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CHAPTER I

Introduction

I.1 Specific Aims

Breast conserving surgery (BCS) is a procedure for early-stage breast cancer where the tumor is removed to

stop cancer growth and metastasis. The goal of this procedure is to localize and excise the tumor completely

while maintaining breast cosmesis. While guideline standardization and new localization techniques have

made some improvement, re-excision rates for these procedures remain high meaning that many BCS patients

must return to the operating room (OR) for an additional procedure because of positive or close resection

margins [11; 12]. The chance of needing a re-excision may be lessened by better intraoperative navigation

and localization of the tumor extent and boundary.

Mechanics based modeling of the breast is of interest for many clinical and research applications, in-

cluding multi-modality image fusion, longitudinal registration, and image-guided surgery. Image guidance

requires either utilizing registered preoperatively acquired imaging for navigation or re-imaging during the

procedure with an intraoperative imaging suite [13]. While direct re-imaging of the tissue is an attractive di-

rection, workflow encumbrance and high cost are likely to prohibit intra-procedural adoption. Alternatively,

using preoperatively acquired, well-resolved imaging data to guide breast conserving surgery (BCS) proce-

dures is a more viable option but would be highly dependent on calculating an accurate image-to-physical

registration [14]. Magnetic resonance (MR) imaging is a suitable modality for breast tumor imaging due to its

high sensitivity and accuracy for tumor size estimation [15]. Diagnostic breast MR imaging is typically per-

formed in the prone position with the breast pendant, which is subject to large gravity-induced deformations

[16]. For the image-guided surgery application, the supine position has been shown to more closely match

the surgical presentation [17]. However, even in the supine position, large nonrigid deformations can occur

due to changes in arm positioning and table orientation [18]. Compensating for these deformations through

nonrigid registration in image-guided surgery is challenging due to limited intraoperative data comprised of

sparse point clouds and landmarks localized on the breast surface. Additionally, the nonrigid registration

must operate in near real-time to avoid prolonging surgery. Therefore, it’s imperative to develop a nonrigid

registration method that aligns with sparse data constraints and the intraoperative workflow. This is essential

for a fully realized BCS image guidance system (IGS).

The overall goal of this dissertation is to propose a BCS-IGS that improves intraoperative navigation for

surgeons by leveraging preoperative imaging with nonrigid registration. More specifically, mechanics based
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models that compensate for soft tissue deformations in the breast are employed for this nonrigid registra-

tion. The hypothesis is that mechanics based methods will achieve acceptable speed and accuracy for active

deformation correction in a realized IGS platform. To accomplish this goal, this dissertation proposes the

following three specific aims:

Aim 1: Use supine magnetic resonance (MR) image-to-image registration to inform finite element

method (FEM) modeling of surgical deformations. The first aim of this dissertation is to evaluate FEM

approaches for modeling deformations from supine breast MR imaging. An intra-subject supine breast MR

dataset from healthy volunteers simulating surgical deformations is collected. Nonrigid image-to-image reg-

istration is performed to characterize breast tissue displacements and infer FEM boundary conditions. Three

FEM models with varying levels of heterogeneity and anisotropy are implemented to model simulated sur-

gical deformations. The modeling results provide a quantitative analysis of how adding additional model

complexity affects target accuracy.

Aim 2: Adapt breast deformation models for the intraoperative environment by using regularized

Kelvinlet functions for registration. The second aim of this dissertation is to establish a breast deformation

model that can be used in the intraoperative environment. For surgical use, the model must rely on data

sources collected in the operating room such as sparse point clouds and localized landmarks on the breast

surface. Also, the model must run in near real-time to avoid prolonging surgery. To address these chal-

lenges, regularized Kelvinlet functions from de Goes et al. are proposed as a model for linear elasticity [19].

These functions are used in combination with a sparse-data image-to-physical registration method detailed in

Heiselman et al. to align preoperative imaging to sparse data sources [20]. This model’s accuracy is evaluated

on the healthy volunteer dataset and on an example case from one breast cancer patient.

Aim 3: Create a breast conserving surgery image guidance system (BCS-IGS) with an integrated breast

deformation model for active localization correction. The third and final aim of this dissertation is to

deploy the model from Aim 2 to a fully integrated BCS-IGS system for prospective nonrigid registration. The

BCS-IGS is a portable cart that includes a display monitor and extendable arm for bedside data collection

and navigation. Attached optical tracking and stereo camera sensors are used for surgical scene surveillance

and sparse-data collection. Navigation displays, data collection, and registration are controlled from custom-

built guidance module software. The BCS-IGS system is tested with active nonrigid registration on breast

phantom experiments and one healthy volunteer.
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I.2 Impact

Breast cancer is the most commonly diagnosed and the second leading cause of cancer death in women in

the United States, with approximately one in eight women being diagnosed in her lifetime [2]. Surgical

intervention is recommended for nearly all women with early-stage breast cancer, with a majority (62%)

of patients electing for BCS procedures. BCS has been shown to have equivalent survival outcomes to

mastectomy procedures, but this is dependent on total tumor excision [21]. Positive margins detected after

