found only one model using this kernel—the SCL model

(Wu et al., 2021), but it is very efficient for visual abstract reasoning.

3.4.5 Stage 4: Data Manipulation

The reported performance of some learning models in Stage 3 has already surpassed human performance

under certain circumstances. However, the unreported or non-highlighted performance is far from satisfac-

tory. A serious issue is that abstract concepts are not learned by these models because they do not generalize

well when the abstract concepts are presented in different perceptual stimuli. This type of generalization is

fundamental to visual abstract reasoning and also a hallmark of human intelligence. Therefore, the explo-

ration has never stopped. Since the four types of learning models in the last stage explored many structural

possibilities for building learning models, we have observed more and more efforts on studying the problem

domain per se and how it is solved by human. This is perfectly understandable because when one realizes that

all the existing tools do not work, she will naturally scrutinize the problem per se and try to understand why

it is different from previously solved problems. These efforts result in the works of Stage 4, which utilize

the features of visual abstract reasoning task that do not necessarily exist in other tasks. These efforts also

resonate with the upward-spiral pattern we mentioned at the beginning of this conceptual chronicle as these

task-specific features are also heavily used in the approaches in Stage 1 and 2, though in different ways. In

particular, datasets of RPM-like items are delicately manipulated to present the task to learning models in

a similar way of how human perceive and conceptualize RPM items. This way, the works in Stage 4 could

force the models to learn abstract concepts and specific visual stimuli, distinguish between them, generalize

the abstract concepts to the entire domain, and, finally, build the ability on the entire problem domain.
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3.4.5.1 Auxiliary Training

For the models of Type 2, 3 and 4, an extra classifier head can be attached to exactly where the existing

classifier head is attached to predict the meta-target of the input RPM-like item, which is a multi-hot vector

indicating the attributes of geometric objects and rules in this item. These meta-targets are usually accessible

in algorithmically-generated datasets, such PGM and RAVEN. The learning models can thus be trained on the

answer labels and meta-targets simultaneously. The training on meta-targets is often referred to as auxiliary

training in literature.

Intuitively, this extra supervising signal can boost the accuracy of the answer-label classifier head. Aux-

iliary training was first tried with the WReN model on the PGM dataset and indeed showed a approximately

10% boost (in IID generalization regime). The contribution of auxiliary training was verified by a high corre-

lation between the two classifier heads’ accuracies (Barrett et al., 2018). Similar observations on PGM were

also found in other studies (Pekar et al., 2020; Hahne et al., 2019). In particular, the ARNe model would not

even converge without auxiliary training.

However, the effect of auxiliary training is still inconclusive. Benny et al. (2021) showed that auxiliary

training on PGM could only increase the accuracy of 1-rule items but decrease the accuracy of multi-rule

items. This could cause the decrease of the overall accuracy when the dataset is composed of complex RPM-

like items. Besides being affect by rules, the effect also differs between datasets. It has been reported that the

auxiliary training would generally decrease the performance on the RAVEN dataset (Zhang et al., 2019a,b;

Zheng et al., 2019; Wang et al., 2020), with one exception (Kim et al., 2020), which used a special contrastive

loss and will be discussed later. Besides, Małkiński and Mańdziuk (2020) also showed contradictory results

that when the meta-target is encoded in a sparse manner (the above works are all dense-encoding), the auxil-

iary training can increase the performance on RAVEN. Therefore, we can only say that the effect of auxiliary

training is jointly determined by model, loss function, dataset, and meta-target encoding.

3.4.5.2 Disentangled and Generative Representations

The neuro-symbolic reasoning in Stage 3 has been frequently using standard neural networks, such as autoen-

coder and CNN, as the perception frontend to construct representations of entry image with explicit symbolic

meaning. In contrast, as we mentioned in Type 1 of Stage 4, the symbolic meaning of encoders’ output is not

guaranteed. In addition to representations with symbolic meaning, disentangled and generative representa-

tions are used in Stage 4. For example, the Type-1 model, DeepIQ (Mańdziuk and Żychowski, 2019), uses a

variational auto-encoder (VAE) as its encoder, which is pretrained on entry images of the Sandia dataset and

kept frozen when the rule approximator is trained later.

Several advantages of disentangled and generative representations in RPM have been reported, such as
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data efficiency (van Steenkiste et al., 2019), robustness to distracting attributes (Zheng et al., 2019) and

better OOD generalization (Steenbrugge et al., 2018). Disentangled and generative representations of entry

images are usually obtained through VAE or its variants. For examples, in Type 3, β -VAE, FactorVAE, β -

TCVAE and DIP-VAE were pretrained on entry images and the frozen encoders were combined with WReN

(Steenbrugge et al., 2018; van Steenkiste et al., 2019); a reduced version of MRNet was jointly trained with

a VAE to simultaneously predict the answer label and generate the answer image (thus we call it generative-

MRNet) (Pekar et al., 2020). For Type-4 models, the VAE is usually jointly trained with the reasoning

module, for example, the aforementioned ESBN model (Sinha et al., 2020), and the LoGe model (Hersche

et al., 2022), which uses vq-VAE as its encoder and decoder. Another special example of Type 4 is the Rel-

AIR model (Spratley et al., 2020), which integrates into its encoder an Attend-Infer-Repeat model (Eslami

et al., 2016)—a model that can bee thought of as iterative VAE.

3.4.5.3 Contrastive learning and Manipulating Data

In addition to supervised learning, contrastive learning has also been used for solving RPM. We need to

point out that the techniques of contrastive learning have been highly adapted to employ the structural and

analogical characteristics of RPM and thus might not strictly follow the paradigms of contrastive learning.

Particularly, the characteristics of RPM provides more options to manipulate data, such as decomposing ma-

trices into rows and columns and regrouping them, and regrouping answer choices and even RPM problems,

and various supervising signals can be applied to contrast the decomposed and regrouped data.

3.4.5.3.1 Intra-Item Contrasting: Row/Column Contrasting

The minimum structure that can be contrasted is rows/columns of a matrix. This type of contrasting was first

attempted in the MCPT model (Zhuo and Kankanhalli, 2020), where 8 answer choices are inserted into the

3×3 matrix to obtain 10 rows/columns (2 context rows/columns and 8 answer choice rows/columns). The

context rows/columns are assigned pseudo-label 1 and answer choice rows/columns are assigned pseudo-

label 0; and this newly constructed pseudo-dataset of row/columns is learned by a Type-2 model, assuming

that only one “mis-assigned” pseudo-label for the correct choice row/columns does not affect the final result

of learning. To solve RPM, the answer choice row/column with the highest predicted output (between 0 and

1) is selected.

The intuition behind MCPT is to capture any characteristic that distinguishes between the correct and

incorrect choices when they are embedded into the third row/column. In particular, it checks whether the

third row/column has a meaningful variation that is similar to any context row/column in the dataset. The

PRD model (Kiat et al., 2020) enhanced this type of single-row/column contrasting by including the paral-
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lelism heuristic. As in standard contrastive learning, positive and negative pairs are constructed from rows/-

columns, where the first two rows/columns in an RPM matrix make a positive pair. The negative pair could

be constructed in different ways, such as rows/columns from different RPM-like items, randomly shuffled

rows/columns of the same RPM, or filling the third row/column with a random non-choice entries. In PRD, a

Type-2 model is used to learn a metric to measure the similarity between the two rows/columns in a pair. To

solve an RPM, the choice row/column that is most similar to the first two rows/columns is selected. Compared

to the single-row/column contrasting, the double-row/column contrasting is more common, which could be

found in many other works. For example, the aforementioned generative-MRNet (Pekar et al., 2020) con-

trasts the answer choice rows/columns completed by the generated answer to the answer choice rows/columns

completed by the given answer choices.

The rationale of moving from single-row/column to double-row/column contrasting was also exempli-

fied by the LABC training/testing regime (Hill et al., 2019), which makes the contrasting more accurate

and complete through the meta-targets used in auxiliary training. Different from the single-row/column and

double-row/column contrasting, where the effect of contrasting is applied through extra contrastive loss func-

tions, LABC, as a training/testing regime, requires models to learn adapted datasets, which will force the

model to contrast the rows/columns. In particular, an RPM-like item is adapted by muting some digits of

its meta-target vector and regenerating the incorrect answer choices according to the muted meta-target vec-

tor. Since meta-targets represent the rules and geometric objects that are used to generate RPM items, the

newly-generated answer choices are partially correct. This way, the model will have to compare such answer

choice rows/columns and the context rows/columns to find the correct answer, instead of only seeking mean-

ingful variations in the answer choice row/column as in the single-row/column contrasting. LABC makes this

idea more systematic by introducing the concepts of semantically and perceptually plausible answer choice

corresponding to muting different subsets of mete-target digits and using distracting objects and rules.

3.4.5.3.2 Intra-Item Contrasting: Matrix Contrasting

Instead of contrasting rows/columns, we can also contrasting the matrices completed by each answer choice.

This is essentially contrasting the answer choices in the context of context entries. The Type-2 model,

CoPINet (Zhang et al., 2019b), is the first model performing such contrasting. The contrasting in CoPINet is

two-fold—contrastive representation and contrastive loss. First, for an RPM-like item, the embeddings of the

matrices completed by each answer choice are aggregated into a “central" embedding, and their differences to

the “central" embedding are used in the following processing. Second, given the interweaving of these matrix

embeddings, it naturally leads to a contrastive loss function that incorporates matrices completed by correct

and incorrect answer choices and increases the gap between their predicted values. This contrastive loss func-
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tion could be easily embedded into models of parallel computation streams, for example, the aforementioned

HTR model (An and Cho, 2020).

We need to point out that row/column contrasting and matrix contrasting are not exclusive. For exam-

ple, the DCNet model (Zhuo and Kankanhalli, 2021) first uses row/col contrasting to compute the matrix

embeddings and then uses the matrix contrasting to predict the answer.

3.4.5.3.3 Inter-Item Contrasting: Single-Label Contrasting

The above contrasting has been restricted within a single RPM-like item. The contrasting can also be be-

tween multiple items. The ACL and Meta-ACL (Kim et al., 2020) are the first two inter-item contrasting

models. The relation between ACL and Meta-ACL is similar to that between single-row/column and double-

row/column contrasting. Given an RPM, let X be its incomplete context matrix (regarding the missing entry

as an empty image), Xi an incomplete matrix obtained by replacing the i-th entry with a white-noise image,

and X ′ an incomplete matrix obtained by randomly reordering the entries of X . The ACL model contrasts

the positive pair (X ,Xi) with the negative pair (X ,X ′). The Meta-ACL resorts to meta-targets to compose

positive and negative pairs. In particular, two incomplete matrices of two items of the same meta-target form

a positive pair (XS,XT ), and the corresponding negative pair is (XS,X ′
S). In both ACL and Meta-ACL, the

contrasting effect is applied through an extra standard contrastive loss function.

The MLCL model (Małkiński and Mańdziuk, 2020) formalizes the idea of Meta-ACL in a multi-label

setting by regarding multi-hot meta-targets as multi-labels. Therefore, instead of requiring positive pairs

to have exactly the same meta-targets, MLCL regards pairs of intersecting meta-targets as positive pairs.

Different from Meta-ACL, the completed matrices are used. In particular, the correctly completed matrices

are used for inter-item contrasting, and the intra-item contrasting between the correctly completed matrix and

its incorrectly completed matrices is performed as in CoPINet. These two types of contrasting losses are

jointly optimized.

3.4.5.4 Other Dimensions of Manipulating Data

Besides contrasting, there are also other dimensions of manipulating data. For example, the FRAR model

(Zheng et al., 2019) utilizes a reinforcement learning teacher model to select items from an RPM-like item

back to train a student model. The items in the bank are characterized by their meta-targets and the reward

is the increase in accuracy of the student model. The models solving RPM-like datasets have also been

examined in the setting of continual learning. For example, the RAVEN dataset can be divided into 7 batches

according to its spatial configurations and the models are trained with different methods to mitigate forgetting

when sequentially learning the 7 batches in different orders (Hayes and Kanan, 2021).
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3.4.6 Summary

The food for thought to share with the readers is that the study of the problem domain and the exploration for

general solutions are both important for the overall advance in this field, as indicated by the upward-spiral

pattern in the conceptual chronicle of computational models reviewed above. On one hand, the technical

development always explores new methods, on the other hand, it inevitably revisits the old ideas again and

again until the problem is perfectly solved. Therefore, the most recent models are not necessarily superior to

the traditional ones in nature, and the early approaches, like the imagery-based approach, might trigger the

next cycle of technical development in future research.

3.5 Discussion

After a historical overview of RPM and the problem domain represented by RPM in Section 3.2 and 3.3 and a

conceptual chronicle of computational models for solving this problem domain in Section 3.4, we will zoom

away in this section to discuss more general topics related to intelligence testing and AI systems. A good

introduction to these topics is through a fundamental cognitive process—analogy making. In particular, we

list the following analogies about intelligence tests and AI system:

• Analogy A—Intelligence Test : Human :: Intelligence Test : AI system

• Analogy B—Intelligence Test : Human :: AI Test : Human

• Analogy C—Intelligence Test : Human :: AI Test: AI System

• Analogy D—Intelligence Test : AI System :: AI Test : Human

• Analogy E—Intelligence Test : AI System :: AI Test : AI system

• Analogy F—AI Test : Human :: AI Test : AI system

The AI tests in the analogies above specifically means the tests that are inspired by human intelligence tests

and specially designed to evaluating AI systems, for example, PGM and RAVEN datasets. These AI tests

represent the motivation of testing AI systems in a similar way of human intelligence testing. To be rigorous,

we enumerate all the possibilities of permutating tests and test-takers in the above analogies. These analogies

represent research questions in different fields. For example, cognitive scientists might be interested in A; test

developers might be interested in B and E; AI researchers, might be interested in A, C, E, and F; and some

people might be interested in D simply for exploration purpose. Many of works reviewed above allude to one

or more of these analogies. But most of them did not take one more step to examine whether these analogies

hold or under what conditions they holds. In this case, the result of these works should be interpreted with
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caution. When it comes to AI testing, We are particularly interested in Analogy C. It describes a situation

where human intelligence testing and AI testing are similar and common test theories could possibly apply

to both cases. This analogy further gives rise to two general dual topics that are important for building and

testing AI systems, respectively:

• How tests measure subjects: the validity of measuring AI in a similar way human intelligence is mea-

sured;

• How subjects solve tests: the implication of human intelligence for building AI systems.

3.5.1 The Validity of AI Testing

Analogy C—Intelligence Test : Human ::AI Test: AI System—calls attention to the connection between

human intelligence testing and AI testing. It describes a situation where AI tests based on human intelligence

tests are used to evaluate AI systems, as human intelligence tests are used to measure human intelligence.

However, whether this analogy holds remain largely unknown to us. If they are, conclusions about human

intelligence can be translated to AI systems. For example, one can claim that an AI system has the ability of

visual abstract reasoning if the system passes the tests of the algorithmically-generated datasets mentioned

above. Analogy C is best represented by the learning models in Stage 3 because the learning models are

mainly evaluated through specially designed AI tests, such as PGM, RAVEN, and Sandia. Most of the works

discuss their AI systems and contributions in the background of human cognitive abilities, and attempt to draw

the conclusions that are comparable to human intelligence when the AI systems perform well. Unfortunately,

when we are enjoying the acclamation, an elephant in the room is still in the room—the analogy simply does

not hold and there is no validity in building and evaluating these models in the way they are currently built

and evaluated. Note that the word “validity” is two-fold: on one hand, it is the validity in psychometrics; on

the other, it is practically meaningless. We will now elaborate on this using learning models as an example.

To prove the idea that the AI testing in the reviewed works is psychometrically invalid, we check if the

determinants of validity of human intelligence testing hold for AI testing.

• The first determinant is that human intelligence tests, as other psychological tests, is to measure indi-

vidual difference on some tasks. Statistical evidence show that the performances on many tasks are

correlated, and experts use the word “intelligence” to denote the latent factor or factors that cause the

correlation. In other words, it is humans’ behavior that comes first; then the word “intelligence” is ab-

ductively defined to explain humans’ behavior. When an AI system shows similar behavior on the tasks

which are comparable to human performance on these tasks, it is not necessarily the same factor(s),

i.e., human’s intelligence factor(s), that is behind the behavior of the AI system. To satisfy the first
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determinant in AI testing, we needs to show that the underlying mechanisms are the same or equivalent

in all cases. Otherwise, we need to be more cautious when we are describing the AI system’s ability

and explicitly distinguish it from human cognitive abilities.

• The second determinant is the requirements for designing human intelligence tests: human intelligence

tests are usually short to prevent the participant from being exhausted; the stimuli in intelligence tests

are diverse and there is usually no repeating stimulus in a single test; meanwhile, the stimuli in intel-

ligence tests are also concise so that it does not introduce confounding factors; the items need to be

evenly spread on the spectrum of difficulty so that people at different ability levels can be measured;

and so on. All these requirements contribute to the validity of intelligence tests and are not easily satis-

fied in AI tests. An exception is the Cognitive Design System Approach by Embretson (2004), but this

approach has not used to develop any test for AI systems.

The determinants listed here are by no means complete given the complex nature of human intelligence

testing, but are sufficient to break the analogy between human intelligence testing and AI testing.

Given the fundamental distinction between human intelligence testing and AI testing, we might simply

abandon the idea of establishing the validity by comparing AI testing to human intelligence testing. Instead,

as most works in AI, we analyze AI systems for solving intelligence tests and intelligence-test-like datasets

purely from the perspective of problem solving, and claim that these AI systems are more capable of solving

the tests or datasets than human participants. However, this brings us back to an old issue: the AI systems are

specially prepared or trained on the items that are similar to the one used for testing, whereas testing items

are kept secret from human participants, let alone training. For visual abstract reasoning, no AI system has

shown performance that is comparable to human, especially when generalizing an abstract concept to new

visual stimuli that were not associated with this concept before.

Nonetheless, we can still argue that these AI systems are useful because they can at least act as automatic

tools to free humans from simple repeating tasks in our daily life. However, this is also not true because

intelligence tests, especially general intelligence tests, are designed to distant from the our daily activities so

that the result is not affected by one’s previous experience. Thus, the ability to solve intelligence test items

would not be able to assist human in most cases. Moreover, a cognitive ability or general intelligence does

not correspond to a specific clearly defined task that is constantly repeating in certain scenario. Instead, it

is abstracted from various daily activities. That is, it is common but also very sparse across various daily

activities, and, more importantly, deeply interwoven with other abilities. There is simply no such simple

clearly-defined repeating tasks where these AI systems can be applied. For other complex ill-defined tasks,

these AI systems also need to be integrated with various other AI systems of different abilities. This kind
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research, though valuable, is still infeasible at the current stage of AI.

We can try to continue this debate by proposing more contributions and purposes of building AI systems

for solving intelligence tests or intelligence-test-like tests. As long as the contribution is relative to human

intelligence, we can always come up with a reason to refute it (except that the contribution is pure scientific

exploration). Unfortunately, comparing to human intelligence is unavoidable on our way to implementing

human-level AI. It seems that we have come to a dead end.

The solution lies in the theory of analogy making and the origin of intelligence tests. Let us first check the

analogy-making aspect of Analogy C to see if we interpret the analogy correctly. One of the most important

theories of analogy-making is the structure mapping theory by Gentner (1983). It emphasizes the similarity

between the relations in the base and the target domains, rather than the literal similarity between objects in

the base and target domains. In particular, the corresponding objects can be starkly different in a literal sense

without compromising the strength of the analogy, when the corresponding relationships are similar. This

seems trivial to humans who know how to make analogies. But people indeed make mistakes by relying on

literal similarity rather than relational similarity when interpreting analogy. In fact, we did in interpreting

Analogy C above. We started from corresponding human intelligence tests with AI tests by literal similarity,

i.e., they are items to solve. We then took a simple relation “human solves intelligence tests” in the base

domain and translated it into the target domain. After a thorough analysis, we found everything went wrong.

We just made the very mistake that is just pointed by structure-mapping theory. Thus, interpreting analogy

correctly might not be trivial at all in practice.

The correct interpretation starts from studying the relations in the base domain, which can be clarified by

a revisit to the origin of intelligence tests. Modern schooling is actually a new manner of eduction compared

to the whole history of education. It does not exist until the 20th century. At the beginning, educators found

that some children had a great deal of trouble learning in this manner. In order to select the students who

were suitable for modern schooling, the French Education Ministry hired Alfred Binet. The solution Binet

provided was to test children’s ability to solve problems that could be commonly solved by children at certain

ages, determining the children’s mental ages. The ratio of mental age to chronological age was used as an

index to select students for school education. This index is the prototype of today’s intelligence quotient.

Therefore, the origin of intelligence tests tells us that intelligence tests were developed to measure individual

difference of learning ability under a certain circumstance (school education) relative to the average of a

certain group of people (peers). This definition echoes our discussion of RPM in Section 3.2.

While this definition of intelligence tests seems complicated, it does accurately describe the relations

in the base domain of Analogy C. Now, let us check the target domain for a similar relational structure.

The general idea of the target domain is undoubtedly to test AI systems. We can try to extract from the
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target domain the counterparts of the concepts in the definition of intelligence tests. The most important

two concepts in the definition of intelligence tests is definitely “learning ability” and “individual difference”.

“Learning ability” of AI systems is a clear concept because it is native to the learning models. “Learning

ability” has been considered as an integral part of AI systems (though the “learning ability” of AI systems

might be the different from human learning ability). Thus, “learning ability” does not pose any problem to us.

“Individual difference” of “learning ability” of AI system is less clearly defined because of the heterogeneous

nature of various AI systems. Note that, in contrast to human intelligence testing, the inherent “learning

ability” cannot be sufficiently reflected in the final outcome of learning. This problem can be solved if we

considered the dual concept of ability—difficulty. Put simply, if we have items at various levels of difficulty,

we can use human ability test items like a ruler to measure people’s ability. On the flip side, if we know people

at different levels of ability, we can use these people’s response to these items to determine the difficulty of

these items. That is, ability and difficulty are defined relative to each other. We are so familiar with difficulty

in AI research because we have experienced so much of it. In particular, when evaluating AI systems’ learning

ability, the concept of difficulty is reified as learning tasks. We would say that a learning task is difficult to

a specific AI systems or to a class of AI systems. In practice, learning tasks can be defined differently, such

as different datasets, different ways to present datasets, and access to other resources. A good example of

learning tasks is the different generalization regimes of PGM and RAVEN datasets Barrett et al.; Zhang et al.,

which correspond to different conceptual distances between the abstract concepts in training and testing.

The more distant, the harder the learning task. Now, we can look back at the the ruler to measure human

intelligence, on which the marks are individual test items. Therefore, to interpret Analogy C, we can make

the correspondence between human intelligence test items and learning tasks of AI systems. In contrast to

previous interpretation of Analogy C, this correspondence is not based on literal similarity but derived from

the relational structures in the base and the target domain. This correspondence is extremely important for

us to establish the general testing theory of AI systems, but might not be obvious from literal meaning of

Analogy C. We now can interpret Analogy C as human intelligence tests measure human intelligence as AI

tests of learning tasks measure AI systems.

It is important to point out that this interpretation of Analogy C is not just a rhetoric or an arbitrary

makeshift. It calls attention to two basic factors that one needs to consider to establish a test theory—what

is being measured? what is used to measure it? For the first question, we definitely want to measure the

“learning ability” of AI systems. For the second question, we have a great many existing learning tasks for AI

systems. The context to answer the second question is subtly different from human testing and more complex.

First, when we are evaluating an AI system on a learning task, we are interested in the overall performance

rather than the response on a specific instance of this task. For example, for an image classification task,
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we would compare the overall accuracies of two AI systems to conclude that one is more capable than the

other. We would not make such conclusion because one system gives a correct prediction for a specific image

while the other does not, unless this instance (the image) is fundamentally different from other instances and

possibly posing more demands for processing. In that case, this instance would make a separate learning task.

In both cases, the correspondence between human intelligence test items and learning tasks for AI systems

remains unchanged. The context of AI testing is more complex than human intelligence testing because

there exist various learning tasks and various AI systems to solve them, but, for now, not every AI system is

designed to solve every learning task. And for practical purposes, we need these specialized AI systems in

our society rather only pursuing the ultimate goal of human-level AI. For human intelligence tests, although

people might perform extremely well on some subtests but terribly on the others, the tests are valid measure

for all human beings. But, currently, one cannot design an AI test that applies to all AI systems. What we can

do now is to identify problem domains and fundamentally different learning tasks in the domain, which can

be used to compose tests for AI systems. When AI technology enters the era of Artificial General Intelligence

(AGI) in the future, we can design AI tests using learning tasks across multiple problem domains.

In general, this interpretation of Analogy C allows us to establish a testing framework for AI systems,

which is similar to the testing theories in human intelligence testing. This framework requires extra efforts

to study problem domains and, more importantly, study cognitive information processing to identify various

learning tasks in the problem domain. Therefore, it is naturally a interdisciplinary research direction. this

framework proposes a much higher standard than how AI systems are tested now. Although it requires extra

efforts to implement, it will make sure that we are making concrete progress.

3.5.2 The Implication of Human Intelligence for Building AI systems

Although the history of human intelligence testing is much shorter (approximately 100 years) compared to

the time intelligence exists, humans’ intelligence test scores have shown a substantial increase (Flynn effect).

Many efforts have been made to find what is responsible for this increase. These efforts are important not only

for human development but also for AI systems from the perspective of AI testing. Specific social changes

have been used to explain Flynn effect, such as television, computer games, changes in school education

and so on. Most of these explanations do not hold up because these social changes are not accompanied

by the changes in intelligence test scores. Interestingly, the change in testing scores does correlate with to

the changes in human’s height, birth weight, and infant mortality in a more than general sense. Thus, the

increase in intelligence test scores might be attributed to the same factors responsible for height, birth weight

and infant mortality—i.e., improved living conditions such as food and medical care(Raven, 2000).

When we are reviewing the development of AI, we are facing the same meta-question—what causes the
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development—that is not well answered. either. We could conclude that the recent improvement of AI is

due to the increase of computational power and massive amount of data generated through internet. This

explanation is not so different from attributing the increase of human intelligence to improvement of living

conditions, which is not very operable for theoretical AI research. Apart from computational power and data,

most of knowledge in basic science that are used in the cutting-edge AI technologies have been there for

decades. Therefore, it is hard to find a theoretical factor that promoted the development of AI.

A hypothesis from the social studies that was proposed to explain humans’ cognitive development can

better explain the development of AI than other explanations. The Challenge Hypothesis (Hunt, 2010):

Intelligence is developed by engaging in cognitively challenging activities. Environments vary

in the extent to which they support such challenges, and individuals vary in the extent to which

they seek them out.

The statement of the hypothesis is, though concise, but full of wisdom. In the last decades, the development

of AI have been definitely accompanied by tasks that were initially challenging to AI systems, such as facial

recognition and spam filtering, and later solved. These tasks did not exist before the era of AI. This argument

echoes the emphasis in the last subsection on identifying and collating learning tasks for AI testing.

The second half of the challenge hypothesis—“individuals vary in the extent to which they seek them

out”—is even more interesting. In the studies of human cognitive development, there is a somewhat surpris-

ing empirical result—eductive ability is more easily influenced by appropriate educational and developmental

experience than reproductive ability. In particular, researcher found that educational self-direction, in which

students are responsible for deciding what they need to learn, how they learn it, and what are goals, and

complex educational activities (e.g., challenge and reasonable learning tasks) give rise to a cyclical develop-

ment in cognitive ability (Raven, 2000). These studies shed light on a possible promising future trend in AI

research, in which AI systems take the initiative to seek out learning tasks in the challenging environment

that provide the most efficient development. This trend implies a fundamental change to the paradigm of AI

systems by shifting from learning specific tasks to interacting with the environment(Laird et al., 2017)
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CHAPTER 4

The Interplay between Perceptual and Conceptual Processing in Visual Abstract Reasoning

4.1 Introduction

For the second research question in Chapter 2, I propose to use the interplay between perceptual and con-

ceptual processing to solve visual abstract reasoning tasks and investigate its effects on trivial and nontrivial

generalization regimes. This is quite an overarching research question which might be studied from different

perspectives and using methods in different areas. In this chapter, I will particularly explore the research

question by realizing these abstract ideas—“the interplay between perceptual and conceptual processing”,

“trivial generalization”, and “nontrivial generalization”—in machine learning models and experimenting on

datasets that were reviewed in Chapter 3.

Air

Water

A B

C D
F

G

Figure 4.1: A is to B as C is to D. But in what ways?

The works in this chapter is deeply motivated by my works in human analogy-making tasks, which will

be discussed in Chapter 5, and the systematic review on computational models for RPM and RPM-like tasks

in Chapter 3. To explain it intuitively, consider the simple analogy—A is to B as C is to D in Figure 4.1. What

relationships do you notice? Initially, one might recognize fish and birds as animals that move around in the

water and air, respectively, and compare them fish and birds in terms of their appearance, i.e., similar body

structures of their heads, fins/wings, and tails. However, to fully understand the analogy the analogy, one need

to recall that birds get propulsion from their wings, whereas (most) fish do so using their tails. This alternate

mapping (bird wings to fish tails, and bird tails to fish fins) is an outcome of conceptual processing of the

initial perceptual representation of body structures, which then further influence perceptual representation of

which similarities we emphasize and how we build our analogical representations. In generally, perceptual
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and conceptual processing can go on and on, changing each other, until consistent representations at both

perceptual and conceptual levels are achieved.

Analogy-making—the process of comparing and contrasting two or more things to enable additional

relational inferences of various kinds—has been argued to be one of the foundational aspects of human

intelligence Hofstadter and Sander (2013). Theories of human perceptual and conceptual systems (e.g.,

Barsalou et al., 1999), including in the context of analogy-making (e.g., Carpenter et al., 1990), have made

observations about this kind of bidirectional interplay between perceptual and conceptual processing, and

forms of this interplay have also been explored in knowledge-based (i.e., symbolic) computational models of

analogical reasoning Lovett and Forbus (2017). My works in this chapter and next chapter is an extension to

them in the branch of this specific consistency-based analogy-making.

This chapter is organized in the following order:

• in Section 4.2, I present a comparison between two paradigms for solving visual abstract reasoning

tasks—one following traditional image classification architectures and the other following the analogy-

making process mentioned above;

• in Section 4.3, from the later one, I derive a cognitively-inspired neural architecture for solving visual

abstract reasoning tasks;

• in Section 4.4, an specific implementation of this neural architecture is given for the following experi-

ments;

• in Section 4.5, experiments on the RAVEN family are reported, including the RAVEN, I-RAVEN, and

RAVEN-FAIR datasets;

• in Section 4.6, the implementation is ablated in two different ways to show its effectiveness;

• in Section 4.7, I report my investigation on an unexplained observation of experiments on the RAVEN

family, including both mine and previous works, and disclose the root cause for it;

• in Section 4.8, experiments on the PGM dataset, including both trivial and nontrivial generalization

regimes, are discussed;

• in Section 4.9, at last, I present an extended view of the neural architecture as a general approach for

neural information processing.

4.2 Two Paradigms of Visual Abstract Reasoning

Again, we use Raven’s Progressive Matrices (RPM) as our example task for visual abstract reasoning as in

the previous chapters. As a reminder of what RPM looks like, we reproduce a figure of RPM from Chapter 3
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Figure 4.2: An example item of Raven’s Progressive Matrices Kunda et al. (2013).

here in Figure 4.2. It consists of a matrix of images with the last entry missing and multiple (usually eight)

answer choices. To solve such an item, the human subject needs to select an answer choice to complete the

matrix so that the abstract patterns among rows and columns are consistent. For example, the abstract pattern

in Figure 4.2 is that taking the union of the first two entries in a row (or a column) leads to the third entry in

the row (or column), which leads to the correct answer of the fourth choice.

In the review in Chapter 3, we can see that most learning models for solving RPM follow a standard

image classification paradigm, as shown in Figure 4.3. Given the images of the matrix entries and answer

choices, this paradigm repeatedly applies feature extractions as in the famous AlexNet work Krizhevsky et al.

(2012), decreasing spatial size but increasing the depth of the feature maps until a single vector is obtained

for each image. These individual vectors are then combined in various ways and a MLP classification head is

applied on the combined representation to predict the class label, i.e., the index of the correct answer choice.

It is not wrong to formulate RPM as an image classification task (in a sense, it is a image classification

task); but the image classification paradigm in Figure 4.3 might not the most effective to solve RPM, given the

complex nature of RPM that requires to reason about abstract relations/concepts and perceptual elements. We

propose a more promising alternate paradigm motivated by human visual analogy-making, i.e., reasoning can

often be enhanced by interleaving perceptual and conceptual processing, allowing each process to influence

the other. Figure 4.4 illustrates this paradigm. Taking the same raw visual stimuli as in the image classification
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Answer Choice Selection

Classification Head

Feature Vector of the
Whole Input Problem

Feature Extractors
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Matrix Entries and
Answer Choices

Feature Extractors

Matrix Entrties and
Answer Choices

Figure 4.3: Image Classification Paradigm for Solving RPM. Note that the sizes and numbers of tensors are
diagrammatic, not representing the real implementation.
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Processing

Conceptual
Processing

Figure 4.4: A Paradigm Simulating Human Cognition for Solving RPM. Note that the sizes and numbers of
tensors are diagrammatic, not representing the real implementation.
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paradigm, this alternate paradigm uses feature extractors, simulating early vision processing, to form an initial

visual representation of input images. Then there follows two types of processing: (1) perceptual processing

that refines the perceptual (visual) representation of input images, for example, refining blurry feature maps of

lines and angles to clear feature maps of shapes, and (2) conceptual processing that enriches the representation

of abstract concepts, i.e., the relations between entry images.

Then comes the main difference between the image classification paradigm and this paradigm—these

two types of processing form a dynamic cycle, in which the perceptual and conceptual processing depend

on each other’s output. This cycle allows for direct interplay between perceptual and conceptual processing

and is repeated for multiple steps until consistency between perceptual and conceptual processing is reached

(thus adding a requirement for checking or somehow computing the consistency at every step). The resulting

consistent representation thus takes into account both the perceptual information in individual images and the

conceptual information across the different images. This combined representation can be used to predict the

answer in a way that is meaningful to perception and conception both.

Figure 4.4 depicts reasoning on RPM-like problems as a complex, flexible, and dynamic process. This

kind of entangled processing is frequently implied in theoretical cognition studies Barsalou et al. (1999);

complementarily, behavioral studies Carpenter et al. (1990) involving eye tracking show that human subjects’

attention move back and forth between the matrix entries, visiting each entry multiple times, rather than

scanning the entries linearly (though other explanations also exist for such gaze phenomena).

As I indicated above, the rationale for the second paradigm is also deeply rooted in human analogy-

making. Let us consider the simple visual analogy “A is to B as C is to D” in Figure 4.1 from the introduction

in more depth. Suppose that a human subject has formed an initial visual representation for each analog in

the analogy by looking at the figure for two seconds, but it is probably not the final, correct representation.

According to the structure-mapping theory Gentner (1983), the subject needs to construct a mapping F be-

tween the base domain (A,B) and the target domain(C,D). This mapping depends on how the analogs are

represented. Given the initial visual representations of analogs, the fish and the bird are probably mapped to

each other according to their appearance, e.g., head to head, fins to wings, and tail to tail, and the air and

the water are mapped in a holistic way. Then, if the subject’s thinking moves to a higher level and tries to

map the relations (i.e., G in Figure 4.1) in (A,B) to the ones in (C,D), she will find that they do not exactly

match. In particular, (most) fish use tails for propulsion and fins for direction, whereas birds use wings for

propulsion and tails for direction. This observation on G updates the mapping F and the representations of

analogs—fish fins to bird tails, fish tails to bird wings, fish heads to bird heads, and air to water holistically.

Given this more meaningful mapping F , if the subject moves up to a higher level again and compare the rela-

tions G, the mapping between B and D could be further refined to air dynamics is mapped to fluid dynamics

92



(rather than their colors or tastes) and thus the representation of water and air are also updated to focus on

their dynamics properties. Given F corresponding to the perceptual processing and G corresponding to the

conceptual processing, this iterative process is equivalent to the interplay between perceptual and conceptual

processing.

If the subject can give initial representations of analogs that can directly lead to the final correct mappings

F and relations G, she may not need to go through this iterative process. However, in real-life situations,

where stimuli are complex and ambiguous, the correct representations cannot always be formed immediately.

This iterative process of working on F , G, and the representations of analogs is often needed to make and

understand analogies.

About the preference for consistency, its rationale naturally follows from the fact that the analogy is

fully interpreted or understood only if the iterative process has ended, i.e., no updates need to be made to

representations of analogs anymore. In other words, it has been well recognized that analogical proportions

enjoy central permutation as a characteristic property Dorolle (1949). That is, A is to B as C is to D if

and only if A is to C as B is to D. This corresponds to interpretations of the analogy in Figure 4.1 in the

horizontal or vertical direction. Two directions are equivalent. That one direction holds implies that the other

direction also holds. Given this symmetry, G could also be regarded as a mapping between (A,C) and (B,D).

If the interpretation of the analogy is unique, i.e., the mappings are unique, we will have F◦G=G◦F , i.e.,

F and G are commutative. This equation is a very concise and beautiful description of analogy-making.

By pursuing consistency between perceptual and conceptual processing in our neural architecture, we are

actually pursuing equality in this equation, in a supervised data-driven way. And we will revisit this analogy-

making view in a more detailed way later in Chapter 5.

4.3 From the Paradigm to Neural Architecture

While it is not difficult to mechanically design a neural architecture that realizes the human-cognition paradigm

in Figure 4.4, the real technical difficulty lies in how to design it so that it can be optimized properly——given

its dynamic nature, how can we make sure the network steadily converges and more importantly, converges

to the consistency to drive robust reasoning? This section describes a new neutral architecture—Contrastive

Perceptual-Conceptual neural architecture (CPCNet)—that implements the human-cognition paradigm for

solving visual abstract reasoning tasks and guarantees a stable convergence, and a specific CPCNet model for

experimenting on the RPM-like datasets that were reviewed in Chapter 3.
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4.3.1 CPCNet Neural Architecture

In the traditional feed-forward architectures commonly used in deep neural nets, we do not have the conver-

gence issue. I thus try to approximate the human-cognition paradigm with a feed-forward structure. Note that

there are two basic paths (or, more precisely, cycles) in Figure 4.4 that give the human-cognition paradigm its

dynamic nature: (1) Path 1 starting from the perceptual representation through the conceptual representation

and returning back to the perceptual representation, and similarly, (2) Path 2 starting from the conceptual

representation through the perceptual representation and returning back to the conceptual representation.

Therefore, if we unroll the cycles with these two paths and add the consistency computation mentioned

above, we will have a feed-forward architecture, as shown in Figure 4.5. It approximates the fully iterative,

cognitively-inspired paradigm in a feed-forward manner. This solves the convergence issue.

Next, as indicated in the introduction section, the human cognition paradigm pursues consistency between

perceptual and conceptual representations. There are two designs in the feed-forward architecture to make

this happen.

First, after each iteration of Path 1 and Path 2, the red paths in Figure 4.5 first compute the consistency

information between the perceptual and conceptual representations. This consistency information could be

computed as a shared component between the perceptual and conceptual representations through a linear

mapping, or more complex non-linear operations could be used to have more representational power. Either

way, the consistency information is then used to update the perceptual and conceptual representations, for

example, deducting the consistency information from the perceptual and conceptual representations. This

way, it would become easier and easier for later iterations to reach a “full” consistency because, intuitively,

the job of eliminating inconsistency gets amortized over multiple iterations and the inconsistency should

always be eliminated completely given sufficiently many iterations and proper supervising signals.

Second, the above computation structure only makes the consistency more likely to happen. But it does

not guarantee that. Thus, we designed two classification heads at the end of the architecture, which classify

the perceptual and conceptual representations, respectively. Then, during training, a loss function is used to

pull predictions of the perceptual and conceptual representations from the two paths toward the same answer

label. The supervising signal of classifying the same label will propagate back through the classification

heads and pull the perceptual and conceptual representations from the two paths toward a consistent position.

Here, the meaning of “consistent” becomes more clear—consistent representations could be mapped to the

same correct answer label through some simple mappings, like a MLP. The design here is very similar to

the idea of supervised contrastive learning Khosla et al. (2020), but it does not require data augmentation or

pre-training as we commonly did for supervised contrastive learning. Instead, to achieve similar contrastive
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effect, our design relies on the delicate architecture design, which is inspired by the human cognition on

analogy-making and VAR.

4.3.2 CPCNet Model for Solving RPM-Like Datasets

Based on the above discussion above, we can now describe a specific CPCNet model for solving RPM-like

datasets in a formal way. In particular, we first describe what type of operations are used at each step. Then

the coding-level implementation, hyper-parameters, and training procedures are provided in the next section.

At first, we use the single-choice evaluation protocol, which is more challenging than the commonly-

used multi-choice evaluation protocol, because comparing answer choices gives the model advantage over

evaluating each single answer choice independently (see more about this in Benny et al., 2021). By inserting

each answer choice into the matrix and evaluating them individually, we can turn a multi-choice item into

multiple binary classification items, where the input to our model is a real tensor x of shape R×C×Hinput×

Winput×Kinput (R and C are the rows and columns of the matrix. Hinput and Winput are the height and width

of each entry images. Kinput is the image channel that equals 1 for grayscale images in our datasets) and a

binary class label y indicates whether the inserted answer choice is correct.

For the feature extractor that simulates early vision in Figure 4.5, we adopt a convolution-based encoder

fE . Since the early vision usually does not involve forming abstract relations between entry images, fE is

applied on each matrix entry xr,c individually:

zr,c= fE(xr,c)∀(r,c)∈{1,...,R}×{1,...,C} (4.1)

z=[zr,c]r=1,...,R,c=1,...,C∈RR×C×H×W×K (4.2)

where H<Hinput , W<Winput , and K>Kinput . Let z(0)1 =z(0)2 =z for the Path 1 and 2 mentioned above, respec-

tively.