BCS require patients to have a re-excision procedure. Re-excision rates in the United States remain high

hovering just below a 20% rate in most studies [11; 22]. Current standard-of-care intraoperative localization

techniques include wire-guided localization, seed-based localization, and direct imaging with intraoperative

ultrasound. These technologies have had variable effectiveness in reducing re-excision rates, and not all

breast lesions are visible using intraoperative ultrasound [7]. The advancements outlined in this dissertation

have the potential to impact clinical care for BCS patients by improving tumor localization and thus reducing

the chance of a re-excision procedure. Better navigation capabilities may also benefit cosmetic outcomes

because surgeons would be able to delineate the tumor boundary with improved precision. Finally, the BCS-

IGS could be utilized as a surgical training tool to aid in one of the more challenging aspects of procedure –

using 3D spatial thinking to translate imaging typically viewed in 2D to the surgical field.

From a research perspective, this dissertation details several novel contributions. While many biome-

chanical breast modeling studies have been previously published, fewer have focused specifically on breast

deformations in the supine position due to surgical positioning. The analysis in Chapter IV quantifies ac-

curacy improvements with varying levels of heterogeneity and anisotropy in a linear elastic FEM model,

which may be useful for other researchers implementing mechanics based breast models for multiple use

cases. Chapter V discusses regularized Kelvinlet functions, which were first proposed as computer animation

sculpting brushes, and employs these functions for image-to-physical registration in the breast. This work is

the first to propose these functions in an inverse problem format for a medical imaging application. Finally,

Chapter VI details the BCS-IGS design and implementation. Although a similar system design was proposed

in prior work, this dissertation is the first to demonstrate integrated nonrigid correction with prospective,

rather than retrospective, testing.

I.3 Dissertation Structure

This dissertation begins with a background section, Chapter II, which outlines the clinical standard for BCS

and current surgical guidance technologies. Next, Chapter III details the technical methods and developments

employed in this work. The next sections, Chapters IV, V, and VI investigate the three specific aims of

this dissertation. Finally, Chapter VII discusses the future directions and possible expansions of this work.
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Additional investigation into modifying the methods from Chapter V for liver registration instead of breast

registration is included in Appendix A.
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CHAPTER II

Background

This chapter begins with an introduction to breast cancer by providing an overview of the disease, treatment

options, and imaging methods. Then, breast conserving surgery (BCS) is discussed in more detail with

regards to margin assessment and re-excision rates. Localization technologies in BCS that are used in clinical

practice and that have been proposed in research settings are reviewed. Finally, biomechanical modeling

methods are introduced with discussions on breast tissue material properties and deformation modeling.

II.1 Breast Cancer Introduction

II.1.1 Breast Cancer Overview

Breast cancer is the most commonly diagnosed and the second leading cause of cancer death in women in the

United States. According to the American Cancer Society 2024 cancer statistics, approximately 1 in 8 women

(13%) will be diagnosed with invasive breast cancer in her lifetime, and 1 in 39 women (3%) will die from

breast cancer [2]. It is estimated that breast cancer will account for 32% of all female cancer cases (310,720

cases) and 15% of all female cancer deaths (42,250 deaths) in 2024 [23]. These trends are hypothesized to

continue, as breast cancer is predicted to remain the most commonly diagnosed and the second leading cause

of cancer death in women, second to lung cancer, in the United States in 2040 [24].

Breast cancer is divided into different classifications based on its progression, molecular characteristics,

and histopathology. These classifications inform prognosis and clinical treatment decisions. The American

Joint Committee on Cancer (AJCC) staging system, also referred to as the TNM system, is used by clinicians

for patient management. This staging system considers the extent of the tumor size (T), the spread to adjacent

lymph nodes (N), and metastasis to distance sites (M) when assigning a stage [25]. Stages are assigned as

stage I-IV with subcategories. Broadly speaking, stage I refers to an early stage where the tumor is small and

has not spread extensively. Stage II indicates either a larger tumor or greater spread to axillary lymph nodes.

Stage III implies that there are large tumor(s) with more lymph node involvement, and stage IV indicates

metastatic cancer.

Another breast cancer classification distinction is ductal carcinoma in situ (DCIS) compared to breast

cancer that is invasive. DCIS is sometimes referred to as stage 0, and it refers to the presence of abnormal

cells confined to the mammary ducts. DCIS is considered a precursor to invasive breast cancer, and it is

associated with an increased risk of invasive cancer in the future [26]. The majority (83%) of diagnosed

breast cancer cases are invasive breast cancer, meaning that abnormal cells have spread beyond the mammary
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lobules or ducts into the nearby breast tissue [2]. For invasive breast cancers, the most common histological

subtype is invasive ductal carcinoma where the cancer originated in the mammary ducts. Invasive ductal

carcinoma accounts for approximately 8 out of every 10 invasive breast cancer cases. The second most

common subtype, accounting for approximately 1 out of every 10 cases, is invasive lobular carcinoma where

the cancer originated in the mammary lobules [27]. Other rarer histological subtypes include medullary,

mucinous, and tubular carcinomas [28].