For each iteration i∈{1,...,L} after fE , we need to define Path 1, Path 2, and the consistency computa-

tion between them. For Path 1, we define perceptual and conceptual processing as convolution-based mod-

ules h(i)1 and g(i)1 , respectively. Similarly, for Path 2, we define the perceptual and conceptual processing

as convolution-based modules h(i)2 and g(i)2 . For the consistency computation, we define a MLP q(i). The

hyper-parameters of these modules are set to values that preserve the input tensor shape (R,C,H,W,K), i.e.,

the output channels of h(i)1 , g(i)1 , h(i)2 , and g(i)2 and the output units of q(i) are all set to K.

For RPM tasks, the abstract concepts lie in the row and column dimensions because the abstract concepts

are represented by rows and columns by design. We thus apply the convolutions of conceptual processing

g(i)1 and g(i)2 on the (R,C) dimensions of the input tensor, and apply the convolutions of perceptual processing

96



h(i)1 and h(i)2 on the (H,W ) dimensions. And the consistency computation q(i) is applied on the channel

dimension (K) to keep the spatial correspondence between the two paths. Note that dimensions when not

being computed are considered transparent, i.e., like extended batch dimensions. Let the intermediate outputs

from Path 1 and 2 of Iteration i−1 be z(i−1)
1 and z(i−1)

2 , the computation of Iteration i is:

u1=h(i)1 ◦g(i)1 (z(i−1)
1 ) (4.3)

u2=g(i)2 ◦h(i)2 (z(i−1)
2 ) (4.4)

v1=q(i)(u1) (4.5)

v2=q(i)(u2) (4.6)

z(i)1 =u1−v2 (4.7)

z(i)2 =u2−v1 (4.8)

For the final output, we define two classification heads p1 and p2 for Path 1 and Path 2, respectively:

ŷ1=p1( f latten(mean(z(L)1 ))) (4.9)

ŷ2=p2( f latten(mean(z(L)2 ))) (4.10)

where the mean is taken over the channel dimension K and the f latten flattens its input to a vector of length

R×C×H×W . For training, we compute binary cross entropy losses for both ŷ1 and ŷ2 with respect to y and

add them up as the final loss. For testing, we simply add up the logits of the two paths as scores for the input

matrices and select the highest score (and the corresponding answer choice) as our answer.

4.4 Implementation of CPCNet and Training

This section describes a standard implementation of CPCNet that is used for the experiments in Section 4.5

and 4.8, whereas in other sections in this chapter, modifications to the standard implementation are needed

for experimental purposes. I used Tensorflow to implement the model. In particular, all the tensor data used

the data format of “channel_last" to boost running speed. For parameters not specified in this paper, they

all took default values in Tensorflow 2.12.0. The K and L of CPCNet were set to 64 and 5, respectively. In

the following, the coding-level implementation of CPCNet is given corresponding to Equation (4.1) through

Equation (4.10).

FE is a convolution-based entry encoder as shown in Table 4.1.

For each i∈{1,2,3,4,5}, h(i)1 ,g(i)1 ,h(i)2 and, g(i)2 follow the same residual structure as shown in Table 4.2.

Since the tensor shape is not changed in the module, the residual link is implemented by directly adding the
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Module Name Specification
Conv2D channels = 32, kernel = 7, stride = 2, padding = “same”, use_bias = False
BatchNormalization axis = -1, momentum = 0.9 epsilon = 1e-5
Relu -
MaxPool2D pool_size = 3, stride = 2, padding = “same”
Conv2D channels = 64, kernel = 3, stride = 1, padding = “same”, use_bias = False
BatchNormalization axis = -1, momentum = 0.9 epsilon = 1e-5
Relu -
MaxPool2D pool_size = 3, stride = 2, padding = “same”

Table 4.1: The implementation of the entry encoder FE .

input to the intermediate tensor before the last ReLU.

Module Name Specification
Conv2D channels = 64, kernel = 3, stride = 1, padding = “same”, use_bias = False
BatchNormalization axis = -1, momentum = 0.9 epsilon = 1e-5
Relu -
Conv2D channels = 64, kernel = 3, stride = 1, padding = “same”, use_bias = False
BatchNormalization axis = -1, momentum = 0.9 epsilon = 1e-5
Relu -

Table 4.2: The implementation of the perceptual and conceptual processing h(i)1 ,g(i)1 ,h(i)2 and, g(i)2 .

For each i∈{1,2,3,4,5}, q(i) is a two-layer MLP as shown in Table 4.3.

Module Name Specification
Dense units = 64, activation = “relu", use_bias = True
Dense units = 64, activation = None, use_bias = True

Table 4.3: The implementation of the consistency computation q(i).

For each j∈{1,2}, p j is a two-layer MLP as shown in Table 4.4.

Module Name Specification
Dense units = 128, activation = “relu", use_bias = True
Dense units = 1, activation = None, use_bias = True

Table 4.4: The implementation of the classification head p j.

For the experiments to run fast, extra configuration was made for training:

• I observed that setting the random seed for tensorflow would reduce the training speed in our experi-

ments. Thus, I did not set random seeds. Nonetheless, according to my experience with the model and

datasets, the experimental results can be easily reproduced with default initializers of tensorflow and

the hyper-parameters in the following.
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• Another key point is that we resized the matrix entry images from 160x160 (i.e., the original image

size of the datasets) to 80x80 to save some computation.

These two choices make it possible to run the experiments on a single consumer-level GPU and each trial

took only days rather than weeks.

Other hyper-parameters include:

• Batch size of 32. It is the largest batch size that my current GPU can handle. But it should be increased

if larger GPU RAM is available.

• Adam Optimizer with a starting learning rate of 0.0025, which is gradually increased to 0.2∼0.4 and

finally decreased to 0.0025. The purpose of doing so it to skip the local optima. Other advanced

learning rate schedulers or optimizers can be used for the same purpose, but it is beyond the scope of

this work.

For all the experiments, I monitored the validation accuracy. When it plateaued for several epochs, we took

the checkpoints of the best validation accuracies for testing and reported the best test accuracy.

4.5 Experiments of CPCNet on the RAVEN Family

The CPCNet model is designed to avoid using meta-targets for auxiliary training because this extra hand-

crafted supervising signal is not always available for human RPM tests and general VAR tasks. Instead, only

the final score of each answer choice is predicted individually and the highest score is selected as the answer,

i.e., using the single-choice evaluation protocol, which is more difficult than the alternative—the multi-choice

evaluation protocol Benny et al. (2021).

Table 4.5 shows that our model achieve the best average accuracy compared to previous models and the

best configuration accuracies on 6 out of 7 configurations. Although the accuracies of the runners-up—Rel-

AIR and SAVIR-T—are close to CPCNet’s, our model solves the datasets in a more difficult and general

way—SAVIR-T uses the easier multi-choice evaluation protocol and is designed to utilize the inductive bias

that is specific to the datasets Sahu et al. (2023), and while Rel-AIR uses the harder single-choice evaluation,

Rel-AIR employs a separately-trained entry-encoder to explicitly extract values of size and position attributes,

which are also specific to the datasets. All the compared models in the table (more or less) follow the image

classification paradigm in Figure 4.3, whereas our model is the only one following the cognitively-inspired

paradigm in Figure 4.4. The main difference is that our model simulates an iterative interplay between per-

ceptual and conceptual processing, whereas the compared models work in a monotonic way from perceptual

processing to conceptual processing, where their conceptual processing is usually based on inductive bias that

is specific to RPM. In fact, many of the models in Table 4.5 more or less used inductive bias that is specific
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Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Multi-Choice
Evaluation
Protocol

LEN 78.3% 82.3% 58.5% 64.3% 87.0% 85.5% 88.9% 81.9%
MXGNet 83.91% - - - - - - -
CoPINet 91.42% 95.05% 77.45% 78.85% 99.10% 99.65% 98.50% 91.35%
DCNet 93.58% 97.80% 81.70% 86.65% 99.75% 99.75% 98.95% 91.45%
SAVIR-T 94.0% 97.8% 94.7% 83.8% 97.8% 98.2% 97.6% 88.0%

Single-Choice
Evaluation
Protocol

WReN 14.69% 13.09% 28.62% 28.27% 7.49% 6.34% 8.38% 10.56%
ARNe 19.67% - - - - - - -
NCD 39.66% 45.45% 35.50% 39.50% 34.85% 33.40% 40.25% 30.00%
PrAE 65.03% 76.50% 78.60% 28.55% 90.05% 90.85% 48.05% 42.60%
ALANS 74.4% 69.1% 80.2% 75.0% 72.2% 73.3% 76.3% 74.9%
MRNet 84.0% - - - - - - -
NVSA 87.7% 99.7% 93.5% 57.1% 99.8% 99.1% 98.1% 65.4%
SCL 91.6% 98.1% 91.0% 82.5% 96.8% 96.5% 96.0% 80.1%
AlgebraicMR 92.9% 98.8% 91.9% 93.1% 99.2% 99.1% 98.2% 70.1%
Rel-AIR 94.1% 99.0% 92.4% 87.1% 98.7% 97.9% 98.0% 85.3%
CPCNet 96.92% 100.0% 96.70% 86.05% 100.0% 99.90% 99.90% 95.90%
Human 84.4 95.5% 81.8% 79.6% 86.4% 81.8% 86.4% 81.8%

Table 4.5: Accuracies on the original RAVEN. We report without-auxiliary-training accuracies if possible.
Data source for each row: (Zheng et al., 2019), (Wang et al., 2020), (Zhang et al., 2019b), (Zhuo and Kankan-
halli, 2021), (Sahu et al., 2023), (Zhang et al., 2019a), (Hahne et al., 2019), (Zhuo et al., 2021), (Zhang et al.,
2021), (Zhang et al., 2022), (Benny et al., 2021), (Hersche et al., 2023), (Wu et al., 2021), (Xu et al., 2023),
and (Spratley et al., 2020).

to RAVEN either in the model design or in the training procedure. On the contrary, the inductive bias in our

model—if we consider it as a kind of inductive bias—is the interplay and consistency between perceptual and

conceptual processing, which is more meaningful for solving and understanding general VAR. In particular,

CoPINet and DCNet, which have been reported to utilize the backdoor of RAVEN Hu et al. (2021), also

achieved lower accuracies than ours.

Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Multi-Choice
Evaluation
Protocol

SRAN 60.8% 78.2% 50.1% 42.4% 70.1% 70.3% 68.2% 46.3%
SAVIR-T 98.1% 99.5% 98.1% 93.8% 99.6% 99.1% 99.5% 97.2%

Single-Choice
Evaluation
Protocol

NCD 48.22% 60.00% 31.20% 29.95% 58.90% 57.15% 62.35% 39.00%
PrAE 77.02% 90.45% 85.35% 45.60% 96.25% 97.35% 63.45% 60.70%
ALANS 78.5% 72.3% 79.5% 72.9% 79.2% 79.6% 85.9% 79.9%
NVSA 88.1% 99.8% 96.2& 54.3& 100.0% 99.9% 99.6% 67.1%
AlgebraMR 93.2% 99.5% 89.6% 89.7% 99.7% 99.5% 99.6% 74.7%
SCL 95.0% 99.0% 96.2% 89.5% 97.9% 97.1% 97.6% 87.7%
CPCNet 98.5% 100.0% 98.00% 93.95% 100.0% 100.0% 100.0% 97.55%

Table 4.6: Accuracies on the I-RAVEN. We report without-auxiliary-training accuracies of each model if
possible. Data source for each row: (Hu et al., 2021), (Sahu et al., 2023), (Zhuo et al., 2021), (Zhang et al.,
2021), (Zhang et al., 2022), (Hersche et al., 2023), (Xu et al., 2023), (Wu et al., 2021).

I also tested the CPCNet model on the other two variants of RAVEN—I-RAVEN and RAVEN-FAIR.

Table 4.7 and Table 4.7 show the results on I-RAVEN and RAVEN-FAIR, respectively. Without exception,
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Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

Multi-Choice
Evaluation
Protocol

SAVIR-T 97.4% - - - - - - -

Single-Choice
Evaluation
Protocol

MRNet 86.8% 97.0% 72.7% 69.5% 98.7% 98.9% 97.6% 73.3%
CPCNet 98.14% 100.0% 98.15% 90.80% 100.0% 100.0% 100.0% 98.00%

Table 4.7: Accuracies on RAVEN-FAIR. We report without-auxiliary-training accuracies of each model if
possible. Data source for each row: (Sahu et al., 2023), (Benny et al., 2021).

CPCNet achieved the best average accuracy and the best configuration-wise accuracies on almost all config-

urations.

Before,moving on to the next set of experiments, an important observation can be made by comparing

the results across Table 4.5, Table 4.6, and Table 4.7. Although not discussed very often in literature, it

has been shown by multiple works (Wei et al., 2023; Sahu et al., 2023; Wu et al., 2021; Benny et al., 2021;

Xu et al., 2023) that when using single-choice evaluation, i.e., not allowing the model to comparing answer

choices before scoring them and thus not allowing it to use the backdoor of the original RAVEN, the original

RAVEN is more challenging than I-RAVEN and RAVEN-FAIR, that is, the same model always achieves a

higher accuracy on I-RAVEN and RAVEN-FAIR than on RAVEN. This point is also reflect in the results of

Table 4.5, Table 4.6, and Table 4.7.

This makes sense because the way the answer choices of RAVEN were generated makes the answer

choices more similar to each other than in I-RAVEN and RAVEN-FAIR and thus more confusing to the

model when evaluated individually; on the contrary, the ways answer choices were generated in I-RAVEN and

RAVEN-FAIR make the distractors differ from the correct answer by more attributes and thus less confusing

to the model when evaluated individually. Therefore, due to page limit, we report only the experiment on

RAVEN here; experiments on I-RAVEN and RAVEN-FAIR can be found in the supplementary material.

4.6 Ablation Studies of CPCNet on RAVEN

4.6.1 Varying the number of CPC layers

Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

CPCNet (L=0) 12.99% 11.35% 19.95% 24.75% 5.85% 5.05% 9.30% 14.70%
CPCNet (L=1) 77.32% 87.05% 56.95% 57.20% 94.50% 95.35% 93.55% 56.65%
CPCNet (L=2) 92.68% 100.0% 86.50% 79.05% 100.0% 99.85% 99.90% 83.45%
CPCNet (L=3) 94.22% 100.0% 88.30% 79.55% 100.0% 99.90% 99.90% 91.90%
CPCNet (L=4) 95.55% 100.0% 95.35% 85.45% 99.95% 99.90% 99.85% 88.35%
CPCNet (L=5) 96.92% 100.0% 96.70% 86.05% 100.0% 99.90% 99.90% 95.90%

Table 4.8: Ablation Accuracies of CPCNet on RAVEN by Varying L.
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Given the relatively complex structure of our model, we ablate the model in different ways. Since the

iterations of Conceptual-Perceptual-Contrasting—CPC layers— are the basic building blocks of our model,

we first ablate the model in terms of the number L of CPC layers. We vary L from 0 to 5, where 0 means

no CPC layers at all and 5 is the value we used in the above experiments. Table 4.8 shows the result of this

ablation. As L increases from 0 to 5, the accuracy increases from 12.99% to 96.92% (random guess baseline

12.5%). This shows that stacking CPC layers significantly contributes to CPCNet’s accuracy and that setting

L greater than 5 could potentially further increase the accuracy. Also, the accuracy gradually plateaus after

L≥3. Thus, a better trade-off between accuracy and computation could be reached for L smaller than 5. Our

initial choice of L=5 is purely empirical.

4.6.2 Ablating the consistency computation

Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

CPCNet-UP 93.05% 99.75% 87.95% 80.15% 100.0% 99.80% 99.80% 83.90%
CPCNet-LP 91.01% 99.90% 79.65% 75.45% 99.95% 99.85% 99.80% 82.45%
CPCNet-IC 94.19% 100.0% 90.45% 81.65% 99.95% 99.90% 99.95% 87.40%
CPCNet-UC 96.69% 100.0% 95.90% 89.15% 100.0% 99.80% 99.90% 92.05%
CPCNet-LC 95.11% 100.0% 93.85% 84.95% 100.0% 99.85% 99.95% 87.15%
CPCNet (L=5) 96.92% 100.0% 96.70% 86.05% 100.0% 99.90% 99.90% 95.90%

Table 4.9: Ablation Accuracies of CPCNet on RAVEN by Weakening Consistency in Different Ways.

Since the consistency between perceptual and conceptual processing is the core idea of our model, we

ablate it in terms of designs for forcing the consistency. Taking the best performing model in the first ablation

study—CPCNet with L=5—as the base model, we ablate it in five different ways:

• Removing the whole upper path in Figure 4.5 makes it more difficult for CPCNet to achieve the con-

sistency. We name this kind of ablated CPCNet CPCNet-UP. But note that “difficult” does not mean

impossible as there are still both perceptual and conceptual processing in the lower path. For com-

pletely removing the possibility of achieving the consistency, we would have to remove all CPC layers,

i.e., CPCNet with L=0 in Table 4.8 is an example. Similarly, we remove the whole lower path and

name the resulted model CPCNet-LP.

• Keeping the two paths, we can still weaken the consistency by removing the internal consistency com-

putation (i.e., the red arrows in Figure4.5). We call this resulted ablated model CPCNet-IC.

• As mentioned above, the internal consistency computation just makes the consistency more likely to

happen but does not guarantee that. We thus designed two classification heads to push the conceptual

and perceptual representations toward a consistent position by letting them classifying the same input.
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Therefore, we can have two more ablated model—CPCNet-UC and CPCNet-LC—by removing the

upper and lower classification heads, respectively. Note that the input to the classification head is

discarded when it is ablated.

Table 4.9 shows the results of ablating the consistency computations. Note that there is no way to remove

the consistency computation completely (unless we set L=0 as we did for the first ablation study; but if we did

so, our model would degrade to a simple ConvNet and it would be meaningless to discuss consistency.). Thus,

partially ablating the consistency computation would only partially weaken the contribution of consistency

computation. This can be told by the relatively smaller variation in accuracy compared to the first ablation

study. However, we can still see that having all the consistency designs leads to the best accuracy.

4.7 The Gap Between Grid and Non-Grid Configurations of RAVEN

Center 2x2Grid 3x3Grid Left-Right Up-Down Out-InCenter Out-In2x2Grid

Figure 4.6: 7 spatial configurations of the RAVEN dataset. Each configuration is illustrated by a complete
3x3 matrix. In the Center configuration, each entry contains only one object located at the center. In 2x2Grid
and 3x3Grid, objects can only be located on the grid positions in each entry. In Left-Right and Up-Down,
each entry contains exactly two objects located at the fixed positions shown in the figure. Out-InCenter is a
combination of two center configurations and Out-InGrid is a combination of a center configuration and a
2x2Grid configuration.

In the above experiments on RAVEN, I-RAVEN, and RAVEN-FAIR and almost all previous works on

these datasets, a striking observation can be made about the configuration-wise performance. To explain

it clearly, I reproduce the 7-configuration figure of the RAVEN family here in Figure 4.6. In particular, in

Table 4.5, 4.6, and 4.7, all the models perform significantly worse on the 2x2Grid, 3x3Grid, and Out-InGrid

configurations (the second, third, and last in Figure 4.6) than on the other non-grid configurations. It is

probably not a coincidence which is resulted from the randomness of these experiments.

As the names of these configurations indicates, they all contain some grid spatial structures, which allow

more variations in number and position of geometric elements than the non-grid configurations. Moreover,

the grid and non-grid configurations represent two common types of human perceptual organization in VAR

tasks—classical view and normal view (Arendasy and Sommer, 2005)—in which the correspondence be-

tween geometric elements are established very differently in human cognition. Given the differences in terms

of abstract concepts and human perception, it would be necessary to investigate why and how our model and
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previous models treat the two grid and non-grid configurations differently, why they can’t solve them equally

well, and how to improve them.

As a heads-up, after I found the root cause of this issue, I realized that it was not complicated or pro-

found at all (as I expected originally). However, the several months’ journey for searching for the cause is

quite typical for scientific exploration and personally a very interesting one. I thus decided to log it in my

dissertation.

4.7.1 What Possibly Causes the Gap

When a neural net does not work well on a specific dataset, the first thought that would occur to the designer

of the neural net is often that the model is not good enough. The designer would then keep working on the

model to improve it. It is the same with me.

My model and most previous models for solving the RAVEN family are more or less influenced by the

classical and popular computer vision models, which are all designed to tackle common computer vision

tasks. But the RAVEN family, and more generally, visual abstract reasoning tasks, receive much less atten-

tion while those computation vision models were deveoped. Due to the difference between visual abstract

reasoning and classical computer vision tasks (with different emphases on perception or on abstract reason-

ing), the design of classical computer vision model might not be the most suitable for solving visual abstract

reasoning tasks.

Therefore, I made a series of changes to the prototypical CPCNet model, which is slightly different

from the one described above in Section 4.3. Unfortunately, they all (relatively) failed on the grid configu-

rations, i.e., failed to achieve accuracies on grid configuration that are comparable to accuracies on non-grid

configurations. Here, I briefly listed the changes I made:

1. I tried to Keeping the position and number information of geometric elements while convoluting on im-

ages: the conceptual and perceptual processing of the prototypical CPCNet gradually decreases spatial

dimensions and increase the size of channel dimension, through convolutions. However, this encoding

process could be lossy for the position and number information of geometric elements in matrix en-

tries. And the variations about position and number only exist in grid configurations. This might be

the reason for the gap between grid and non-grid configurations. Therefore, I set the conceptual and

perceptual processing in the prototypical CPCNet to be spatial-dimension preserving ones.

2. Changing the 4D convolution in consistency computation to 1D linear mapping: the prototypical CPC-

Net used very complex 4D convolutions in consistency computation. However, these 4D convolutions

(on the row, column, height, and width) would disrupt the information of number and position. For the
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same reason as above, I changed it from 4D to 1D linear mapping.

3. Changing the 1D linear mapping in consistency computation to nonlinear 2-layer MLP: the idea of

consistency might not be able to be represented linearly. Inspired by the device in transformer, which

is good at reasoning the relations between input tokens, 2-layer MLP could be a better choice for

consistency computation.

4. Removing consistency computation completely.

5. Increasing or decreasing the size of channel dimension.

6. Increasing or decreasing the depth and width of classification heads.

7. Removing the feature extractor of early vision and using only CPC layers.

Although the changes above did not reduce the gap between grid and non-grid configurations, some of them,

e.g., 1, 2, and 3 , did improve the overall accuracy of both grid and non-grid configurations. Thus, they were

kept in the later CPCNet design, i.e., the one I described in Section 4.3.

After iterating on the model design in different ways, I started to shift my focus to another aspect of

machine learning tasks—training procedure. There are different possible reasons that the training procedure

could be a cause. First, it is possible all the previous models were trapped at some local optima where the grid

accuracies are lower than the non-grid ones. Second, the gap between the grid and non-grid configuration can

also be in interpreted in terms of one of the common phenomena—overfitting. The overfitting interpretation

is particularly interesting for the prototypical CPCNet model. During training process, the validation/testing

accuracies of non-grid and grid configurations will always respectively plateau at 90% plus and 50% plus,

whereas training accuracies of all configurations will plateau at 90% plus, i.e., no clear distinction between

grid and non-grid configurations for training. Thus, there is a paradox here:

1. for the non-grid configurations, there is no gap between training and validation/testing accuracies. This

shows that the model did learn the underlying abstract concepts and visual elements, rather than the

memorizing the training set.

2. for the grid configurations, there is a 40% gap between training and validation/testing accuracies. This

means that the model did not learn the underlying abstract concepts and visual elements, but possibly

memorizing the training set.

There are at least two hypotheses that we could make to explain the paradox:
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1. Hypothesis 1: The model was just memorizing the items in the training set of the grid configurations,

and due to the partial similarity between training and validation/testing sets of grid configurations, the

prototypical CPCNet achieved the 50% plus validation/testing accuracy on grid configurations. It could

be caused by a local optimum.

2. Hypothesis 2: The model was able to learn some abstract concepts and some visual elements in the

training set of the grid configuration, but not all of them. In this case, it memorized the ones that it was

not able to learn. This could also give the 50% plus validation/testing accuracy on grid configurations.

In particular, this could be caused by an optimization difficulty due to the competition between different

types of abstract concepts and visual elements. And some abstract concepts and visual elements won

out in the competition.

To test Hypothesis 1 and other general overfitting causes (rather than the ones specific to RAVEN), the

following experiments were conducted:

1. I equipped the prototypical CPCNet with traditional regularization methods, such as dropout in the

MLP modules.

2. In our case of conceptual and perceptual contrasting, extra regularization was also applied to reduce

the residual of contrasting.

3. I also resized the input images to smaller size so that larger batch size could be used.

4. Warmup training.

5. Fully shuffling the dataset for every epoch, which was not originaly used for training the prototypical

CPCNet to save memory.

6. Trying different loss functions, such as cross entropy, binary cross entropy, binary focal cross entropy,

and other customized losses for the prototypical CPCNet.

Unfortunately, none of them worked.

Hypothesis 2 implied that the abstract concepts and visual elements—that are specific to grid configura-

tions, i.e., the variations about position and number of goemetric objects—were the ones that did not won

out. But why didn’t they win out? In other words, why were they difficult to learn compared to others? Per-

haps, before answering these questions, a very basic question was whether the variations about position and

number of geometric objects were learnable by a neural network or not. Therefore, I created a new number

matrix dataset, which ideally encoded the position and number information of goemetric objects explicitly
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in numbers. That is, each item is a matrix of numbers instead of images, where numbers correspond to the

number and position of geometric objects in the original RAVEN, and there were no other variations in the

number matrix dataset. An MLP was trained and tested on this number matrix dataset and the result showed

that, when represented in this explicit way, the variation about number and position of goemetric objects

could be learned EXTREMELY easily.

Given all the above experiments about model design and training, I started to suspect that the problem

arose from the dataset itself, rather than the methods we used to solve the dataset. There might be something

special about the RAVEN dataset that caused this special distinction between grid and non-grid configura-

tions. I thus conducted following experiments on the RAVEN dataset:

1. Data leak check. It turns out that there is no data leak from the training set to the validation and testing

set.

2. Balanced training in terms of correct and wrong answer choices. There are eight answer choices and

only one of them is correct. The negative supervising signal is much stronger than the positive one. I

thus reformulated each training items to have only two answer choices—one correct and one wrong.

However, this did not improve the situation at all.

3. Noise-Free RAVEN: in grid configuration, there exist noisy visual attributes (e.g., angle and orienta-

tion) that are not governed by any abstract concepts/rules. But non-grid configurations do not have

such noisy attributes. I thus regenerated the items of grid configurations without any noisy attribute.

However, training on this noise-free RAVEN did not reduce the gap between the grid and non-grid

configuration at all. Thus, the noise is not the reason for the gap.

So far, all the experiments I tried to explain the gap between the grid and non-grid configurations has

failed. However, when I was inspecting the results of these experiments, a glimmering of correlations between

these numbers eventually helped me solve this mystery. In particular, the root cause for the gap was verified

through creating a new variant of RAVEN, which will be discussed in the next subsection.

4.7.2 AB-RAVEN

The most important feature of RAVEN or other visual abstract reasoning tasks is that each item is character-

ized by some abstract concepts and visual attributes, and the whole dataset is backed by a system of abstract

concepts and visual attributes. That is, the meaning of each item is not just a positive or negative label to be

predicted, or belonging to certain perceptual category; instead, the meaning is more conceptually complex.

This allows us to analyze the situation for each abstract concept and visual attribute. Table 4.10, 4.11, and
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4.12 show the testing accuracy of the prototypical CPCNet for each combination of abstract concept and

attribute in the grid configurations.

Number Position Number/Position Type Size Color
Constant - - 89.43% 61.99% 58.48% 61.97%

Progression 65.22% 37.34% - 73.07% 70.96% 70.7%
Arithmetic 63.87% 66.29% - - 66.73% 64.83%

Distribute-Three 68.34% 57.74% - 64.12% 68.35% 68.49%

Table 4.10: Testing accuracy of the prototypical CPCNet for each abstract concept and attribute in the 2x2Grid
configuration of RAVEN.

Number Position Number/Position Type Size Color
Constant - - 91.67% 61.04% 57.29% 57.8%

Progression 73.67% 23.37% - 65.38% 68.56% 69.71%
Arithmetic 62.71% 65.82% - - 65.14% 65.77%

Distribute-Three 74.25% 59.52% - 66.15% 65.84% 63.2%

Table 4.11: Testing accuracy of the prototypical CPCNet for each abstract concept and attribute in the 3x3Grid
configuration of RAVEN.

Number Position Number/Position Type Size Color
Constant - - 75.95% 76.29% 76.3% 75.95%

Progression 85.23% 58.9% - 77.09% 75.68% 77.78%
Arithmetic 73.94% 72.07% - - 80.93% 76.32%

Distribute-Three 78.99% 73.41% - 75.02% 75.28% 81.14%

Table 4.12: Testing accuracy of the prototypical CPCNet for each abstract concept and attribute in the Out-
InGrid configuration of RAVEN.

Meanwhile, Table 4.13, 4.14, and 4.15 show the training item number for each abstract concept and at-

tribute in the grid configurations. We can see a moderate correlation between the three accuracy tables and the

three training item number tables. This implies that, for each combination of abstract concept and attribute,

to some extent, its testing accuracy is determined by the number of its training items. To be comprehensive,

Table 4.16, 4.17, 4.18, and 4.19 show the training item number for each abstract concept and attribute in the

non-grid configurations

Number Position Number/Position Type Size Color
Constant 0 0 970 1957 1527 1463

Progression 556 501 0 1999 1512 1469
Arithmetic 989 1038 0 0 1503 1507

Distribute-Three 986 960 0 2044 1458 1561
Sum by Color 5030 18970

Table 4.13: The Training Item Number for Each Abstract rule and Attribute in the 2x2Grid Configuration of
RAVEN.
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Number Position Number/Position Type Size Color
Constant 0 0 833 1999 1494 1544

Progression 828 849 0 1991 1552 1480
Arithmetic 872 884 0 0 1553 1484

Distribute-Three 879 855 0 2010 1401 1492
Sum by Color 5167 18833

Table 4.14: The Training Item Number for Each Abstract rule and Attribute in the 3x3Grid Configuration of
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 6000 3272 3432 6000

Progression 473 459 0 3365 1894 1563
Arithmetic 1011 1011 0 0 1707 1456

Distribute-Three 1060 976 0 3385 3414 1490
Sum by Color 4990 36978

Table 4.15: The Training Item Number for Each Abstract rule and Attribute in the Out-In2x2Grid Configu-
ration of RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 6000 1977 1520 1524

Progression 0 0 0 1998 1465 1454
Arithmetic 0 0 0 0 1505 1535

Distribute-Three 0 0 0 2025 1510 1487
Sum by Color 0 24000

Table 4.16: The Item Number for Each Abstract rule and Attribute in the Center Configuration of RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 6000 3378 3243 6000

Progression 0 0 0 3344 2412 1511
Arithmetic 0 0 0 0 1460 1536

Distribute-Three 0 0 0 3320 3332 1509
Sum by Color 0 37045

Table 4.17: The Item Number for Each Abstract rule and Attribute in the Out-InCenter Configuration of
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 6000 3392 2660 2676

Progression 0 0 0 3327 2623 2617
Arithmetic 0 0 0 0 2605 2563

Distribute-Three 0 0 0 3378 2601 2616
Sum by Color 0 36958

Table 4.18: The Item Number for Each Abstract rule and Attribute in the Left-Right Configuration of RAVEN.
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Number Position Number/Position Type Size Color
Constant 0 0 6000 3365 2575 2610

Progression 0 0 0 3362 2591 2703
Arithmetic 0 0 0 0 2679 2605

Distribute-Three 0 0 0 3285 2639 2612
Sum by Color 0 37026

Table 4.19: The Item Number for Each Abstract rule and Attribute in the Up-Down Configuration of RAVEN.

To further explain this idea, I aggregated the data from configuration training item number tables into

Table 4.20. There are two types of combinations in this table—the red ones that exist only in the three grid

configurations and the green ones that exist mainly in the other four non-grid configurations and also exist

in roughly 65% of the grid items. As we can see in the table, the sum of the green ones is roughly 15

times the sum of the red ones. Therefore, the red ones are much less represented in RAVEN, in their own

configurations and globally. This argument also applies to I-RAVEN and RAVEN-FAIR because they share

the same underlying system of abstract rules and attributes with RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 31803 19240 16451 21817

Progression 1857 1809 0 19386 14049 12797
Arithmetic 872 2933 0 0 13012 12686

Distribute-Three 2925 2791 0 19447 16355 12767
Sum by Color 15187 209810

Table 4.20: Numbers of RAVEN (I-RAVEN and RAVEN-FAIR) Training items containing each combination
of abstract rules and attributes.

Since the less represented ones in RAVEN only exist in the three grid configurations mentioned above,

I hypothesize that it is because the reds ones in RAVEN in Table 4.20 are less represented that the accuracy

is worse on the grid configurations than on the non-grid ones. To verify this hypothesis, I revised RAVEN

to make it more Balanced in terms of Abstract rules and attributes (I thus name this revised version AB-

RAVEN). Table 4.21 shows the statistics of AB-RAVEN. It was made more balanced by decreasing the

number of non-grid training items and increasing the number of grid training items while keeping the overall

size of training set unchanged. The validation and test sets remain the same as RAVEN’s. If the hypothesis

is true, we will observe a smaller gap between grid and non-grid testing accuracies on AB-RAVEN than on

original RAVEN. Meanwhile, this dataset can also check if previous models’ high accuracies on non-grid

configurations are a result of excessively many training items of non-grid configurations.

As we see in Table 4.20, AB-RAVEN is not perfectly balanced, just more balanced than RAVEN. Per-

fectly balancing the dataset will violate the basic arrangement of 7 configurations, i.e., need to remove all

non-grid configuration items, making it not comparable with previous works on RAVEN.
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Number Position Number/Position Type Size Color
Constant 0 0 19574 17507 15263 21220

Progression 4058 4040 0 17641 11998 11010
Arithmetic 6329 6307 0 0 11508 10932

Distribute-Three 6335 6421 0 17579 15080 10907
Sum by Color 33490 180219

Table 4.21: Numbers of AB-RAVEN Training items containing each combination of abstract rules and at-
tributes.

Model Avg. Acc. Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

CPCNet on AB-RAVEN 98.84 99.75 99.20 94.95 99.70 99.80 99.50 98.95
Compared to CPCNet on RAVEN +1.92 -0.25 +2.5 +8.9 -0.3 -0.1 -0.4 +3.05

Table 4.22: Accuracies on the AB-RAVEN, using single-choice evaluation protocol. The numbers in the
second row reflect the improvement over the orginal imbalanced RAVEN dataset.

Table 4.22 shows the CPCNet model’s accuracies on AB-RAVEN. Compared to Table 4.5, the accuracy

gap between grid and non-grid configurations has been reduced from 7.07% to 1.98%. This verifies our

hypothesis about the imbalanced issue. Moreover, this experiment also shows that overfitting can happen

at a finer level of abstract concepts and attributes, rather than the level of the entire dataset.

For the readers might be curious about the exact distributions of abstract rules and attributes in RAVEN

and AB-RAVEN and how they differ from each other, I provide more detailed statistics of them in Table 4.23

through 4.30. These tables would provide reference for studying the effect of distribution of abstract concepts

on learning models.

The AB-RAVEN was generated using the original RAVEN generation code1. The number of items of

each configuration in AB-RAVEN is given in Table 4.23. AB-RAVEN is available here2.

RAVEN (I-RAVEN and RAVEN-FAIR) AB-RAVEN
Configuration Training Validation Test All Splits Training Validation Test All Splits

Grid
Configurations

2x2Grid 6000 2000 2000 10000 12400 2000 2000 16400
3x3Grid 6000 2000 2000 10000 12400 2000 2000 16400
O-IG 6000 2000 2000 10000 12400 2000 2000 16400

Non-Grid
Configurations

Center 6000 2000 2000 10000 1200 2000 2000 5200
L-R 6000 2000 2000 10000 1200 2000 2000 5200
U-D 6000 2000 2000 10000 1200 2000 2000 5200
O-IC 6000 2000 2000 10000 1200 2000 2000 5200

Sum 42000 14000 14000 70000 42000 14000 14000 70000

Table 4.23: The number of items of each spatial configuration in RAVEN (I-RAVEN and RAVEN-FAIR) and
AB-RAVEN.

WARNING: It needs to be pointed out that since I generated the new items of AB-RAVEN using the

original RAVEN source code, AB-RAVEN has the same backdoor solution as the original RAVEN, i.e.,
1https://github.com/WellyZhang/RAVEN
2The link is to be released soon.
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Number Position Number/Position Type Size Color
Constant 0 0 1200 399 305 303

Progression 0 0 0 416 277 293
Arithmetic 0 0 0 0 306 295

Distribute-Three 0 0 0 385 312 309
Sum by Color 0 4800

Table 4.24: The Item Number for Each Abstract rule and Attribute in the Center Configuration of AB-
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 1277 4109 3193 3065

Progression 1151 1124 0 4165 3147 3072
Arithmetic 2178 2253 0 0 3127 3099

Distribute-Three 2149 2268 0 4126 3033 3164
Sum by Color 11123 38477

Table 4.25: The Item Number for Each Abstract rule and Attribute in the 2x2Grid Configuration of AB-
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 1097 4162 3133 3170

Progression 1798 1850 0 4114 3126 3123
Arithmetic 1902 1912 0 0 3212 3071

Distribute-Three 1916 1925 0 4124 2929 3036
Sum by Color 11303 38297

Table 4.26: The Item Number for Each Abstract rule and Attribute in the 3x3Grid Configuration of AB-
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 1200 650 653 1200

Progression 0 0 0 697 495 295
Arithmetic 0 0 0 0 325 315

Distribute-Three 0 0 0 669 640 313
Sum by Color 0 7452

Table 4.27: The Item Number for Each Abstract rule and Attribute in the Out-InCenter Configuration of AB-
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 12400 6818 7040 12400

Progression 1109 1066 0 6929 3920 3190
Arithmetic 2249 2142 0 0 3518 3084

Distribute-Three 2270 2228 0 6950 7082 3050
Sum by Color 11064 76381

Table 4.28: The Item Number for Each Abstract rule and Attribute in the Out-In2x2Grid Configuration of
AB-RAVEN.
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Number Position Number/Position Type Size Color
Constant 0 0 1200 671 554 538

Progression 0 0 0 660 522 519
Arithmetic 0 0 0 0 495 537

Distribute-Three 0 0 0 671 540 515
Sum by Color 0 7422

Table 4.29: The Item Number for Each Abstract rule and Attribute in the Left-Right Configuration of AB-
RAVEN.

Number Position Number/Position Type Size Color
Constant 0 0 1200 698 485 544

Progression 0 0 0 690 511 518
Arithmetic 0 0 0 0 525 531

Distribute-Three 0 0 0 654 544 520
Sum by Color 0 7390

Table 4.30: The Item Number for Each Abstract rule and Attribute in the Up-Down Configuration of AB-
RAVEN.

comparing (embeddings of) answer choices before scoring them would lead to a high accuracy. How-

ever, as discussed in the experiment section, this so-called backdoor is a double-edged sword. One one

hand, it gives a shortcut (i.e., using multi-choice evaluation protocol) to achieve a high accuracy, which,

however, does not really say anything about the abstract reasoning ability of the model being tested;

on the other hand, combining the single-choice evaluation protocol with AB-RAVEN and RAVEN pro-

vides a more challenging and reasonable test to evaluate our models than using multi-choice evaluation

protocol and/or I-RAVEN and/or RAVEN-FAIR. Thus, I encourage our readers to use the positive edge

of this sword to evaluate the models and restrain the idea of using the negative edge to just achieve high

accuracies.

4.8 Experiments of CPCNet on PGM

With exactly the same implementation as in RAVEN experiments, the CPCNet model was tested on the other

major matrix reasoning dataset—PGM (Barrett et al., 2018). PGM is very different from the RAVEN family

in that, one one hand, PGM is much larger (about 20 times larger) than RAVEN, on the other, PGM provides

multiple generalization regimes to evaluate learning models.

As discussed in the Chapter 3, because the visual abstract reasoning datasets are built upon systems of

abstract concepts and visual elements, the datasets can be presented to learning models in either trivial or

nontrivial manner, depending on the how the abstract concepts and visual elements in training differ from

the ones in testing. In particular, in trivial generalization regimes, the combinations of abstract concepts and

visual elements are the same across training and testing; on the contrary, nontrivial generalization regimes
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mean that the combinations of abstract concepts and visual elements in training are different from the ones

in testing. There are different ways to combine abstract concepts and visual elements for training and testing,

thus leading to different levels of generalization difficulty.

The terms—“trivial” versus “nontrivial”—used here are, in a sense, misleading. In fact, the trivial gen-

eralization regimes can be not trivial at all in terms of the difficulty levels as learning tasks. And in some

evaluation settings, the trivial generalization regimes can be quite challenging. Similarly, the nontrivial gen-

eralization regimes can be quite trivial, depending on how the learning task is formulated in terms of input,

output, prior knowledge, and heuristics (for example, see the auxiliary training in Chapter 3). Thus, “trivial”

and “nontrivial” are used only to describe the difference between the two situations in terms of the abstract

concepts and visual elements. From the perspective of human cognition, these two terms indicate whether

extra human-like high-level reasoning steps are needed to make decisions.

One abstract concept can be applied to many different visual elements and one visual element can be used

to represent many different abstract concepts. Each visual abstract reasoning item is characterized by one or

more pairs of abstract concepts and visual elements, rather than just abstract concepts or just visual elements

separately. The existence of abstract concepts are always accompanied by the existence of visual elements.

In the case of PGM, each item is defined by one or more triplets of [r,o,a] where r is a relation, o is a object,

and a is an attribute, and that a triplet [r,o,a] means the relation r holds between the values of attribute a of

the objects o in the matrix entries. The detailed description of r, o, and a can be found in Section 3.3.2. Here,

the abstract concepts of PGM are represented by r. Thus, abstract concepts, relations, and rules are used

interchangeably in the following. The visual elements of PGM are a bit complex and represented by o and

a together. By varying the triplets [r,o,a] between training/validation and testing sets, PGM provides eight

different generalization regimes:

1. Neutral: training/validation and testing sets share the same set of 29 triplets [r,o,a]. The values of each

attribute a are taken from a finite list Va.