Breast cancers are also distinguished by their molecular subtype. These molecular subtypes detail either

the presence or absence of the estrogen and progesterone hormone receptors (HR) and the human epidermal

growth factor receptor 2 (HER2) expressed by the cancer cells. The main molecular subtypes are Luminal

A (HR+/HER2-), Luminal B (HR+/HER2+), basal-like (HR-/HER2-), and HER2-enriched (HR-/HER2+).

These molecular subtypes influence treatment decisions and patient prognosis [29].

II.1.2 Breast Cancer Treatment Options

Breast cancer treatments include hormone therapy, chemotherapy, surgical resection, radiation, and im-

munotherapy. Treatment regimens are dependent on tumor subtype, anatomic cancer stage, and patient

preferences [30]. For DCIS, most patients undergo surgery with some also electing for adjuvant therapy.

Although still under investigation, preliminary findings show that some DCIS patients have a limited risk

of invasive progression, and active monitoring has been proposed as an alternative to surgical intervention

in some patients [31]. For invasive breast cancer, the distribution of selected treatment options by stage

are shown in Figure II.1. Most treatment plans take a multi-faceted approach that seeks to benefit from the

combinatorial effects of multiple treatment methods.

The two surgical treatment options for breast cancer are mastectomy, where the entire breast is removed,

and breast conserving surgery (BCS), where the tumor and a margin of healthy breast tissue is removed.

BCS can also be referred to as lumpectomy or partial mastectomy. The decision to undergo mastectomy

versus BCS is dependent on cancer staging, personal preference, and clinician suggestion. As shown in

Figure II.1, 62% of patients with early-stage breast cancer (stages I and II) underwent BCS either with or

without radiation therapy and 33% underwent mastectomy in 2018. In comparison, only 23% of patients

with stage III breast cancer underwent BCS while 62% underwent mastectomy. BCS procedures have been

shown to have equivalent, and in some studies superior, survival rates to mastectomies for early-stage patients

and offer several advantages over mastectomies such as better cosmetic outcomes and faster recovery times

[32; 21; 33; 34; 35]. Despite these studies, in recent years BCS candidate patients have been electing for either

unilateral mastectomy or bilateral mastectomy (where the contralateral healthy breast is also removed during

surgery) at an increasing rate. The number of BCS candidate patients ages 20-44 that have elected to have a
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bilateral mastectomy has increased from 10% to 33% from 2004 to 2012 [36]. This trend is occurring despite

any evidence that mastectomy offers survival benefits for these patients, and the fact that mastectomy is

associated with more post-surgical complications. Reasons cited for this choice include physician suggestion,

fear of recurrence, hesitation about radiation therapy, and concerns about breast symmetry [37; 38]. This

trend has led some to advocate for higher rates of BCS procedures, and the National Accreditation Program

for Breast Centers set the standard in 2018 that a target rate of at least 50% of eligible early-stage breast

cancer patients should be treated with BCS [39; 40]. The surgical protocol, margin status, and re-excision

rates for BCS are discussed more in Section II.2

Figure II.1: Breast cancer treatment patterns (%), by stage, 2018. Image reprinted from [2] with permission.

II.1.3 Breast Cancer Imaging

Early breast cancer detection is associated with better outcomes and 5-year survival rates. Early detection

relies on the use of diagnostic medical imaging. The three diagnostic imaging modalities used in breast

are mammography, magnetic resonance (MR) imaging, and ultrasound. For women with an average risk

of breast cancer, the American Cancer Society 2015 Guidelines for Breast Cancer Screening recommends

that women ages 45 and older complete mammogram screening annually, with women having the options

to begin annual screening at age 40 and to switch to every other year screening at age 55. For high risk

women, screening with a mammogram and MR imaging is recommended starting at age 30 [41]. In addition

to disease diagnosis, breast imaging is performed at different times throughout the course of treatments.

Breast imaging can be acquired for presurgical planning, evaluating the tumor response to different therapies,

biopsy guidance, wire or seed placement guidance prior to surgery, radiation therapy planning, and continued

surveillance monitoring post-treatment. Breast imaging modalities are reviewed below.

Mammography

Mammography is the standard screening modality for breast cancer, and it involves compressing the breast

tissue and acquiring a 2D image using low-energy X-rays. Typical mammography imaging includes oblique
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and craniocaudal views. By 2015, digital mammography had replaced film mammography in the United

States with 97% of machines being digital [42]. Mammography screenings have been shown to significantly

decrease breast cancer mortality through randomized controlled trials [43]. A European study demonstrated

that the risk of dying from breast cancer was reduced by 41% for women who participated in mammography

screening [44]. While mammography is generally effective for detecting early breast cancer, it is less effective

for women with dense breast tissue. According to a study conducted by the Breast Cancer Surveillance

Consortium, mammography sensitivity is approximately 93% for women with fatty breasts but only 57% for

women with dense breasts [45]. For breast cancer survivors undergoing routine surveillance imaging, scarring

and anomalies from surgery and radiation treatment can make recurrence harder to detect on mammography

[46]. Mammography is also an ionizing imaging modality that carries the minor risk of exposure to radiation.