2. Interpolation: training/validation and testing sets share the same set of 29 triplets [r,o,a]. In the train-

ing/validation set, the values of a are restricted to even-indexed members of the finite list Va, whereas

in the test set only odd-indexed values were permitted.

3. Extrapolation: training/validation and testing sets share the same set of 29 triplets [r,o,a]. The values

of a were restricted to the lower half of the finite list Va for training/validation, whereas in the test set

they took values in the upper half of Va.

4. Held-Out Pairs of Triplets: there exist 400 combinations of two different triplets ([r1,o1,a1],[r2,o2,a2]).
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Note that it is not
(29

2

)
, because some triplets are conflicting with each other. 40 out of the 400 pairs

are held out for testing.

5. Held-Out Pairs of Attributes: 4 out of the 20 attribute pairs (a1,a2) are held out for testing.

6. Held-Out Triplets: 7 out of the 29 triplets [r,o,a] are hold out for testing. In particular, there are 7 [o,a]

in total, and for each of the 7 [o,a], a randomly selected [r,o,a] is held out for testing.

7. Held-Out Shape-Color: the triplets with [o=shape,a=color] are held out for testing. Each testing item

contains at least one triplet with o=shape and a=color.

8. Held-out Line-Type: the triplets with [o=line,a=type] are held out for testing. Each testing item

contains at least one triplet with o=line and a=type.

According to our definitions of trivial generalization, only Neutral and Interpolation can be definitely

classified as trivial generalization regimes. The Extrapolation regime lies on the boundary between being

trivial and nontrivial because, on one hand, the training and testing sets share the same set of triplets, and, on

the other, a special form of generalization is needed for handling unseen numerical values. But, unfortunately,

this kind of generalization is not encoded in the triplets and PGM thus does not allow us to control and

study it systematically,for example, whether learned extrapolation for one attribute help extrapolate for other

attributes or whether extrapolations learned through some abstract concepts help extrapolate for other abstract

concepts. When it is not studied as a learning task, i.e., learning for extrapolation of numerical values, this

kind of generalization can be achieved easily through special design or tricks (Webb et al., 2020a), which

does not really help us understand how extrapolation is realized generally in human cognition and AI.

According to our definition of nontrivial generalization, the last five generalization regimes can be clas-

sified as nontrivial generalization regimes. Depending on the extent to which the training triplets differ from

the testing triplets, these five generalization regimes have different levels of difficulty; the more the training

and testing triplets differ, the more difficult the generalization is. The difficulty levels of these five general-

ization regimes roughly follow this order: Held-Out Pairs of Triplets < Held-Out Pairs of Attributes < or ≈

Held-Out Triplets < Held-Out Shape-Color ≈ Held-out Line-Type.

The basic nontrivial generalization task is Held-Out Pairs of Triplets, in which the overall triplets actually

remain the same across training and testing but the combinations of triplets are different. Thus, success

of a model on this regime implies that the model indeed learns the triplets [r,o,a], i.e., the model indeed

“understands” that the variation of attribute a of object o follows the rule r, no matter how many different

variations happen at the same time in the input.
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The Hold-Out Pairs of Attributes moves the difficulty to a higher level by changing the combination of

attributes, but not really changes the triplets across training and testing. Success of a model on this regime

implies that the model not just have learned the triplets [r,o,a], but also have started to look into the triplet by

separating the component a from the triplet.

Different from the previous regimes, the Hold-Out Triplets changes triplets from training and testing

by holding out some combinations of abstract concepts and visual elements for testing. In particular, the

following seven triplets are held out:

1. [r=AND,o=line,a=type]

2. [r=progression,o=line,a=color]

3. [r=progression,o=shape,a=color]

4. [r=XOR,o=shape,a=position]

5. [r=XOR,o=shape,a=type]

6. [r=OR,o=shape,a=size]

7. [r=consistentunion,o=shape,a=number]

Success on this generalization regime implies that the model has learned that the variations are governed by

two components—abstract concepts and visual elements and been able to apply abstract concepts on visual

elements in new ways and interpret visual elements with abstract concepts in new ways. This indicates that

the abstract concepts and visual elements are represented by the model in some disentangled way that allows

flexible combinations of learned representations.

The next two regimes—Hold-Out shape-color and Hold-Out line-type— are probably the most chal-

lenging nontrivial generalization regimes. They require to generalize to visual elements—shape-color and

line-type respectively—that are irrelevant during training. Generally, this kind of generalization is im-

possible for current learning model because current learning models, as we all know, are always “lazy”

in their learning. If they can find a short-cut solution, they will never to make an extra effort to try to

“understand” stimuli that are irrelevant to the current task. Instead, they would simply consider irrelevant

stimuli as random noise and just ignore them. However, the situation for Hold-Out shape-color and Hold-

Out line-type are subtly different from generalizing to completely irrelevant visual elements. In appear-

ance, the training on [r,o=shape,a=not color] and [r,o=not shape,a=color] would possibly help generalize

to [r,o=shape,a=color]. Similarly, the training on [r,o=line,a=not type] and [r,o=not line,a=type] would
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possibly help generalize to [r,o=line,a=type]. However, in our experience with this dataset, this kind of gen-

eralization is very questionable because o and a are too much entangled with each other and probably cannot

be separated as too components. That is, o and a can only be learned together at the same time and treated as

a whole. Therefore, the combination game would probably not work here.

Due to the possibly entangled between o and a, PGM might not be a perfect dataset for studying dif-

ferent nontrivial generalizations that could have been defined more clearly by disentangled conceptual and

perceptual components.

4.8.1 Trivial Generalization Regimes

Most previous works using PGM as a benchmark only evaluated their models on the Neutral generalization

regimes. Other generalization regimes, whether trivial or nontrivial, received much less attention from the

previous research. Table 4.31 shows the models’ accuracies on the trivial generalization regimes. Note that

here we consider Extrapolation as a trivial one, though it lies on the boundary between trivial and nontrivial

ones.

Model Neutral Interpolation Extrapolation

Multi-Choice
Evaluation
Protocol

CoPINet 56.37% - -
MXGNet 66.7% 65.4% 18.9%
LEN 68.1% - -
DCNet 68.57% 59.7% 17.8%
SRAN 71.3% - -
SAVIR-T 91.2% - -

Single-Choice
Evaluation
Protocol

ARNe 12.55% - 17.76%
NCD 47.6% 47.0% 24.9%
WReN 62.6% 64.4% 17.2%
ViT 72.7% 67.7% 16.4%
NI 77.0% 70.5% 19.4%
Rel-Base 85.5% - 22.05%
SCL 88.9% 55.8% 17.3%
MRNet 93.4% 68.1% 19.2%
RS-TRAN 97.5% 77.2% 19.2%
MLRN 98.03% 57.8% 14.9%
CPCNet 98.4% 74.08% 16.75%

Table 4.31: Accuracies on the Trivial Generalization Regimes of PGM. We report without-auxiliary-training
accuracies of each model if possible. Data source for each row: (Zhang et al., 2019b), (Wang et al., 2020),
(Zheng et al., 2019), (Zhuo and Kankanhalli, 2021), (Hu et al., 2021), (Sahu et al., 2023), (Hahne et al., 2019),
(Zhuo et al., 2021), (Barrett et al., 2018), (Rahaman et al., 2021), (Rahaman et al., 2021), (Spratley et al.,
2020), (Wu et al., 2021; Małkiński and Mańdziuk, 2020), (Benny et al., 2021), (Wei et al., 2023), (Jahrens
and Martinetz, 2020).

.

Table 4.31 shows that the CPCNet model performs well on the Neutral generalization regimes. However,

the accuracies on the Interpolation and Extrapolation regimes are not as good as on the Neutral one. It is
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understandable that the CPCNet does not work well on Extrapolation because the CPCNet does not have any

special design to support this kind of generalization. Like most learning models, it should not be able to

generalize to numerical values of attributes that are two far away from the values on which it is trained.

CPCNet’s accuracy on Interpolation should have been close to its accuracy on the Neutral. But Table 4.31

shows that the CPCNet’s accuracy on Interpolation is significantly lower than its accuracy on the Neutral. The

reason for this could be that the CPCNet model was not sufficiently trained. Due to the limited computational

resource, systematic exploration for hyper-parameters and sufficiently many random trials could not be con-

ducted for the generalization regimes other than Neutral.

4.8.2 Nontrivial Generalization Regimes

Model H.O. Triplet Pairs H.O. Attribute Pairs H.O. Triplets H.O. Line-Type H.O. Shape-Color

Multi-Choice
Evaluation Protocol

MXGNet 43.3% 33.6% 19.9% 16.7% 16.6%

Single-Choice
Evaluation Protocol

WReN 41.9% 27.2% 19.0% 14.4% 12.5%
ViT 44.1% 34.1% 15.9%
NI 45.2% 36.6% 20.0%
SCL 64.5% 40.8% 27.0% 15.1% 12.7%
MRNet 55.3% 38.4% 25.9% 30.1% 16.9%
RS-TRAN 43.6% 28.4% 22.2% 24.7% 12.9%
CPCNet 97.14% 33.00% 24.62% 30.98% 13.32%

Table 4.32: Accuracies on the nontrivial Generalization Regimes of PGM. We report without-auxiliary-
training accuracies of each model if possible. Data source for each row: (Wang et al., 2020), (Barrett et al.,
2018), (Rahaman et al., 2021), (Rahaman et al., 2021), (Wu et al., 2021; Małkiński and Mańdziuk, 2020),
(Benny et al., 2021), (Wei et al., 2023).

Table 4.32 show the experimental results of nontrivial generalization regimes. According to the implica-

tion of Held-Out Pairs of Triplets discussed above, it can be said that the CPCNet model indeed learned the

triplets [r,o,a], i.e., the model indeed “understands” that the variation of attribute a of object o follows the rule

r, no matter how different variations, including noisy random variation, happen at the same time in the input;

moreover, according to the implication of Held-Out Pairs of Attribute mentioned above, our model made an

initial effort to look into the internal structure of triplets and was able to separate the component a from the

triplet in some cases, but in most cases, it failed. Given its performance on the last three regimes, the CPCNet

model show an initial sign of attempting to discover the internal structure of triplets and to make nontrivial

generalizations by re-organizing the components of learned triplets. However, it can be seen that the CPCNet

model has plenty of room for improvement when the abstract concepts and visual elements during training

and testing are distant from each other. It also needs to be pointed out that, again, due to the limited compu-

tational resource, systematic exploration for hyper-parameters and sufficiently many random trials could not

be conducted for the nontrivial generalization regimes.
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4.9 An Extended View of CPCNet : Deep Non-Monotonic Reasoning

In this section, I will present an slightly different view of CPCNet that extends the original view of perceptual

and conceptual contrasting to a more general view. CPCNet can be considered as a special case of this new

view, in which the input is assumed to be general multi-dimensional tensor, where each dimension has its own

semantics and the whole tensor input presents a complex reasoning problem involving interaction between

all the dimensions. This view not only help us understand how CPCNet works on RAVEN an PGM, but also

it provides a guidance for extending CPCNet for solving more complex and flexible visual abstract reasoning

tasks.

Most existing deep learning models for processing this kind of multi-dimensional tensor input operate

in a monotonic way, i.e., aggregating/eliminating each dimension of the input gradually in a fixed order. In

contrast, CPCNet represents a non-monotonic way for processing, in which multiple processing orders are

explored and visiting the same dimensions for multiple times are allowed.

Again, take RPM items as an example. If we insert each answer choice into the matrix, we have eight

3×3 matrices with each matrix entry a 160×160 image. Since there are a finite number of items in RPM-like

datasets, we can assume that we have N underlying patterns and each underlying pattern has M instances

(i.e., items) in this dataset. Then, this RPM-like dataset can be represented by a 7D array of shape (N,M,a=

8,r=3,c=3,h=160,w=160), with a for answer choices, r for rows, c for columns, h for height of matrix entry

images, and w for width of them.

A monotonic AI system would probably do the processing from the right to the left of (N,M,c=8,r=3,c=

3,h=160,w=160), without backtracking. The monotonic assumption here means that correctly deciphering

a dimension is conditioned on correctly deciphering the ones on its right. Now, imagine a situation where all

the entry images, and thus all the items, in the RPM-like dataset are the same. In this case, processing the

first five dimensions first, rather than the last two, would be more efficient and easier for the AI system to

detect the underlying pattern—everything is constant. This might be a very extreme example, but the general

idea is clear. There should not be any fixed order to process input dimensions; at a certain point of processing

for solving certain items, some dimensions are more informative than others. Therefore, the non-monotonic

approach has its advantage over the monotonic approach as it sees all dimensions and allows to select the

informative ones at each step.

Now, we formalize the non-monotonic approach. Suppose that we have an input array D of shape

(d1,d2,...,dl). Let Ω1,Ω2,...,ΩT⊂{1,2,...,l} be subsets of dimensions that we are going to process sequen-

tially. (in different orders). There exist K=T ! possible processing paths and we thus create K copies

{D(0)
1 ,D(0)

2 ,...,D(0)
K } of D, each copy being processed by a distinct path. A non-monotonic step, say Step
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j, transforms {D( j)
1 ,D( j)

2 ,...,D( j)
K } to {D( j+1)

1 ,D( j+1)
2 ,...,D( j+1)

K } through Equation (4.11), (4.12), (4.13), and

(4.14). For the i-th path where i∈{1,2,...,K}, we have a sequence of dimension subsets Ωi1 ,Ωi2 ,...,ΩiT , which

is a permutation of the dimension subset {Ω1,Ω2,...,ΩT}:

f ( j)
i = f ( j)

i,ΩiT
◦ f ( j)

i,ΩiT−1
◦···◦ f ( j)

i,Ωi1
(4.11)

P( j)
i = f ( j)

i

(
D( j)

i

)
(4.12)

C( j)=g( j)
(

P( j)
1 ,P( j)

2 ,...,P( j)
K

)
(4.13)

D( j+1)
i =P( j)

i −C( j) (4.14)

where the subscript Ωik indicates the function f ( j)
i,Ωik

processes dimensions in Ωik . f ( j)=
(

f ( j)
1 , f ( j)

2 ,..., f ( j)
K

)
and g( j) are the processing paths and the contrasting module of Step j, respectively. The processing paths

f ( j) and the contrasting module g( j) can be implemented using any standard deep learning modules, such as

convolutions, linear, and pooling, or other custom operations, as long as the input and output dimensions are

compatible with neighboring modules.
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Figure 4.7: Non-monotonic processing of a multi-dimensional array D. This figure visualizes the computation
of Equation (4.11), (4.12), (4.13), and (4.14).

Figure 4.7 depicts the non-monotonic approach in a more extended way. In practice, we can stack multiple

non-monotonic steps together, as we stack multiple convolutional layers in monotonic models. At Step 0, f (0)

extracts information from certain dimensions of the input data array D and optionally reduces the sizes of the

dimensions; g(0) then contrasts the outputs from different paths. Since the parallel paths of f (0) are processing

the same dimensions in different orders, the outputs of different paths are expected to be consistent (or even

identical) with each other, as we have discussed for CPCNet.
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4.10 Concluding Remarks

Through RPM, we can see some common characteristics of visual abstract reasoning. First, there must

be multiple parts in an visual abstract reasoning item because the abstract concepts are in nature relations

between multiple parts. In most cases, it requires using multiple dimensions to organize the multiple parts.

The more complex the abstract conceptual system, the more additional dimensions needed. This nature

of visual abstract reasoning tasks calls for effective multi-dimensional processing methods. The proposed

CPCNet and the non-monotonic approach are such methods.

Second, the name “visual abstract reasoning” has been misleading for building AI systems as visual

abstract reasoning tasks in intelligence tests are in no way pure reasoning problems. RPM tests and other

visual abstract reasoning tests are for testing fluid intelligence, which is largely a superset of reasoning ability,

or a precondition for the reasoning ability that we considered in our daily life. This point can be seen

through the administration procedures of RPM tests, in which very sparse instructions are given. The human

participant only knows that she needs to point at one of the answer choices to complete the matrix, but has

no idea of what “complete” means and what is the criterion of being correct or wrong. Therefore, visual

abstract reasoning as intelligence tests is primarily about discovering and secondarily about reasoning. In

contrast, the AI systems for solving visual abstract reasoning is mainly working on the reasoning part, with

the discovering part ideally designed by human designers. The proposed approach in this chapter intends to

capture the discovering part by pursuing the consistency between different processing paths. This approach is

by no means the only way to do so, and it might not be a very efficient one. But the crux of building capable

AI is definitely on the “discovering” part.
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CHAPTER 5

Computational Imagery

5.1 Introduction

The research question for this chapter is whether imagery, when implemented computationally in AI systems,

is sufficient for solving visual abstract reasoning tasks. This Chapter incorporates finished works for this

research question. In particular, the computational models in these works solve RPM and RPM-like tasks

through only pixel representation of testing items and image operations. These works show that the imagery-

based approach is sufficient to solve RPM tests and other similar tasks. They further show that different

imagery abilities, such abilities manipulate mental images, can cause great variation in the task performance,

which is similar to results of human intelligence testing. To clearly examine the effect of mental imagery, we

use items from real intelligence tests to conduct experiments in this chapter.

Previous computational models have explored many important dimensions of solving RPM and related

tasks, including the capacity for subgoaling (Carpenter et al., 1990; Kunda, 2015), pattern matching (Cirillo

and Ström, 2010), rule induction (Rasmussen and Eliasmith, 2011), and dynamically re-representing and

re-organizing visual elements (Lovett and Forbus, 2017). However, an integrated computational view of the

solving process has been lacking. In Section 5.2, I present a systematic examination of how an imagery-based

system can solve RPM by combining imagery representation, similarity metrics, analogy construction, and

high-level strategies. As my base model, I use the Affine and Set Transformation Induction (ASTI) model,

which operates on scanned, pixel-based images from the RPM test booklet and uses affine transformations

and set operations to reason about image differences (Kunda et al., 2013; Kunda, 2013). In addition to

presentation and evaluation of the new, expanded ASTI+ model, the contributions of this work include:

• A three-level search and reasoning framework for solving RPM problems. First, at the level of images,

the agent can search across a known set of image transformations to interpret relationships within a

given image pair or triplet (e.g., to explain the variation across a row, column, or diagonal). Second, at

the level of a matrix, the agent can search across different analogies to find transfers of relationships

across different image pairs or triplets. Third, the agent can use different integration strategies that

combine results from the first two levels in different ways to produce the final answer.

• A finer taxonomy of option-usage strategies for solving RPM problems. Option usage, i.e., how an

agent uses the given answer choices to guide its reasoning, are traditionally categorized into con-

structive matching and response elimination strategies (Bethell-Fox et al., 1984). We further divide
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constructive matching into option-free and option-informed constructive matching.

• A demonstration that an ASTI+ agent using a certain combination of transformations, analogies, and

integration strategy can solve 57/60 items on the Raven’s Standard Progressive Matrices test, which

shows that these representations and inference mechanisms are sufficiently expressive and effective for

driving successful performance on this class of geometric matrix reasoning tasks.

• Systematic ablation experiments that show how test performance varies as a function of agent knowl-

edge and analogical construction strategy. The range of performance we obtain in these ablation ex-

periments covers almost the entire range of human performance reported in normative studies of the

Standard RPM test.

In the practice of using imagery-based systems to solve visual abstract reasoning tasks, I found that the

performance of these systems are highly sensitive to visual similarity metrics. In particular, when there

are hand-drawing and hand-writing in testing items, which are quite common in human intelligence tests,

distortion and noises cause by hand-drawing and writing would pose a great challenge to traditional similarity

metrics, such Jaccard index. In this case, it is possible that the metrics would give a very low score to

extremely similar visual stimuli in human perception. Therefore, in Section 5.3, I propose a new visual

similarity metric—soft Jaccard index—which is based the original Jaccard index. The advantage of this

similarity metric is not only the robustness to distortion and noises but that it inherits the clear semantics of

the traditional Jaccard index, which makes it applicable in all scenarios where the traditional Jaccard index

applies.

Besides similarity metrics, analogy making is another core cognitive factor behind the solving process

of RPM. Thus, Section 5.4 presents an analogy-making view toward the solving process of visual abstract

reasoning. It focuses on the how analogy is established through constructing mappings between visual stimuli

and organizing these mappings in a consistent way, which is meaningful for analogy-making. Similar to the

ASTI+ model, the entire analogy making is based on imagery-based representation and the new soft Jaccard

index.

5.2 ASTI+: an Imagery-Based Model for Solving RPM

In this section, the technical details of ASTI+ is described, including: 1) input and output representations, 2)

similarity metrics, 3) image transformations, 4) matrix analogies, and 5) integration strategies. A comparison

to its predecessor—ASTI (Kunda et al., 2013; Kunda, 2013)—is also provided. The experimental results and

discussion of testing ASTI+ on the standard RPM tests are presented at the end of this section.