Digital breast tomosynthesis, also known as 3D mammography, is a type of mammography imaging

that constructs a 3D imaging volume of the breast. Studies have shown that digital breast tomosynthesis

has improved detection rates and reduced false-positive rates for breast cancer, especially for women with

dense breast tissue [47]. However, it requires additional radiation exposure when combined with standard

mammography imaging. Although digital breast tomosynthesis imaging is now available at the majority of

breast imaging centers in the United States, reimbursement policies are variable depending on the state and

health insurance plan [48].

MR Imaging

Breast MR imaging acquires a high resolution volumetric image of breast tissue. Patients are positioned in the

MR scanner bore which contains a strong magnet, usually either 1.5 Tesla or 3.0 Tesla in strength. Patients lay

in the prone position with their arms above their head and with the breast hanging pendant in a specialized

breast imaging coil (Figure II.2A). Radiofrequency coils are used to perturb and measure the alignment

of hydrogen atoms in the body which creates tissue contrast in an MR image. An intravenous contrast

agent, typically gadolinium, is administered for improved MR imaging contrast for tumor localization and

measurements. Solid tumor growth is associated with new and leaky blood vessels (neoangiogenesis) which

causes faster extravasation of the contrast agent during imaging and appears as a bright, locally enhanced

region on the resulting scan [15]. Unlike mammography, MR imaging is a non-ionizing modality. MR

imaging is recommended for breast cancer screening in women with a high lifetime risk of breast cancer of at

least 20-25% or in women with previous chest radiation therapy [2]. Breast MR imaging has high sensitivity

at over 90%, and it can identify smaller lesions that can be missed in mammography [49]. It has comparable

specificity to mammography, but widespread screening with MR imaging is not recommended for women

with an average risk of breast cancer in the United States due to the risk of identifying false positives, which
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adds unnecessary stress and concern for patients [50]. MR imaging is particularly useful for imaging women

with dense breast tissue – MR was shown to be the best supplemental imaging modality for women with an

average risk of breast cancer with dense breast tissue that had lesions that were undetected on mammography

[51].

Although not standard of care, performing MR imaging with the patient positioned lying on their back in

the supine position has been explored in research studies (Figure II.2B). Prone MR imaging is typically the

opted-for position because of tissue separation from the pendant position, a reduction of breathing motion

artifacts, and the ability to use breast MR coils for acquisition. A feasibility study showed no significant

difference in diagnostic value, lesion classification, or image quality between supine MR scans with contrast

and prone MR scans with contrast [52]. This study, and most supine MR studies reported in the literature,

utilized a standard torso coil placed on top of the patient in lieu of a breast coil. The torso coil was positioned

so that the breast was not compressed, and it provided comparable image quality compared to using the breast

coil. Although not required for the majority of supine MR imaging studies, others have designed a custom

supine breast receive coil to conform to the supine breast shape, which showed comparable image quality to

diagnostic MR imaging [53].

The main quantitative differences caused by supine compared to prone MR imaging are observed in

measuring lesion volume, lesion geometry, and lesion location relative to anatomical landmarks like the

nipple and chest wall [17; 54; 5; 16]. This is visually shown in Figure II.2C. Tumor displacements between

3-6 cm were observed in the three orthogonal directions between prone and supine imaging [17]. The tumor’s

mean distance to the chest wall and nipple decreased by approximately 70% and 18% respectively when

imaged in the supine position, although these measurements vary depending on the tumor’s location in the

breast tissue [16]. When comparing tumor size to histology, prone imaging overestimated tumor size by

47% while supine imaging overestimated tumor size by only 15% [16]. Finally, a pairwise comparison

showed changes in tumor volume (average 23.8% change), surface area (average 6.5% change), and sphericity

(average 6.8% change) between prone and supine imaging with wide ranges of variability among patients [5].

A key advantage of supine breast MR imaging related to this work is the improved correspondence for

informing tumor localization during BCS procedures [13; 55]. The large tumor measurement differences

between prone and supine imaging noted above mean that the breast imaging referenced by surgical teams

prior to BCS – typically mammography and/or prone MR imaging – are not maximally informative of the

observed tumor measurements in the operating room. Supine MR imaging may offer a 3D representation of

the tumor relative to anatomical landmarks that better matches the surgical presentation. The clinical impact

of using supine MR imaging to improve BCS outcomes has been variable. One study used supine breast

MR imaging to create a tumor boundary outline that was projected onto the breast surface prior to surgery.
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Patients treated with this method had smaller excised lesions and lower positive margin rates compared to a

control group [56]. Another study acquired supine breast MR imaging with a thermoplastic shell fitted to the

breast shape. This shell allowed for precise preoperative incision markings to be placed on the skin while

referencing the supine MR image. Out of N = 35 patients included in the study, 25 had negative margins and

7 had positive margins – a 21.2% positive margin rate [57]. A third study acquired preoperative supine MR

imaging for N = 1,150 patients but showed a similar positive margin rate (18.8%) to those who had prone MR

imaging [58]. This implies that just acquiring supine MR imaging alone may not be sufficient for improving

clinical outcomes, but that using supine MR imaging in combination with an active guidance method during

the operation may be a promising approach. Previously proposed BCS image guidance methods are discussed

further in Section II.3.4. Other advantages associated with supine MR imaging and related to breast cancer

treatment (but not as closely relevant to the work in this dissertation) include better alignment between MR

and ultrasound imaging since ultrasound is acquired in the supine position and the potential use of supine

MR in conjunction with CT for radiation therapy planning [59; 60].