123



a

a a

a a

aa

a

aaa

1 2 3

4 5 6

a a

a

a

a

a

aa

(a) 2×2 RPM-like problem

1 2 3 4

5 6 7 8

(b) 3×3 RPM-like problem

Figure 5.1: Sample problems similar to those from the Standard version of the Raven’s Progressive Matrices
(RPM) test (Raven et al., 1998). Real RPM problems are not shown in order to protect the confidentiality of
the test.

Figure 5.2: Illustration of input to our model for the 2×2 example problem in Figure 5.1, where mij is the
matrix entry in row i and column j, and Ok is the k-th answer option.

5.2.1 Model Details

5.2.1.1 Input and Output Representations

Since the Standard RPM is in black and white, we represent each problem as a binary (i.e. pure black and

white) image. Note that this is equivalent to representing an image as a set of black (or foreground) pixels,

with each pixel represented by its coordinates in the image. Throughout this section, we use these two

representations interchangeably.

Binary images are generated from grayscale scans of a paper copy of the Standard RPM test booklet. We

select a threshold manually to convert grayscale values to binary values. We use an RPM-specific automated

image-processing pipeline (Kunda, 2013) to decompose each full test page into images of individual matrix

entries and answer options, as shown in Figure 5.2. We then feed these individual images as inputs to the

ASTI+ model.
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5.2.1.2 Similarity Metrics

One core reasoning component within the ASTI+ model specifies how to measure similarity between images.

The model incorporates a similarity function that takes two images as input, and returns a real-valued number

as output. For this purpose, we use the Jaccard index and the asymmetric Jaccard index, as shown in Equations

(5.1) and (5.2), respectively:

J(A,B)=
|A∩B|
|A∪B|

(5.1)

JA(A,B)=
|A∩B|
|A|

(5.2)

where sets A and B each represent a binary image. These indices essentially compute a measure of spatial

overlap between two binary images. Equation (5.2) is asymmetric because JA(A,B) measures the extent to

which A is inside (i.e., a subset of) B, and thus JA(A,B)̸=JA(B,A).

A problem with Equations (5.1) and (5.2) is that the measures are sensitive to the alignment of pixels

between A and B, i.e., if A has a black circle in the upper left, and B has a black circle in the lower right,

then J(A,B) and JA(A,B) might both be zero, even though there is considerable similarity between the pixel

arrangements across those two image regions. However, in many geometric matrix reasoning problems, the

images of matrix entries and options come in various shapes and sizes, and pixel elements within each image

can vary in spatial location. We take a simple but robust approach to this problem (as in the original ASTI

model): slide one image over the other, calculate a similarity value at every relative position, and select the

maximum. In the process of sliding, images are padded to have the same shape and size.

S(A,B)=(J(A,B),posAB) (5.3)

SA(A,B)=(JA(A,B),posAB,posDA,D) (5.4)

As a result, similarity calculation in our model is defined by Equations (5.3) and (5.4), where J(A,B)

and JA(A,B) are the maximum similarity values at the relative position posAB of A to B. In Equation (5.4),

D=B−A is the difference between A and B when the maximum is reached, and posDA is the relative position

of D to A.

When the maximum is achieved at multiple relative positions, we take the least shifted one. If multiple

such least shifted positions exist, the agent breaks ties by always selecting the first one that is returned by the

sliding window operation. Of course, there exist other methods for breaking ties, but we do not examine such

variations here.
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5.2.1.3 Transformations

The second component in the ASTI+ model is the specification of low-level visuospatial domain knowl-

edge. ASTI+ represents this knowledge as a discrete set of image transformations that map from one or

more input images to an output image, akin to operations of visual mental imagery done by humans such

as mental rotation, mental image composition, etc. These functions operate on images at the pixel level,

without re-representing visual information in terms of higher-order features. Although these functions were

defined manually, based largely on inspections of the Raven’s test, important directions for future work in-

clude expanding them to include higher-order features and concepts, as well as learning this knowledge from

perceptual experience (Michelson et al., 2019).

Figure 5.3: Illustrations of affine transformations used in our model.

(a)
C A B O=T(C|A,B)
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inverse 
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N/Axor
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shadow 

mask 
unite 

A B C O=T(A,B|C)T

Figure 5.4: Illustrations of set transformations used in our model: (a) Given an analogy A:B::C:? and
an unary set transformation T , the output image is O=T (C|A,B), where C is the input, and B and C are
parameters of T ; (b) Given an analogy A:B:C::D:E:? and a binary set transformation T , the output image
is O=T (A,B|C) when T is applied on A:B:C, where A and B are the inputs, and C is a parameter of T , or
O=T (D,E|O′) when T is applied on D:E:?, where O′ is an option of the RPM problem.
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Figure 5.5: Illustrations of simple analogies in RPM problems. Simple analogies reflect how a matrix layout
is naturally perceived as rows or columns. Particularly, given 2×2 matrices in (a) and (b), the row anal-
ogy is A:B::C:? and the column analogy is A:C::B:?; similarly, given 3×3 matrix in (c) and (d), the row
analogies include A:B:C::G:H:? and D:E:F::G:H:?, and the column analogies include A:D:G::C:F:? and
B:E:H::C:F:?.

ASTI+ includes two types of image transformations: unary and binary, which take a single input image

and two input images, respectively, and then return one or more images as output. All ASTI+ transformations

are based on fundamental affine transformations and set operations. These extend the original collections

proposed in earlier ASTI research (Kunda et al., 2013; Kunda, 2013).

ASTI+ includes nine unary affine transformations: eight rectilinear rotations/reflections, as shown in

Figure 5.3, and a ninth scaling transformation that doubles the area of the input image. There are also 11

additional set transformations: five unary and five binary, as shown in Figure 5.4a and 5.4b respectively, and

one hybrid unary/binary transformation.

Table 5.1 gives details of each transformation. Unary transformations are defined relative to analogies

between pairs of images, such as A:B::C:D for images A, B, C and D. Binary transformations are defined

relative to analogies between trios of images, such as A:B:C::D:E:F for images A, B, C, D, E and F.

5.2.1.4 Analogies

The third element specifies how analogies are defined within a given RPM problem next. ASTI+ posits that

an RPM analogy is composed of relations between matrix entries and that all parallel relations should be

instantiated by the same transformation. This assumption seems adequate for most problems on the Standard

Raven’s test, but items on the Advanced test or other geometric analogy tests may require considering multiple

transformations (Carpenter et al., 1990; Kunda, 2015).

Figure 5.5 illustrates simple analogies that one could draw in any given RPM problem, where the images

are represented by characters. These analogies are either between rows (Figure 5.5a and 5.5c) or between

columns (Figure 5.5b and 5.5d), implying that the rows or columns share the same underlying relation among

entries.

In addition to the simple analogies in Figure 5.5, the ASTI+ model also expands these analogies in two

ways. First, for 3×3 matrices, the model further considers several subproblems, as shown in Figure 5.6. For
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add_diff (C|A,B) Calculate SA(A,B)=(···,posDA,D). Align C and D using posDA|A=C. Output O=C∪D.
sub_diff (C|A,B) Calculate SA(B,A)=(···,posBA,posDB,D). Align C and D using posBA|A=C and posDB.

Output O=C−D.
xor_diff (C|A,B) Calculate S(A,B)=(···,posAB). Align A and B using posAB, and calculate D=A⊕B

and posDA. Align C and D using posDA|A=C. Output O=C⊕D.
duplicate(C|A,B) Let O be an empty image of the same size as B. Calculate SA(A,B)=(···,posAB,···)

and B=B−A aligned by posAB, and copy C to the position of posAB|A=C in O.
Repeat this until nothing is left in B. Output O.

rearrange(C|A,B) Let O be an empty image of the same size as B. Decompose C, A and
B into connected components C1,C2,···,Cl , A1,A2,···,Am and C1,C2,···,Cn. If l=
m=n is false, output a value indicating failure. Otherwise, find a permu-
tation f of {1,2,···,n} that maximizes ∑

n
i=1J(Ai,B f (i)) by calculating S(Ai,B j)=

(J(Ai,B j),posAiB j) for each i and each j. Find another permutation g of {1,2,···,n}
that minimizes ∑

n
i=1distance(Ci,Ag(i)). Generate O by copying Ci to position of

posAg(i)B f (g(i))|Ag(i)=Ci in O for all i.

unite(A,B|C) Calculate SA(A,C)=(···,posAC,···) and SA(B,C)=(···,posBC,···). Align A and B with
posAC and pocBC. Output O=A∪B.

intersect(A,B|C) Calculate SA(C,A)=(···,posCA,···) and SA(C,B)=(···,posCB,···). Align A and B with
posCA and pocCB. Output O=A∩B.

IU(A,B|C)* Calculate SA(B,A)=(···,posBA,···) and SA(C,A)=(···,posCA,···). Align A, B and C
using posBA and posCA. Output image O=A−(B−C).

xor(A,B) Calculate S(A,B)=(···,posAB). Align A and B by posAB. Output O=A⊕B.
SMU(A,B)* Let X and Y be the shadows of A and B, where “shadow” is defined to be a copy

of an image where any white area surrounded by black in the original image is
colored black. Calculate S(X ,Y )=(···,posXY ). Align X and Y using posXY , and
calculate M=X∩Y . Align A and B using posXY |X=A,Y=B. Output O=M∩(A∪B).

PSD(D,E|A,B,C)* Given analogy A:B:C::D:E:?, preserving_sub_diff works as sub_diff (E|B,C). But it
requires that A⊂B∩C and D⊂E∩O, where O is an option. Otherwise, output a
value indicating failure. (This transformation is NOT shown in Figure 5.4.)

* IU=inverse_unite, SMU=shadow_mask_unite, PSD=preserving_sub_diff

Table 5.1: Details of unary, binary, and hybrid unary/binary transformations.
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Figure 5.6: Illustrations of recursive analogies in 3×3 RPM problems: (a) are (b) are trio analogies and (c)
through (j) are pair analogies.

example, consider the simple analogies in Figure 5.5c, A:B:C::G:H:? and D:E:F::G:H:?, which use only

two of the three rows. We then combine them into a larger recursive1 format, A:B:C::D:E:F:::D:E:F::G:H:?

as in Figure 5.6a, which use all rows. In this recursive analogy, two subproblems are created — the first

subproblem is A:B:C::D:E:?, with F as the only option, and the second subproblem is D:E:F::G:H:?, with

options from the original RPM problem. All subproblems should be solved equally well by the correct

transformation.

Second, ASTI+ captures more sophisticated spatial regularities by expanding the matrix in a way that the

adjacency between matrix entries is preserved everywhere in the expanded version. Then it encloses different

parts of the expanded matrix with quadrilaterals, as shown in Figure 5.7. The entries in each quadrilateral

form a new matrix, whose rows and columns constitute analogies that can not be systematically constructed by

rows and columns in the original matrix. ASTI+ follows two reasonable heuristics to enclose these matrices:

(1) the quadrilateral should contain a permutation of the original matrix, and (2) the quadrilateral should have

a ? at one of its corners. We do not necessarily expect that humans use this strategy to search through this

analogy space, but it provides a systematic and parsimonious way to capture regularities within a matrix that

humans might perceive and reason about, albeit in different ways.

5.2.1.5 General Integration Strategy

The fourth element concerns the general strategy used to integrate transformations, analogies and similarity

metrics to solve an RPM. The integration can be generally divided into three stages. In Stage 1, ASTI+

attempts to explain the variations in the incomplete matrix with some analogies and transformations. In Stage

2, it verifies the explanations by checking if there exists an option that can be generated from the analogy and
1Recursive in that it is an analogy of analogies.
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Figure 5.7: Expanded matrices to generate analogies: (a) through (c) are expanded from the 2×2 matrix in
Figure 5.5, and (d) through (g) are expanded from the 3×3 matrix in Figure 5.5.

transformation. In Stage 3, it uses the best explanation—the best analogy and the best transformation—to

select an answer option.

To quantify “how well” an analogy and a transformation explain the variations across matrix entries, we

introduce three scores corresponding to the three stages, which are realized through different ways to assem-

ble Jaccard similarity measurements: (1) the MAT score measures how well an analogy and a transformation

explain the variations in the matrix in Stage 1; (2) the O score measures how well an analogy and a transfor-

mation explain the variations involving the options in Stage 2; and (3) the MATO score, which is used as the

final metric to select the answer, is computed from the MAT and O scores. For example, given the matrix in

Figure 5.5a, analogy A:B::C:? and transformation f lip(X), we have MAT=J( f lip(A),B), O=J( f lip(C),O)

and MATO=(MAT+O)/2. Score calculation depends on what types of analogy and transformation are used,

as described below.

MAT Scores. For transformations in forms of T (A) or T (A,B) (without extra parameters), MAT scores

are calculated in the same way as f lip(X). For transformations with extra parameters, they cannot be com-

puted in this way because the model does not know the extra parameters. For example, for add_diff (I|S,T )

and A:B::C:?, it cannot use MAT=J(add_diff (A|S,T ),B) because it does not know S and T , but it can

use add_diff (C|A,B) to calculate O score. In this case, the MAT score is calculated as MAT=JA(A,B) for

add_diff (I|S,T ). Although the model takes transformation-specific approaches to calculate MAT scores, they

are simply different ways to assemble similarity measurements (symmetric and asymmetric Jaccard indices)

of the same known matrix entries.
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Figure 5.8: The dependencies of scores: The dashed lines denote partial dependence. Given the relations in
an analogy, MAT relies on the entries that are not related to the missing entries while O relies on the entries
that are related to the missing entries.

O Scores. For transformations whose MAT scores are calculated through the Jaccard index, so are their

O scores. For transformations using the asymmetric Jaccard index, for example add_diff and sub_diff , the

asymmetric Jaccard index is always higher than the Jaccard index given the same input (see Equation (5.1)

and (5.2)). As a result, transformations measured by asymmetric Jaccard index tend to have higher scores

even if their explanations are poor. To fix this issue, the model calculates multiple Jaccard and asymmetric

Jaccard indices, each of which characterizes a distinct aspect of the transformation, and average them to

get an O score. For example, for add_diff (C|A,B) and A:B::C:?, three aspects of the transformation are

considered: (1) how much C is a subset of O, where O is an option, (2) how the difference between A and B

compares to the difference between C and O and (3) how similar the predicted image is to O. This leads to

O=(JA(C,O)+J(D,D′)+J(add_diff (C|A,B),O)))/3, where D=B−A and D′=O−C after A, B, C and O are

properly aligned.

MATO Scores. Finally, every combination of an analogy, a transformation and an option is evaluated by a

weighted average of its MAT and O scores, where the weight is proportional to the number of variations that

the score measures. For recursive analogies in 3×3 matrices, scores of the original problem are derived from

the scores of subproblems. For instance, suppose that there are n subproblems in a recursive analogy, and let

MATk and Ok be the MAT score and O score of the k-th subproblem. In this case, the final MAT score is

MAT=[∑n−1
k=1(MATk+Ok)+MATn]/(2n−1) and the final MATO score is MATO=[∑n

k=1(MATk+Ok)]/2n.

5.2.1.6 Specific Integration Strategies: When and What to Maximize

ASTI+ implements the general integration strategy as several alternative specific strategies that systematically

explore different design choices in each stage of the general strategy. Given the dependencies of scores in

Figure 5.8, the general strategy boils down to an optimization in which MATO score is maximized over the

analogy aaa, the transformation ttt, and the option O for a problem-specific matrix mmm. An heuristic for solving

the optimization can be drawn from an observation on high-achieving human solvers — they often first form

a good understanding of the incomplete matrix before attending to the options. This observation, translated
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into our scoring system, says that a good MAT score implies a good O score and thus a good MATO score.

However, as most heuristics in intelligent systems, this heuristic might become invalid in some cases, for

example, it will not work if the system does not have adequate capability to fully “understand” or explain the

incomplete matrix (e.g. lacking appropriate transformations or analogies), or if the matrix contains distracting

noisy features that cause the system to “over-explain” the content that should have been ignored.

For this reason, we introduced specific integration strategies (summarized in the first part of Table 5.2) that

range from relying entirely on the heuristic to ignoring it. In particular, given an RPM matrix mmm, an analogy

aaa, a transformation ttt and an option O, the MAT score is a function MAT(mmm,aaa,ttt), O score is a function

O(mmm,aaa,ttt,O), and MATO is a function MATO(MAT,O). We formulate the three strategies as optimization

processes, as shown below in (I), (II) and (III):

MATO∗=max
O

MATO(MAT(mmm,aaa∗,ttt∗),O(mmm,aaa∗,ttt∗,O))

aaa∗,ttt∗=argmax
aaa,ttt

MAT(mmm,aaa,ttt)
(I)

MATO∗=max
aaa,O

MATO(MAT(mmm,aaa,ttt∗),O(mmm,aaa,ttt∗,O))

ttt∗=argmax
ttt

MAT(mmm,aaa,ttt)
(II)

MATO∗=max
aaa,ttt,O

MATO(MAT(mmm,aaa,ttt),O(mmm,aaa,ttt,O)) (III)

where (I) completely relies on the heuristic, (III) completely ignores the heuristic, and (II) lies in between. We

thus refer to optimizations (I), (II) and (III) as M-confident, M-neutral and M-prudent strategies, respec-

tively, in the following discussion.

Since the O score also depends on the option O in Figure 5.8, it can also serve as the objective func-

tion to select an answer from the options. Therefore, ASTI+ has three analogous integration strategies for

maximizing O, which we refer to as O-confident, O-neutral (IV) and O-prudent (V)) strategies:

O∗=max
aaa,O

O(mmm,aaa,ttt∗,O)

ttt∗=argmax
ttt

MAT(mmm,aaa,ttt)
(IV)
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O∗=max
aaa,ttt,O

O(mmm,aaa,ttt,O) (V)

Note that MATO is simply a weighted average of MAT and O, so the O-confident strategy is equivalent to

M-confident (I). Thus we do not need a separate optimization for it.

5.2.2 From ASTI to ASTI+

In this subsection, we compare ASTI+ to its predecessor ASTI. The ASTI model (Kunda et al., 2013; Kunda,

2013) introduced a visual-imagery framework for solving geometric reasoning problem that based analogical

reasoning on a pixel-level representation, transformations, and metrics. This framework remains unchanged

in the ASTI+ model. From ASTI to ASTI+, we gave enhancements to the core dimensions of the framework.

5.2.2.1 Analogy

For 2×2 matrices, ASTI and ASTI+ share the same analogy set, which could be manually enumerated given

the small size of matrices. In contrast, 3×3 matrices provide many more choices of analogies. We thus

developed the systematic approach in Section 5.2.1.4 to enumerate analogies, which led to analogies that

ASTI supported. We adopted this approach because analogues in matrix reasoning tasks are usually arranged

in spatial parallelism. Another enhancement was the introduction of recursive analogy, which was inspired

by the recursive and incremental nature of human solving reported in the literature (Carpenter et al., 1990;

Kunda, 2015).

5.2.2.2 Transformation

ASTI+ inherits all the affine transformations of ASTI. Meanwhile, ASTI+ has extra complex set operations,

such as inverse unite and shadow mask unite, that combine basic set operations in ASTI.

5.2.3 Integration Strategy

Compared to ASTI, ASTI+ has more choices of integration strategy representing different degrees of reliance

on the heuristic mentioned in Section 5.2.1.6. In contrast, ASTI implements only one strategy that roughly

equals the M-prudent strategy in ASTI+.

5.2.3.1 Option-Usage Strategy

Two general option-usage strategies for solving RPM problems and other multiple-choice reasoning prob-

lems have been reported in human studies: constructive matching and response elimination (Snow, 1980;
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Bethell-Fox et al., 1984). Constructive matching proceeds as in f er(T )→A=apply(T )→test(A), where

T is a transformation and A is an answer constructed by applying T . Response elimination proceeds as

in f er(T1)→in f er(T2|O)→compare(T1,T2), where O is an option used to infer T2 and, if compare(T1,T2)

fails, O will be eliminated. The strategy choice observed in human experiments was found to relate to sub-

ject’s intellectual ability, item type and difficulty. Cognitive models have been constructed based on both

strategies (Evans, 1964; Sternberg, 1977; Mulholland et al., 1980).

ASTI strictly follows the constructive matching strategy, where options are never used before gener-

ating the missing entry. We refer to this constructive matching as option-free constructive matching.

In contrast, ASTI+ adopts a slightly different approach that we refer to as option-informed construc-

tive matching, which lies between constructive matching and response elimination. It follows the pattern

in f er(T,p1)→in f er(p2|T,O)&A=apply(T,p2)→evaluate(A,O,p1,p2), where p1 and p2 are parameters of

T and p2 is inferred from the option O. For example, options are used for calculating alignment parameters of

the transformations in ASTI+. This strategy gives ASTI+ the flexibility to represent the relations that cannot

be represented by single-direction transformations.

5.2.4 Experimental Studies of the ASTI+ Model

To study how different analogical constructions affect the performance on the RPM test, we equip ASTI+ with

different configurations of analogies and transformations, and integration strategies, and test its performance

on the standard RPM test, which consists of five sets of problems with 12 problems each. In our experiments,

the analogical constructions are implemented as different configurations of analogies, transformations, and

integration strategies. We further aggregated them into the groups summarized in Table 5.2. Each configura-

tion has one or more groups of analogies and transformations, whereas it has only one integration strategy.