Figure II.2: Breast MR imaging in (A) the prone scanning position and (B) the supine scanning position.
(C) Overlayed contrast-enhanced MR images in the prone and supine positions with 3D prone (blue) and
supine (green) tumor models. Images reprinted from [3; 4; 5] with permission.

Ultrasound

Breast ultrasound (US) imaging relies on tissue acoustic impedance differences for image contrast. A breast

US imaging exam is performed with the patient in the supine position. A trained sonographer places a hand-

held transducer on the breast surface that emits and receives US waves at frequencies between 3-12 MHz to

acquire 2D B-mode anatomical images [61]. It is a non-ionizing imaging modality, and it is cheaper than MR

imaging. US alone is not used as a screening modality for breast cancer, but instead it is used as a second

imaging method to evaluate abnormal findings when a mammogram is inconclusive. Like MR imaging, US

is effective in detecting breast cancers missed by mammography for women with dense breast tissue [62].

Using US alone for detection has been shown to have comparable sensitivity to mammography, but worse

specificity meaning it is more likely to identify false positives [63]. It can be used to distinguish between

solid lesions which may require biopsy and cysts or fluid-filled lesions which are more likely benign. US
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is also accompanied by a doppler imaging mode to quantify tumor vascularization and blood flow. In re-

search settings, US-based imaging techniques that probe tissue mechanical properties including elastography

imaging, shear wave elastography, and acoustic radiation force impulse imaging for are being explored for

differentiating between benign and malignant breast lesions [64].

In addition to diagnostic imaging, US is employed for guiding breast cancer intervention procedures be-

cause of its real-time nature. It is often used for needle visualization and guidance during biopsy procedures.

For BCS specifically, US can be used to localize the tumor intraoperatively. Intraoperative ultrasound (IOUS)

is explored more as a guidance technology in Section II.3.3.

II.2 Breast Conserving Surgery

II.2.1 Surgical Protocol

BCS procedures begin by positioning the patient in the supine position on the operating table and administer-

ing monitored anesthesia. The patient is draped and sterilized in preparation for the procedure. The surgical

team reviews available imaging to confirm lesion size and location. The surgeon uses a handheld probe to

locate any seeds that were placed at the tumor site prior to surgery. They may also palpate the breast to

identify the tumor location. They plan the incision by indicating the incision path on the skin with a marker.

The procedure begins with the surgeon making an incision. The surgeon uses the Bovie cautery device to

form skin flaps to access the tumor site. The cavity is held open with surgical retractors. The handheld probe

may be used throughout the procedure to reidentify the seed location(s). Once the tumor site is identified, the

surgeon mobilizes a plug of tissue for excision. Single stitches may be attached to the tissue plug boundary

prior to excision to help maintain anatomical orientation. After mobilization, the tissue plug is excised and

placed on a sterile cloth. The tissue plug is immediately inked on the boundary with 6 colors that indicate

the anatomical directions (anterior, posterior, superior, inferior, medial, and lateral) of the plug relative to the

resection cavity. The tissue plug is sent to the hospital’s pathology lab for imaging and intraoperative eval-

uation. X-ray imaging is acquired to rapidly evaluate the tissue plug margins. Intraoperative frozen section

analysis may also be performed. Depending on the resulting imaging, an additional cavity shaving specimen

may be removed and evaluated. To conclude the procedure, the incision is closed, and the excised tissue spec-

imens are sent to pathology for postoperative margin assessment. BCS procedures may also be accompanied

by sentinel lymph node biopsy or axillary lymph node dissection procedures to evaluate if cancer cells have

spread to the lymph nodes and evaluate the risk of metastatic cancer [65].
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II.2.2 Resection Margins

Tumor margin status is an assessment of the presence of malignant cells at or close to the excised tissue

specimen boundary. Margin status acts as an implied indicator of residual cancer remaining in the breast

after surgery. Margins can be classified as either negative, close, or positive. Margin status is correlated to

the likelihood of recurrence and is used to inform subsequent treatment decisions including the need for re-

excision. The most current BCS margin guidelines were defined by the Society of Surgical Oncology (SSO)

and American Society for Radiation Oncology (ASTRO) for invasive breast cancer in 2014 and for DCIS

in 2016 [66; 67]. The most recent official consensus statement about BCS margin guidelines was released

by the American Society of Breast Surgeons in December 2017. Prior to 2014, there were no consensus

guidelines for defining negative and positive margins which meant that centers had different criteria for when

a re-excision was necessary [68]. A positive margin, shown in Figure II.2, is defined as “tumor on ink” during

histological analysis. In the case of positive margins, re-excision surgery is recommended for invasive breast

cancer and DCIS. A close margin refers to tumor cells being present within a 2 mm border of the inked

specimen edge. A negative margin, also shown in Figure II.2 is defined as “no tumor on ink”. For invasive

breast cancer, re-excision surgery is not recommended for negative or close margins. For DCIS, re-excision

is recommended for close margins but not recommended for negative margins.

Figure II.3: Negative and positive tumor margin status. Image reprinted from [6] with permission.

Histological assessment is the current gold standard for margin designation. After the BCS procedure, the

specimen is sent to pathology where it is fixed and stained with hematoxylin and eosin (H&E) and examined

under a microscope for cancerous cells. This process is completed several days or sometimes weeks after the

surgery. Although it is the gold standard for margin assessment, H&E histology is not a feasible intraoperative

technique because of the time required. Thus, additional pathological and imaging approaches for rapid

margin assessment during the procedure are of interest. A cheap, effective, and rapid intraoperative margin

assessment technology for BCS comparable to H&E histology may help reduce re-excision rates for patients.

While important, these efforts should be viewed as complementary to, rather than replacements for, surgical
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guidance. Intraoperative identification of positive margins after excision is important, but accurate first-pass

excision is desired for optimal cosmetic outcomes. Current clinical and state-of-the-art research technologies

for intraoperative margin assessment are reviewed below.

Intraoperative frozen sectioning is a rapid pathology approach where small samples from the specimen are

examined under a microscope while the patient is still in the operating room under anesthesia. Its use depends

on the hospital – some centers routinely perform frozen section analysis for BCS procedures, while others use

it more selectively. Although frozen sectioning is similar to H&E histology, it examines only small regions

of the specimen border and can be impacted by freezing artifacts [69]. It has been shown to significantly

reduce re-excision rates, but it is not a substitute for H&E histology given its low sampling rate [70]. Another

alternative pathology approach used by some hospitals is imprint cytology, where the specimen surface is

carefully pressed onto a glass slide allowing cancerous cells to adhere to the slide surface. The slide is then

examined under a microscope for margin evaluation. This technique has been shown to be less sensitive than

frozen section analysis, but it can be performed rapidly and has better coverage of the entire specimen surface

[69]. Results can be impacted by charring from cauterization on the specimen surface.

The standard imaging approach for intraoperative margin assessment is specimen x-ray imaging. These x-

ray machines offer high energy and high resolution (10-20 µm) imaging for improved specimen visualization

compared to screening mammography machines. They are used to image microcalcifications and tumor

margins in the specimen after excision, although distinguishing between tumor and dense glandular tissue

can be challenging. Miro-CT specimen imaging, which provides a 3D volumetric image, may offer improved

soft tissue contrast compared to a 2D projection in x-ray imaging. However, distinguishing between tumor

and dense tissue is still difficult in micro-CT imaging. Significant clinical benefits compared to x-ray imaging

have yet to be demonstrated to justify the additional time and resources required for micro-CT imaging. One

study that included a cohort of N = 100 patients showed that the inclusion of micro-CT altered the surgical

decision after first-pass excision in 6.3% of cases and estimated that micro-CT may reduce re-excision rates

by 2.2% compared to x-ray imaging alone [71].

Substantial efforts have focused on developing unconventional imaging methods for intraoperative mar-

gin assessment. These techniques rely on measuring a distinct signature from malignant cells on the specimen

surface to indicate margin status. Previously demonstrated optical and non-optical methods include radiofre-

quency spectroscopy, bio-impedance spectroscopy, optical coherence tomography, photoacoustic microscopy,

nonlinear microscopy, Raman spectroscopy, and hyperspectral imaging [72]. Radiofrequency spectroscopy

relies on differences in electromagnetic scattering and absorbance to detect residual cancer. The MarginProbe

(Dilon Technologies, Newport News, VA, USA) uses radiofrequency spectroscopy and was approved by the

Food and Drug Administration in 2013 for BCS intraoperative margin assessment in the United States [73]. It

13



includes a handheld probe and console for real-time detection of cancerous cells on the specimen surface after

excision. A clinical study showed that using MarginProbe for immediate intraoperative margin assessment

reduced re-excision rates from 26% to 20% compared to standard-of-care BCS with no significant change in

total excised specimen volume [74]. Other intraoperative margin imaging methods have been demonstrated

in research settings with varying sensitivities, specificities, benefits, and tradeoffs [69]. While promising,

these methods have not replaced x-ray imaging and histological approaches as the standard-of-care for intra-

operative margin assessment.

II.2.3 Re-excision Rates

A primary concern with BCS is that re-excision rates for these procedures remain high. A re-excision (or

reoperation) procedure requires a patient to return to the operating room for an additional surgery because

of incomplete tumor excision. As stated above, this is recommended for positive margins in invasive cancer

patients and for positive and close margins in DCIS patients. Re-excision procedures have been found to be

effective in reducing the risk of local recurrence. A population study of BCS patients where 19% of the study

cohort needed re-excision surgery found that the re-excision patients who had an additional BCS or mastec-

tomy surgery had equivalent survival outcomes compared to those who did not require re-excision operations

[75]. However, this does not diminish the importance of reducing re-excision rates from an individual and

population health standpoint. The study stated that, “The significant variation in the likelihood of re-excision

by geography and by individual surgeon is concerning, especially given the costs to the patient associated

with additional surgery and the financial costs to the health system.” Successful first-pass tumor excision is

the primary goal of BCS for optimal outcomes.