We hypothesized that, by varying the configuration, the performance would change accordingly.

To study how each dimension of the configuration affects performance, we conducted two experiments.

In the first one, we varied only the integration strategy and fixed the configuration of analogies and trans-

formations (using the full set of analogies and transformations). In the second one, we selected the best

integration strategy in the first one and varied the configurations of analogies and configurations.

The first experiment compares the integration strategies. Figure 5.9 shows the set-wise and problem-

wise performance of each one. The M-neutral strategy always ties with the M-prudent strategy, solving

57/60 problems, whereas the M-confident strategy performs slightly worse, solving 55/60 problems. The O

strategies are far less capable, especially in the last three sets (C, D and E), where the problems are 3×3 (Set

A and B contains only 2×2 problems). Thus, the M strategies, by considering both MAT and O scores, are

more robust to increases in the matrix dimension.
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Integration Strategies
M-Confident Find an analogy and a transformation that best explain the incomplete matrix; and

then select an option that best matches the analogy and the transformation.
O-Confident Mathematically equivalent to M-confident.
M-neutral For each analogy, find a transformation that best explains the incomplete matrix; and

then select an option such that there exist an analogy and its best transformation
that match the option well and explain the incomplete matrix well.

O-neutral For each analogy, find a transformation that best explains the incomplete matrix; and
then select an option such that there exist an analogy and its best transformation
that match the option well.

M-prudent Select an option such that there exist an analogy and a transformation that match
the option well and explain the incomplete matrix well.

O-prudent Select an option such that there exist an analogy and a transformation that match
the option well.

Transformation Groups
Affine All the affine transformations.
Diff add_diff , sub_diff , xor_diff , and preserving_sub_diff .
Match duplicate and rearrange.
Set unite, intersect, inverse_unite, xor and shadow_mask_unite.

Analogy Groups
S The analogies in Figure 5.7a and 5.7d.
H The analogies in Figure 5.7b and 5.7e.
V The analogies in Figure 5.7c and 5.7f.
R The analogies in Figure 5.7g.

Table 5.2: Configurations of integration strategies, analogy groups and transformation groups.

While the M-confident comes in last in Figure 5.9a by maximizing MATO, the O-confident fares best

by maximizing O in Figure 5.9b. Furthermore, O-neutral and O-prudent strategies in Figure 5.9b contrast

sharply with their counterparts in Figure 5.9a. In particular, the more a strategy relies on the heuristic from

Section 5.2.1.6, the more performance drops when switching from maximizing MATO to maximizing O. We

surmise that this is because the RPM is designed to have distractors with high O and low MAT. In other

words, these distractors work like traps for strategies that maximize only O scores, which is consistent with

observations that people often make errors of “repetition” while solving RPM problems (Kunda et al., 2016).

Figure 5.9c and 5.9d depict the scores for each strategy’s answer to each problem as disks. MAT and O

scores are encoded as size and color intensity, while the correctness of the answer is denoted by colors (blue

for correct and red for incorrect). Note that the “signed” O score in Figure 5.9c and 5.9d is only to distinguish

between correct and incorrect answers, and the real scores always fall in [0,1]. Figure 5.9c and 5.9d show
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Figure 5.9: Performance of each strategy on the standard RPM test: (a) and (b) show numbers of problems
correctly solved by each strategy in every set (A—E) and the entire test; (c) and (d) visualize MAT and
O scores of each strategy’s answer to each problem as disks of various sizes and colors, where red disks
indicates incorrect answers and blue disks indicate correct answers. Note that the “signed” O score in (c) and
(d) is only to distinguish visually between correct and incorrect answers, and the real scores always fall in
[0,1].

a subtle difference: different strategies can have the same correct answer to a problem, but the answer may

result from different analogies and transformations. Otherwise blue disks in any column would have the same

size and color.

Figure 5.10a and 5.10b present the strategies’ answers to every problem in scatter plots drawn with respect

to the MAT and O scores, which show more difference between strategies. Note that most data points in

Figure 5.10a, corresponding to the blue disks in Figure 5.9c, denote problems that are correctly solved. Since

these data points in Figure 5.10a are mostly located near or below the diagonal, we could hypothesize that,

for a "naive" participant or computational model (with little prior knowledge about RPM), a good explanation

for the known matrix entries matters more than how an option can be matched. Recall that MAT and O are

measurements of these two explanations. On the flip side, many more points, representing incorrect answers

according to Figure 5.9d, fall above the diagonal in Figure 5.10b, which further supports this idea. The

hypothesis is consistent with observations in previous human studies that high-achieving test takers usually

take a more constructive approach, which requires a clear explanation of the matrix rather than perceptually

matching the options (Bethell-Fox et al., 1984; Carpenter et al., 1990; Lovett and Forbus, 2017).
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Figure 5.10: Scatter plots of each strategy’s answer to each problem in the standard RPM test drawn with
respect to the MAT and O scores.

In the second experiment, we compared different configurations of analogies and transformations while

setting the integration strategy to the M-prudent strategy. Figure 5.11 shows the performance of different

combinations of analogy and transformation groups in this situation. In particular, each analogy group is

combined with each transformation group in Figure 5.11a, and analogy groups and transformation groups

are combined in an incremental way in Figure 5.11b. In Figure 5.11a, we can see the strength and weakness

of each analogy group and each transformation group. S analogies plus Diff transformations are good at

problems in Set A, B, and C, whereas R analogies and Set transformations work well on Set D and E but work

poorly on Set A, B, and C. Figure 5.11b shows increases in both the vertical and horizontal directions. The

former are more substantial than the latter. This does not mean that transformations are more important than

analogies, because, as seen in Figure 5.11a, the S group outperforms H, V, and R for every transformation

group and most problems in Set A, B and C solved by H, V, and R can also be also solved by S with a

different transformation. We might expect more variation across analogy groups if they were defined at a

finer-grained level.

To conclude our analysis, we compare ASTI+’s performance with human performance (Raven et al.,

1998) (i.e., the normative data of RPM). Figure 5.12 shows 95th, 50th and 5th percentiles of human perfor-

mance (age from 6 to 19) in green curves and the performance of different configurations of ASTI+ used in

our experiments in horizontal blue lines2. The ranges of ASTI+’s and human performance overlap substan-

tially, suggesting that analogical construction has a great effect on the performance of the RPM test and that

it probably has the same effect on the performance in other geometric reasoning tasks.

2Note that we did not use all the possible configurations, which would have resulted in wider and more even distribution of blue lines
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Figure 5.11: Bar charts of numbers of problems correctly solved by M-prudent strategy using different anal-
ogy groups and transformation groups. (This figure should be viewed in color.)

5.2.5 Summary

This section described a framework of solving matrix reasoning tasks, including variations in transformations,

analogies, and integration strategies. The experimental study shows that task-specific language of represen-

tations and inference mechanisms is quite expressive on the Raven’s Standard Progressive Matrices test and

that test performance varies not only as a function of transformations and analogies used, but also with the

higher-level integration strategy: when and how, across analogies and transformations, the model performs

its maximization calculations.

In tasks such as the RPM, where eductive ability (Spearman, 1923; Raven et al., 1998) is required to

extract information from a new situation, redundant information often exists; otherwise, ambiguity cannot be

eliminated because little prior knowledge is available. Methods for representing, identifying, and exploiting

such redundancies are crucial to solving the problem. Analogy is often used for this purpose. By varying

the configuration of the ASTI+ model, we alter its ability to identify and represent these redundancies and

control the extent to which it can exploit them to solve the task.

This work has two main implications. First, for artificial intelligence, analogical ability might be needed

for systems in new unseen situations. Second, for human intelligence, understanding analogical ability helps

us understand eductive ability. ASTI+ demonstrates that analogical reasoning can be implemented in AI sys-

tems as exhaustive search on a predefined analogy space. Humans’ analogical ability is far more sophisticated
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Figure 5.12: Comparison between ASTI+ and human subjects. The blue horizontal lines denote the perfor-
mance of the configurations used in our experiments. The green curves represent the percentiles of human
data.

than explicit search: it adapts to different complexity levels and task domains (Bethell-Fox et al., 1984), it in-

volves goal management and selective attention in working memory (Carpenter et al., 1990; Primi, 2001), and

it requires synergy between perception and cognition that works in a bidirectional and recursive way (Barsa-

lou et al., 1999; Hofstadter, 2001). These features present a huge challenge to any existing analogy-making

AI system.

The ASTI+ model uses only one analogy and one transformation to solve problems in the standard

Raven’s test. However, multiple analogies and transformations are required for problems beyond the stan-

dard test (Carpenter et al., 1990; Kunda, 2015) and, thus, adding methods that coordinate multiple reasoning

pathways of different analogies and transformations.

Going one step further, virtually all extant computational RPM models, including ASTI+, employ a single

strategy to solve every problem. However, there is ample evidence that people change strategies on Raven’s

problems, sometimes within a single testing session. For example, studies have found behavioral (DeShon

et al., 1995) and neural (Prabhakaran et al., 1997) differences across test items linked to visual versus verbal

problem-solving strategies, and other dimensions of strategy may exist. How do people manage these strate-

gies and, possibly meta-cognitively, select options appropriate for problems? And how might an intelligent

agent benefit from similar flexibility during complex problem solving?

Finally, although analogies and strategies are predefined in this research, there is the question of how

humans learn such strategies, which, to our knowledge, no AI systems have accomplished for the Raven’s
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test (Hernández-Orallo et al., 2016). Even RPM models that use learning still require the system designer

to define the function to be maximized. Research in program induction may provide one path to tackle this

thorny question (Schmid and Kitzelmann, 2011), including how strategies might be learned in the first place

and adapted to new problems.

5.3 Soft Jaccard Index

Figure 5.13: A simple example of geometric analogy problems (Lovett et al., 2009).

Imagery-based models are sensitive to the choice of similarity metrics. A basic formulation of similarity

metric is the Jaccard index (Equation (5.5)), which measures the similarity between two finite sets (Kunda

et al., 2013). In our works, these two sets consist of black pixels representing two geometric objects. Another

useful variant of the Jaccard index is the asymmetric Jaccard index (Equation (5.6)) that measures the extent

to which one set is a subset/inside of the other set.

J(A,B)=
|A∩B|
|A∪B|

=
|A∩B|

|A∩B|+|A\B|+|B\A|
(5.5)

J
#»
(A,B)=

|A∩B|
|A|

=
|A∩B|

|A∩B|+|A\B|
(5.6)

The Jaccard index works well for geometric objects that are ideally drawn, such as those generated

through vector graphics. But it is not as effective for geometric objects that human subjects would see in

real psychological tests and in daily life. These visual stimuli are subject to distortion and noise, which pose

a problem for imagery models using the Jaccard index. For example, applying Equation (5.5) on the scanning

image of Figure 5.13, which contains distortion and noise that are imperceptible to human vision, the Jaccard

index between the two large circles in A and B is only 0.25185; the Jaccard index between the small square

in A and the small circle in B is 0.48649 — these measurements violate the correspondences implied by the
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verbal description.

Ab=argmin
x∈A

d(x,b) for each b∈B (5.7)

Ba=argmin
x∈B

d(a,x) for each a∈A (5.8)

M0={(a,b)∈A×B|a∈Ab∧b∈Ba} (5.9)

A0={a∈A|∃b∈B s.t. (a,b)∈M0} (5.10)

B0={b∈B|∃a∈A s.t. (a,b)∈M0} (5.11)

Ta={(b,a′)∈B×A|b∈Ba∧a′∈Ab} for each a∈A\A0 (5.12)

Tb={(a,b′)∈A×B|a∈Ab∧b′∈Ba} for each b∈B\B0 (5.13)

M1={(a,b,a′)∈(A\A0)×B×A|(b,a′)∈argmin
(b,a′)∈Ta

d(a,a′)} (5.14)

M2={(b,a,b′)∈(B\B0)×A×B|(a,b′)∈argmin
(a,b′)∈Tb

d(b,b′)} (5.15)

d0=
1

|M0| ∑
(a,b)∈M0

|d(a,b)|p (5.16)

d1=
1

|M1| ∑
(a,b,a′)∈M1

|d(a,a′)|p (5.17)

d2=
1

|M2| ∑
(b,a,b′)∈M2

|d(b,b′)|p (5.18)

D(A,B)=d0+d1+d2 (5.19)

D#»(A,B)=d0+d1 (5.20)

S(A,B)=e−αD(A,B) (5.21)

S
#»
(A,B)=e−α D#»(A,B) (5.22)

Figure 5.14 and Table 5.3 give a clearer example of this issue. The first row of the table is the Jaccard

indices of the objects in Figure 5.14. According to these values, the square on the left is more similar to

the triangle than to another square on the right, and, similarly, the circle on the left is more similar to the

semicircle than to another circle on the right. Note that the sides of the two squares differ by only 1 pixel,

and so do the radii of the two circles.

We designed another similarity metric, which inherits the general idea of the Jaccard index and is more

robust to distortion and noise. The new metric does not require strict recurrences of elements in the two sets;

instead, two elements can be considered “recurring" to some extent depending on the distance between them.

Therefore, we name it soft Jaccard index.
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Figure 5.14: Geometric objects. Each cell in a grid denotes a pixel.

vs vs vs vs

Jaccard 0.4318 > 0.3333 0.3913 > 0.2307
Soft Jaccard 0.2076 < 0.9564 0.6461 < 0.9449

Table 5.3: Similarities between geometric objects in Figure 5.14. The Jaccard index is calculated using
Equation (5.5). The soft Jaccard index is calculated using Equation (5.21) with α=0.03, d of one-norm and
p=3.

Given two sets A={a1,a2,···,am} and B={b1,b2,···,bn} from a metric space with a metric d, the soft

Jaccard index of A and B is defined by Equation 5.7 through 5.22. Note that the argmin gives a set of values

that equally minimize the objective function. Equation 5.21 and 5.22 are the symmetric and asymmetric

versions. Like the Jaccard index, the soft Jaccard index also consists of three terms — corresponding to

|A∩B|, |A\B| and |B\A| in the Jaccard index — subscripted by 0, 1 and 2 in the equations. The difference is

that every term’s contribution is calculated from the metric d instead of set cardinality. To compare with the

Jaccard index, the soft Jaccard indices for the objects in Figure 5.14 are in the second row of Table 5.3. The

soft Jaccard indices are more consistent with human perception than the Jaccard ones.

5.4 An Analogy-Making View

If various cognitive gifts are the jewels in the crown of human intelligence, the analogy-making ability, as

the core of cognition (Hofstadter, 2001), is undoubtedly one of the brightest ones. Analogy problems have

always been an irreplaceable chapter in intelligence tests since they were first invented. In this section, we

take a closer look at the analogy-making aspect of visual abstract reasoning. Particularly, we will investigate
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the correspondence-finding mechanism based on mapping and optimization. The work in this section is

based on geometric analogy problems in human intelligence tests, which are also visual abstract reasoning

tasks but more relevant to analogy making than RPM. Figure 5.13 gives a simple example of geometric

analogy problems. To solve this problem, a subject needs to select an answer from the five options so that the

analogy—A is to B as C is to the answer—makes sense.

Imagine that a human subject solved the problem in the figure. She would probably describe it this way:

in the first two images, the large circle surrounding the small circle moves down to surround the small square;

thus, in the last two images, the large triangle surrounding the small square should move down to surround the

small circle, which gives us Option 3 as the answer. This simple description perfectly explains what happens

in the analogy, and most people would accept it as a reasonable answer. However, excessively relying on

verbal protocols is inappropriate because the verbal description after the subject already solved the item tends

to disguise the complexity of geometric analogy problems as a cognitive task. In the first place, the verbal

description is more of a consequence of the solving process rather than the solving process per se. Second,

the solving process might involve cognitive components that are not consciously accessible to the subject

and thus barely reflected in the verbal description. Last but not least, the verbal description uses high-level

concepts and ignores the potential difficulty of how these concepts are formed or chosen given the visual

stimuli. This part is probably far more complicated and influential in geometric analogy tasks than one would

expect (Barsalou et al., 1999; Hofstadter, 1979).

While the work in this section is not intended as a high-fidelity cognitive model of human analogy mak-

ing, it does provide insight into the representational and computational power (Thagard, 1996) of our specific

formulation of analogy-making mechanism with implications for advancing the reasoning capabilities of ar-

tificial systems and for developing new hypotheses about mechanisms of visual imagery in human cognition.

5.4.1 Intuitions Behind the Proposed Approach

Before we go into the technical details, it is a better idea to sketch the intuition behind the approach. Again,

taking the item in Figure 5.13 as an example, recall that the verbal description of it entails high-level concepts

such as “circle”, “square”, “triangle”, “surrounding” and “moving down”, and why and how these high-level

concepts end up in the verbal description is not so self-evident, yet very crucial to the complete solving

process.

Imagine that you see only one image, say the first image, of the item in Figure 5.13, without any contextual

information. How would you describe it? Perhaps still using the same set of concepts. But, more probably,

different people might describe it differently. For example, it looks like a symbol of lollipop. This leads us to

consider the context-dependent nature of concept individuation. In our case of geometric analogy problems,
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Figure 5.15: Correspondences between geometric objects. The correspondences between A and B and be-
tween C and D are shape mappings; the mappings between A and C and between B and D are derived from
inside/outside spatial relations.

the contextual information is the correspondence among geometric objects in the four images. Moreover,

the concept individuation and the correspondence finding in solving process are better to be regarded as two

viewpoints toward the same thing. For example, correspondences in our example problem can be depicted as

in Figure 5.15, in which the horizontal ones are based on similarity and the vertical ones are based on spatial

relation. One could say that the conceptual role of each object gives the correspondences, or, the other way

around, that the correspondences determine the conceptual role of each object.

From a problem-solving perspective, when embedded into the incomplete analogy, a correct option would

induce a self-consistent set of correspondences, or, equivalently, a self-consistent set of conceptual roles. This

type of self-consistency can be formally verified by a process of consistency check: given the correspon-

dences, two pathways exist between two diagonal images; for each starting object in each image, whichever

pathway is followed, it should lead to the same ending object in the diagonal image. For example, in Figure

5.15, on one hand, the large circle in A corresponds with the large circle in B, which corresponds with the

large triangle in D; on the other, the large circle in A corresponds with the large triangle in C, which corre-

sponds with the large triangle in D. The choice of using diagonal images in consistency check is because each

pathway contains the correspondences in both directions.

There are two general analogy-making theories. The first theory assumes a base domain and a target
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domain and, by comparing the relational structures in these two domains, mappings between them are in-

ferred (Gentner, 1983). When the relational structures or domains are not clearly defined, analogy-making is

usually performed through the second theory where a dynamic process is employed, in which structures and

correspondences between structures adapt to each other and settle on an equilibrium (Barsalou et al., 1999;

Hofstadter, 1979; Mitchell, 1993). For the purpose of end-to-end modeling of the solving geometric analogy

problems, the second theory is preferable. In particular, the domains are not clearly defined and the desirable

equilibrium is realized as a self-consistent set of correspondences. Note that given the proportional format

of geometric analogy, the base and target domains are not clearly defined (i.e., central permutation property

(Prade and Richard, 2009, 2010, 2013)); so are relational structures and mappings between structures. In

the rest of this section, we will discuss the technical details of the end-to-end modeling of solving geometric

analogy problems, which bear resemblance to the second theory of analogy-making.

5.4.2 Correspondence Finding

The example analogy in Figure 5.13 can be characterized by a consistent set of correspondences in two ana-

logical directions. In this section, we discuss how these correspondences can be found and used to interpret

an analogy in a broader sense. We formulate conceptual correspondences in analogies as mathematical map-

pings. Thus, treatments of mathematical mappings could help understand analogy-making and modeling. We

first consider two independent dimensions of mappings:

Qualitative vs Quantitative. A mapping can be derived from either qualitative relations or quantitative

relations. A qualitative mapping depends on whether there is a good match between two qualitative relational

structures. Thus, the validity of a qualitative mapping is considered binary. In contrast, a quantitative mapping

is associated with a continuous score, say between 0 and 1, to indicate the extent of its validity. To let them

work together, we give every qualitative mapping a score of 1 if it is valid or 0 if not.

Simple vs Complex. A mapping can also be derived either directly from geometric attributes of objects

or from other mappings. Let us call them simple and complex mappings, respectively. In a sense, a complex

mapping represents an isomorphism between two structures defined by two groups of mappings.

General Quantitative Mapping. Qualitative mappings are relatively easy to determine through structure

matching, whereas quantitative mappings require additional considerations to coordinate multiple factors: (a)

strong relations are preferable to weak ones; (b) the derived mapping should be unambiguous (i.e., injective)

in that any two mapped objects should mutually be each other’s best match; (c) the size of the mapping

should be as large as possible to capture the largest isomorphism. Thus, we designed a template method

to derive quantitative mappings as shown in Equation (5.23), where, given two sets U={u1,u2,···,um} and

V={v1,v2,···,vn} of objects, whether ui and v j are mapped to each other is denoted by xi j=1 or 0, and
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si j∈R denotes a measurement of the relation between ui and v j, for example, similarity. The above factors

are thus integrated into the optimization in Equation (5.23), where xi j and t are variables. Note that, in

this formulation, we assume larger values of si j indicate stronger relations. If smaller values of si j indicate

stronger relations, the equations need to be accordingly negated.

max∑
i, j

xi j

s.t. 1≥∑
j

xi j for all i

1≥∑
i

xi j for all j

xi j=x ji for all i, j

(xi j−0.5)(si j−t)>0 for all i, j

xi j∈{0,1} for all i, j ,and t∈R

(5.23)

Given the two dimensions of mappings and general quantitative mapping, we introduce the specific map-

pings:

Simple Quantitative: Shape Mapping. When the soft Jaccard index is used as the strength of relation

in Equation (5.23), we obtain a mapping reflecting shape similarity. Since the soft Jaccard index gives values

between 0 and 1, we use the minimum strength of the selected relations as the score of the mapping.