Prior to the release of the SSO-ASTRO margin guidelines in 2014, it was estimated that 20-40% of

BCS patients would require a re-excision procedure [76; 77]. After six years of guideline adoption, a study

reported a significant decrease in post-guideline re-excision rates compared to pre-guideline rates [78]. This

is likely because of the lack of standardization during the pre-guideline period. Prior to 2014, only 11-15%

of breast surgeons reported that they accepted a “no tumor on ink” margin. Thus, it was common practice

among the majority of surgeons to advocate for re-excision surgeries, even in cases of negative margins,

reflecting a more aggressive surgical approach during the pre-guideline period [79; 80]. Despite guideline

standardization, re-excision rates still remain high hovering just below a 20% rate in most studies in the

post-guideline period. Two 2019 studies reported 17.2% and 16.1% re-excision rates in the United States

post-guideline changes [11; 22]. These rates have also been reported to be highly variable depending on

the individual surgeon and hospital center. The hospital facility has been shown to be the most impactful

determinant influencing whether a patient has a re-excision procedure, and only 1 in 4 facilities achieve re-
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excision rates below 10% [22]. Regarding surgeon variability, approximately 1 in 6 (17.5%) breast surgeons

have an individual re-excision rate higher than the expert consensus cutoff of a 30% re-excision rate [11].

Spatial reasoning has been reported as one of the main challenges when teaching and learning BCS pro-

cedure techniques, and it may be one of the factors contributing to high and variable re-excision rates among

surgeons. Direct quotes from surveying breast surgeon educators and trainees about procedural challenges

include, “Sometimes the mammogram can throw you off—location of the actual lesion can be different,” “It

is very hard to take out the right amount of tissue, especially with no landmarks,” and “It’s hard to learn to

think in 3D” [81]. The two main abilities that were cited for differentiating the educators and trainees were

being able to conceptualize the lesion and being able to use 3D spatial thinking to visualize the lesion from

2D imaging. Technologies that address these challenges may be beneficial for improving BCS outcomes.

Overall, these high re-excision rates are detrimental to patient care. Re-excision procedures delay subse-

quent therapy, result in less favorable cosmetic outcomes, and are additional stress on the patient. In a survey

of 592 BCS patients after treatment, having a re-excision procedure was associated with significantly lower

postoperative satisfaction [82]. Re-excision procedures are also an additional financial burden on the health-

care system. A cost analysis estimated that re-excision procedures cost between $40-53.7 million annually in

the United States [83]. Given (1) the commonality of BCS procedures, (2) the high and variable re-excision

rates associated with BCS procedures, and (3) the additional cost and emotional burden caused by re-excision,

investigations into techniques for successful first-pass tumor excision are a top priority. Reducing re-excision

rates is the main clinical motivation for the work presented in this dissertation. A review of clinically adopted

and state-of-the-art localization technologies to reduce re-excision rates are explored next (Section II.3).

II.3 Localization Technology

Breast surgeons rely on technologies to locate the tumor for pre-incision case planning and intraoperative

localization during BCS, although the specific technology employed depends on the case and hospital center.

This section divides BCS localization technologies into wire-guided localization, seed localization, direct

imaging techniques, and navigation platforms.

II.3.1 Wire-guided Localization

Wire-guided localization involves placing a wire in the targeted tumor area prior to surgery using mammog-

raphy or ultrasound imaging so that the tumor can be located intraoperatively. Wire-guided localization is a

well-established method that has been shown to be safe and effective [84]. It is also cheaper than some of

the more novel methods. However, its use has been decreasing in favor of other localization methods. One

study of a sample cohort reported that BCS procedures using wire-guided localization decreased from 68%
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of procedures in 2015 to 38% in 2019 as shown in Figure 2 [7]. The average aggregated rate of positive

margins after first-pass excision for BCS procedures performed with wire-guided localization reported by 13

studies from 2015-2021 is 21.7% [85; 86; 87; 88; 89; 90; 91; 92; 93; 8; 94; 95]. During resection, the wire

tip that designates the estimated tumor centroid is not visible to the surgeon so its location must be estimated.

Additionally, the placement of a singular wire in the tumor does not provide any information about where the

tumor boundary edges are located to guide resection.

A main disadvantage of wire-guided localization driving adoption of alternative methods is patient com-

fort. After placement, the wire protrudes out of the skin which is uncomfortable for patients. The external

wire may migrate, fracture, or dislodge prior to surgery which compromises care [96]. Wire-guided localiza-

tion is also challenging from a logistical standpoint because the wire placement typically occurs on the same

day prior to surgery. This reduces the ability of hospitals to flexibly schedule surgeries and presents more

challenges compared to using localization devices that can be inserted days or weeks in advance.