Simple Quantitative: Location Mapping. When Euclidean distance between objects is used as the

strength of relation in Equation (5.23), we obtain a mapping based on the locations of objects. In this case,

the lower strength values indicate stronger relations. The score of this mapping is calculated as the normalized

maximum strength of the selected relations.

Complex Quantitative Mappings. Let M1:A→B and M2:C→D be two injective mappings. A delta

shape mappings is a complex quantitative mapping constructed from M1 and M2, representing the idea that

the same shape change happens from A to B and from C to D. Similarly, a delta location mappings based on

M1 and M2 represent the idea that the same location change happens from A to B and from C to D. These two

complex quantitative mappings are thus between A and C and between B and D, orthogonal to the directions

of M1 and M2. Specifically, we require that M1 and M2 have to be of the same size, and all the pairs in M1

and M2 have to be mapped in these two types of delta mappings.

Complex Quantitative: Delta Shape Mapping. When the difference between the soft Jaccard index of

each M1 pair and the soft Jaccard index of each M2 pair is used as the strength of relation in Equation (5.23),

we obtain the delta shape mapping. The score of this mapping is calculated from the maximum strength of
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the selected relations.

Complex Quantitative: Delta Location Mapping. When the difference between the distance of each

M1 pair and the distance of each M2 pair is used as the strength of relation in Equation (5.23), we obtain the

delta location mapping. The score of this mapping is calculated from the normalized maximum strength of

the selected relations.

Simple Qualitative: Inside/Outside Mapping. Relations such as regional connection calculus were

supposed to be used here. But for rapid prototyping, we use only the inside/outside relation. An inside/outside

mapping exists if the relational structures of one set can strictly match the relational structure of the other set,

and thus has a binary score of 0 or 1. The internal area of a geometric object can be labeled by pixel-level

algorithms and the inside/outside relations can thus be determined by set operations between the internal area

and other objects.

Complex Qualitative: Edge-Labeled Isomorphism Between Bipartite Multigraphs. Let f1, f2,···, fn

be injective mappings between sets A and B, and f ′1, f
′
2,···, f ′n be injective mappings between sets C and D.

These two groups of mappings form two edge-labeled bipartite multigraphs with labels in {1,2,···,n}. We

can derive two new mappings between A and C and between B and D from any label-preserving isomorphism

between these two multigraphs. The score of the mapping is 1 if such isomorphism exists; otherwise 0.

There are cases when mappings are theoretically workable, but cumbersome. For example, when a geo-

metric object is rotated or mirrored, we can certainly map every point of the object to where they are moved

to. But a more efficient solution is to consider the transformation of the whole object. Therefore, we also

include common affine transformations in our toolbox, and, using the soft Jaccard index, we score the validity

of these transformations, as we did for mappings.

What if there is no good mapping? No useful mapping can be derived in some cases. For example,

given only one object in each item, we have no choice but to map them to one another even if the scores

are quite low; or an object maps to multiple objects equally well (not injective mapping), thus crippling the

reasoning through the mapping. In these cases, mapping is no longer suitable to represent the relations in an

analogy and we fall back to the approaches of the ASTI+ model. For example, in our experiment, Problem

2 requires a 45-degree rotation to represent the relation; Problem 16 requires duplication to represent the

relation; Problem 13 requires pixel density to represent the relation. We derive these non-mapping relations

still at the pixel level and calculate a score for each of them. Therefore, these mapping and non-mapping

relations can work together to interpret an analogy. However, further research on more coherent integration

and unification of these conceptual approaches is needed. These mapping and non-mapping relations are

combined to form interpretations for geometric analogies. In particular, each interpretation is to be applied

to the analogy completed by each option, and a score is calculated for each pair of interpretation and option
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Figure 5.16: The typical problems solved by each interpretation.

by aggregating the scores of mapping and non-mapping relations in the interpretation. The interpretation and

the option are selected by the highest score. Candidate interpretations are constructed from these mapping

and non-mapping relations (see Table 5.4).

5.4.3 Experimental Studies

Interpretation A:B::C:? A:C::B:? Mapping/Transformation Consistency Check Solved Problems

1 shape inside/outside Mapping yes 3, 5, 7, 9, 11,17
2 shape delta location Mapping no 1, 4
3 inside/outside delta shape Mapping no 8
4 shape & location isomorphism Mapping no 10, 20
5 shape = location shape Mapping yes 15
6 density change shape change Transformation no 13
7 duplicate N/A Transformation no 16
8 affine N/A Transformation no 2, 6, 12, 14, 18, 19

Table 5.4: Experimental Results on Geometric Analogy Problems. The second and third columns are two
analogical directions. The last column shows the problems that were solved by that interpretation.

Besides the aforementioned mappings, we construct another conceptual layer in our modeling — interpre-

tation — by assigning mappings or transformations to the two analogical directions, i.e., each interpretation

is a combination of specific mappings or transformations. To solve a geometric analogy problem, each inter-

pretation is scored for the geometric analogy obtained by inserting each option into the incomplete analogy,

by aggregating the scores of its mappings or transformations. The interpretation and option of the highest

score are selected as the answer to the problem. Following this outline, we implemented a computational

model and ran it on a classical set of 20 geometric analogy problems (details found in (Lovett et al., 2009)),
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which was published in the 1942 edition of the Psychological Test for College Freshmen of the American

Council on Education.

The experimental results are summarized in Table 5.4. All the 20 geometric analogy problems were

solved by 8 different interpretations. Table 5.4 lists each interpretation’s mappings or transformations in the

two analogical directions, and the solved problems. The first five interpretations are mapping interpretations,

among which Interpretation 1 and 5 require a successful consistency check because their mappings in the

two analogical directions are independently derived; in contrast, in Interpretation 2, 3 and 4, the complex

mappings in one direction are built upon the simple mappings in the other direction with the consistency

assumed to be true. Although the consistency holds in both cases, the corresponding analogies and how these

analogies are processed are different. Interpretation 6, 7 and 8 are transformation interpretations, which apply

to a large portion of the problems. This implies that, in addition to consistent mappings, visual imagery and

mental transformation are another important facet of analogy-making.

It is worth pointing out that Problem 19 can be solved by two affine transformations—rotation and

reflection—leading to different options. The rotation option won out marginally in our experiment, but the

reflection option is more human-preferred.

To give a straightforward description of how the model works, we select for each interpretation a problem

to describe the details. These problems and interpretations are visualized in Figure 5.16.

Interpretation 1: Problem 5 shows an analogy of topological variation between the two rows. Horizon-

tally, two shape mappings A→B and C→D are constructed. Vertically, two inside/outside mappings A→C

and B→D are constructed. These four mappings are consistent and characterize the repetition of the same

topological change in the two rows.

Interpretation 2: Problem 1 shows an analogy of location change between the two rows. Horizontally,

two shape mappings A→B and C→D are constructed. Vertically, two delta location mappings A→C and

B→D are constructed on the basis of the horizontal shape mappings. The repetition of the same location

change in the two rows is characterized by these four mappings.

Interpretation 3: Problem 8 shows an analogy of shape change between the two rows. This illustra-

tion is parallel to Interpretation 2’s except that it describes shape change instead of location change, using

inside/outside mapping instead of shape mapping in the horizontal direction.

Interpretation 4: Problem 20 shows an analogy of location exchange between the two rows. Note that

location exchange is different from location change in that an object can only move to a previously-occupied

place, and thus the movement is relative, whereas location change is the absolute movement in the global

coordinate system. Horizontally, two types of mappings are constructed, where the dashed line indicates

location mappings and the solid line indicates shape mappings. Vertically, an edge-labeled isomorphism is
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constructed on the basis of the horizontal mappings, where different mapping types serve as edge labels. The

repetition of the same location exchange in the two rows is characterized by these mappings.

Interpretation 5: Problem 15 shows an analogy of adding or removing objects between the two rows.

Horizontally, like Interpretation 4, shape mappings and location mappings are constructed but these two types

of mappings are required to agree with each other. Vertically, shape mapping is constructed. Therefore, the

same change of adding or removing objects in the two rows is described by these mappings. A consistency

check is needed.

Interpretation 6: Problem 13 shows an analogy of texture change and shape change between the two

rows. Horizontally, the texture change was supposed to be measured, but due to the lack of a general compu-

tational representation for texture, the density change of black pixel is used to approximate texture change.

In particular, we measure the density of black pixels in the area occupied by the geometric object. Given dA,

dB, dC and dB as the densities of A, B, C and D, they are expected to be dA=dC, dB=dD and dA−dB=dC−dD.

Vertically, shape change is represented by the change in soft Jaccard Index. The changes are supposed to be

equal in rows and columns. The score depends on how much all the expectations are satisfied.

Interpretation 7: Problem 16 shows an analogy of duplication between the two rows. Horizontally,

objects are duplicated in the same way (same location arrangement) from A to B and from C to D. The location

arrangement is determined by repeatedly calculating the asymmetric soft Jaccard index at different relative

locations and subtracting the best-match part from what is left. Vertically, a general quantitative mapping

between the two sets of locations is computed using Euclidean distance as the strength of relations. The

score of this interpretation is calculated from the minimum asymmetric soft Jaccard index and the maximum

significant level of selected correspondences. Note that, to differentiate intersection, tangency and closeness,

the location coordinates have to be normalized by the dimensions of the original object.

Interpretation 8: Problem 2 shows an analogy of affine transformation, a 45-degree rotation in this case,

between the two rows. The soft Jaccard index is used to determine which affine transformation best matches

the variation.

5.4.4 Summary

In this section, we proposed a model for solving geometric analogy problems. For each problem, the model

selects an option and an interpretation, which is based on the mappings or transformations in the two analog-

ical directions. Making or interpreting an analogy is a very delicate dynamic process in human cognition, in

which multiple aspects and levels of perception and cognition are closely cooperating with one another, and

gradually, magically, settling on a perfect harmony that make sense to all the aspects and levels. The intricacy

behind this cognitive process is far more complicated than an object mapping or a numerical optimization.
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CHAPTER 6

Future Work

There is more exciting work to be done on all the research questions that I raised in Chapter 2. For ex-

ample, for the second research question about the interplay mechanism between perceptual and conceptual

processing, I explored only one specific way to implement such interplay. Although the proposed model

performed well on the RAVEN family and the trivial generalization regimes of PGM, it showed just a weak

sign of generalization in the nontrivial generalization regimes of PGM, which are, however, more valued in

the sense of human intelligence testing. Therefore, to fully understand the effect of the interplay on nontrivial

generalization regimes of visual abstract reasoning tasks, other possible implementations of the interplay of

perceptual and conceptual processing need to be investigated. For example, unlike CPCNet’s implicit way to

implement the interplay, implementing it in an explicit way might be a better choice for it probably allows

more delicate control over the processing, e.g., regularization.

On the flip side, PGM might not be a perfect dataset for studying nontrivial generalization of visual ab-

stract reasoning because the triplets [r,o,a] of PGM are not defined in a systematic way that allows us to

evaluate different types, different dimensions, and different levels of nontrivial generalization. For example,

although the entangled components o and a of PGM make the held-out shape-color and line-type regimes

quite challenging for current learning models, we are not sure if they are really meaningful nontrivial gener-

alization regimes and where they lie in the map of visual abstract reasoning. Therefore, another future work

for Research Question 2 is to construct a more clearly-defined dataset for the purpose of evaluating visual

abstract reasoning ability.

In addition, my work on Research Question 4 was limited due to the unexpected technical difficulties

for the first three research questions, for example, the imbalanced dataset and insufficient computational

resources for solving RPM-like datasets. Therefore, in the rest of chapter, I will elaborate on Research

Question 4 and possible future works for it. The research question is how generative models can be extended

to imagery-based production systems that are able to produce a flexible reasoning trajectory in computational

imagery. To clearly depict this research question, I set three specific goals for it.

6.1 Goal 1

This research question could be considered as a continuation of the works in Chapter 5. In that chapter, the

discussion was centered around the idea of computational imagery. In particular, the input, the intermediate

results, and the output of imagery-based approach are all pixel images; the reasoning and solving processes
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are all realized through image operations, similarity computation, and analogy construction. The experi-

mental results demonstrated the effectiveness of imagery-based approach on RPM and geometric analogy

problems. However, an obvious defect of these imagery-based models is that they are hardcoded and rigid

compared to learning models, for example the model described in Chapter 1. Therefore, the first goal is

to construct a flexible, robust learning model that simulates the behavior of imagery-based models on

RPM and other visual abstract reasoning tasks.

6.2 Goal 2

Figure 6.1: Images generated by a Stable Diffusion model given the prompt “photograph of an astronaut
riding a horse”.

A key word in the research question is “generative”. By “generative” models, I mean the deep learning

generative models, such as autoencoder, GAN, and variants of them, that can be used to generate images.

In Chapter 2, I argued that these generative models could be considered as very prototypical example of

imagery-based production systems. This argument could be illustrated by Figure 6.1, which includes the

famous example of an astronaut riding a horse. This figure was generated by a stable diffusion model given

the text prompt “photograph of an astronaut riding a horse”.

Figure 6.2: Images generated by a Stable Diffusion model given the prompt “An astronaut riding a porcu-
pine”.

152



Despite the amazing progress of image generation models in recent years, I have to be quite cautious

about my arguments here. That is the reason why I used the words “very prototypical example”. First, for

the part that amazed me, assuming that the huge training sets, which are impossible for me to scrutinize, do

not contain a picture or drawing of an astronaut riding horse, the generative models do exhibit certain level of

imagery ability. In particular, it is highly likely that the model “knows” what horses look like, what astronauts

look like, and what a man riding a horse looks like, but it never saw an astronaut riding a horse during training

(according to our assumption). In this case, the model needs to imagine this unrealistic scenario in its “mind”.

On one hand, it corresponds to the characteristic of human mental imagery that it can be unrealistic and full

of creativity, as we mentioned in Chapter 3; on the other hand, it achieves a kind of nontrivial generalization,

which is similar to the one discussed in Chapter 4 but in a less abstract context, i.e., the literal meaning of

“riding” is less abstract than the concepts in previous chapters, such as arithmetic and analogy. The word

“riding” is very much a spatial arrangement, in which one object is on another object, which is moving and

taking the first object with it. To first show that how less abstract the generative model is, I would have to

be vicious to the model and the astronaut, by giving the model a prompt “An astronaut riding a porcupine”.

And it gave the output in Figure 6.2. In the left image of Figure 6.2, the animal does not really look like a

porcupine; nor does the astronaut looks like a normal astronaut for his or her legs are kind of missing. In

the middle one, there is even no astronaut, but a porcupine astronaut (I guess the model has a good sense of

humor when it is not able to generate expected images). In the right one, there are indeed an astronaut and a

porcupine, but neither of them is riding the other. I understand that no human, not even astronauts wearing

the everything-proof space armor, would want to ride a porcupine, and thus there should not be too many,

if any, images of humans riding porcupines in the training set. But the images of astronauts and porcupines

must be representative enough in the training set. That is why I chose this prompt and the result implies that

the generative model cannot even capture the literal meaning of the verb “ride”, let along the more abstract

concepts.

Figure 6.3: Images generated by a Stable Diffusion model given the prompt “A horse riding an astronaut”.
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Another example of rigidness of the generative model is using the prompt “A horse riding an astronaut”.

This is the first prompt that came to my mind when I read some news advocating the Stable Diffusion model

and its astronaut-riding-horse example. This example was also used by Gary Marcus in his criticism of the

claim that these image generation models are significant steps toward Artificial General Intelligence (AGI).

Figure 6.3 shows the output of the stable diffusion model given the prompt “A horse riding an astronaut”.

I cannot help relating this prompt to a famous school of Chinese martial arts—Taiji (also translated as Tai

Chi)—which is characterized as using the minimum maneuvers to direct your enemy’s force to fight himself.

Taiji requires a deep understanding of human body and physics of forces to make the best maneuvers. Sim-

ilarly, correctly responding to the prompts like “A horse riding an anstronaut” requires deep a understanding

of natural languages (e.g., a small change to a sentence can completely change its meaning) and physics of

the world. At the foundation of such understanding is the understanding of abstract concepts and how ab-

stract concepts relate to each other and to real world physics. Therefore, the second goal is to construct a

learning model that can understand abstract concepts.

6.3 Goal 3

As I indicated above, the current generative models are only very prototypical examples of learning models of

computational imagery. They are very prototypical in two senses. The first one is the limitation of the current

generative models discussed above, i.e., the incapability of nontrivial generalization and understanding and

utilizing abstract concepts. The second is that it is generative but not productive. Although these two English

words—generative and productive–have very similar meanings and can be used interchangeably in most

situations, “From Generative to Productive” is not empty rhetoric in terms of AI systems.

In particular, being productive implies being generative; but being generative does not imply being pro-

ductive if we take the traditional meaning of productive in the history of AI. The most typical example of

being a productive AI system is production systems. The basic idea of production systems is a set of pro-

duction rules which consist of preconditions and actions. Given initial states of a working memory, if the

precondition of a production rule is satisfied, then the system can execute the action of the rule to update

the states of the working memory. This procedure is repeated until the system cannot proceed because, for

example, there is no satisfied rules or the goal state is achieved in the working memory.

In terms of formality, different production systems vary in the ways of how the working memory is

matched to the rules and how the match rules are followed (e.g., executing all satisfied rules or one of the

satisfied rules). In terms of content, i.e., the rules and all possible states of working memory, different produc-

tion systems have different expressive powers; for example, some production systems are Turning complete,

e.g., Post Production System, while many production systems, though useful, are not Turing complete. The
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production systems that are relevant to the research question are a subset of production systems that have

variables in their rules and thus allows to construct formal languages, for example, the formal languages

reducible to some Chomsky-typed formal languages. There are two obvious differences between these pro-

duction systems and current deep learning image generation models:

• Iterative versus One-Shot: the production system needs to repeatedly applies its rules, generating more

and more valid results, until the goal is achieved or it cannot proceed; popular image generation deep

learning models, such as GAN and VAE, generate the images in an one-shot way. This one-shot way

is not suitable for visual abstract reasoning which usually requires a long reasoning chain.

• Entangled versus Disentangled: There are indeed some generative deep learning models that involve

an iterative process, for example, the diffusion model we used to generate images in this chapter. But

these iterative processes, like the reverse-diffusion process in diffusion models, do not apply a distinct

rule at each step as production systems does. In other words, the operations in a reverse-diffusion

process are all entangled with each other and one cannot tell what specific effects are achieved at each

step. In image generation, disentangled latent variables are often desired to achieve a better generative

effect. Similarly, in visual abstract reasoning, the disentanglement between rules applied at different

steps is not only desirable but necessary. The disentanglement of visual abstract reasoning can be

considered as a temporal or logical disentanglement at a higher level than the latent variables in the

current generative models, because abstract rules about attributes are disentangled in the former while

attributes are disentangled in the latter.

The research question is “how generative models can be extended to imagery-based production systems”.

The idea of such a production system is relatively clear now: the states in working memory are images and

the production rules are operations on images; and the production rules are learned rather than handcrafted.

But given these two differences between generative models and production systems, it seems quite difficult

to extend generative models to production systems, let along imagery-based production systems. But in our

case of visual abstract reasoning, being imagery-based is an advantage for us to build such production system

compared to other tasks, e.g., text-to-image generation, because:

• the images in visual abstract reasoning are much simpler than the images that current generative need

to generate;

• clearly distinct and disjoint rules in visual abstract reasoning problems allows the disentanglement of

production rules of production system;
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• applying different rules results in various images and thus allows us to fully utilize the strong generative

power of current generative models.

In a word, visual abstract reasoning tasks provide proper data for us to build the imagery-based production

system, especially to learn the abstract concepts. Given the differences in the execution between generative

models and production systems, the only issue, which is also the last goal in this chapter, is how to

modify the architectures of generative models in order to simulate the execution of production systems.

6.4 Summary

In this chapter, I described the context of the research question—“how generative models can be extended

to imagery-based production systems that is able to produce a flexible reasoning process in computational

imagery”—and discussed the motivation and purposes of this research questions. In particular, I decomposed

this research question into three goals:

• Goal 1: construct a flexible and robust learning model that simulates the behavior of imagery-based

models on RPM and other visual abstract reasoning tasks.

• Goal 2: construct a learning model that can understand abstract concepts.

• Goal 3: modify the architectures of generative model in order to simulate the execution of production

systems.

These three goals are by no mean independent. On the contrary, they are targeting different aspects of the

same imagery-based production system and realizing any one of them depends on realizing the other two.
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