Figure II.4: Use of localization methods in 2015 (N = 1815) versus 2019 (N = 2226). Image reprinted from
[7] with permission.

II.3.2 Seed Localization

Seed-based localization technologies are a more modern alternative to wire-guided localization. A small seed

(3 – 12 mm in length depending on the technology) is implanted with a needle in the estimated tumor centroid

using mammography or ultrasound imaging prior to surgery for intraoperative localization. Different seed-

based technologies have been used, each with its own advantages and disadvantages. Various seed-based

technologies include radioactive seed localization, magnetic seed localization, and radar seed localization.

Radioactive seed localization involves placing a radioactive seed that contains Iodine-125 and emits

gamma radiation. To localize the seed during surgery, a handheld gamma probe is used to display the dis-
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tance from the probe to the seed, and the surgical incision is planned accordingly. Since radioactive seeds

involve using radioactive materials, the process is regulated by the U.S. Nuclear Regulatory Commission and

requires extra planning and safety precautions in case of a seed rupture and seed disposal [97]. However,

one advantage is that Iodine-125 has a half-life of 60 days, so seeds can be placed further in advance com-

pared to wire-guided localization. Seed placement is also more comfortable for the patient [98]. The average

aggregated rate of positive margins after first-pass excision for BCS procedures performed with radioactive

seed localization reported by 6 studies from 2015-2018 is 19.9% [86; 88; 89; 90; 92; 99]. Direct comparison

studies between wire-guided and radioactive seed localization demonstrated comparable outcomes regarding

positive margin rates, specimen volume, and cosmetic outcomes between the two methods [100; 101]. Re-

garding patient preference, patients who received radioactive seed localization had higher overall satisfaction

and procedure convenience ratings compared to patients who received wire-guided localization [102].

Magnetic seed localization uses an implantable seed that can become temporarily magnetized when used

with the corresponding handheld probe. Magnetic seed localization is commercially known as Magseed

(Endomatics Inc., Cambridge, UK), and it received approval for BCS guidance in the United States in 2016.

It relies on implanting a 5 mm seed under ultrasound or mammography guidance up to 30 days prior to

surgery. The reported rate of positive margins after first-pass excision for BCS procedures performed with

magnetic seed localization from 6 studies from 2018-2021 ranged from 12-24% with an aggregate average

of 16.8% [103; 104; 105; 93; 106; 107]. Unlike radioactive seed localization, there are no radiation safety

concerns with magnetic seed localization. While the seed is MR compatible, it can cause a bloom imaging

artefact up to 4 cm in size [108]. While it is a competitive method in terms of positive margin rates and

patient satisfaction, it is not available at all hospitals.

Radar seed localization is similar to radioactive and magnetic seed localization in that it involves an

implanted seed and handheld probe for localization. The SAVI SCOUT system (Merit Medical, South Jordan,

UT, USA) uses a 12 mm reflector seed and a handheld probe that emits radar and infrared waves to measure

the distance to the reflector. Like the Magseed, the reflector seed can be implanted up to 30 days before a

patient’s surgery. Four studies from 2016-2018 that used the SAVI SCOUT reported positive margin rates

ranging from 7.0-14.9% with an aggregate average of 10.4% [91; 109; 110; 111]. One limitation is that

reflector placement deeper than 6 cm may affect seed detection, meaning that the system may not be suitable

for all patients and tumors.

The main limitation of all seed-based methods is that localization information is limited to one discrete

point that is dependent on the accuracy of the seed placement. Seed bracketing, where several seeds are

placed to designate the lesion extent, addresses this by providing more points. One study that used multiple

radioactive seed localization bracketing showed a statistically significant decrease in the re-excision rate in
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BCS patients that had multiple seeds implanted (N=58, 20.7% re-excision rate) compared to patients that had

one seed implanted (N=48, 39.6%) [112]. The EnVisio SmartClips system (Elucent Medical, Eden Prairie,

MN, USA) is another bracketing approach that uses electromagnetic signals from triangulated seeds. It in-

volves placing three 10 mm seeds with unique electromagnetic signals around the tumor. During BCS, a

handheld stylus is used to measure the distances to the three seeds for improved tumor navigation. It received

approval for BCS procedures in the United States from the Food and Drug Administration in 2019. In a

preliminary study, EnVisio SmartClips were shown to be safe and reliable for lesion localization, but current

studies evaluating efficacy compared to other localization technologies are ongoing [113]. While these new

technologies may offer slight improvements in positive margin and re-excision rates, multiple seed localiza-

tion information is still limited because these methods are unable to provide intraoperative information about

the full lesion extent.

II.3.3 Direct Imaging

Intraoperative Ultrasound (IOUS) Imaging

Direct intraoperative imaging can be used to visualize the full tumor boundary thus addressing the main

limitation of seed-based methods. The primary intraoperative imaging method that has been investigated for

BCS guidance is intraoperative ultrasound (IOUS). IOUS can be used to locate the lesion prior to sterilization

and incision to help inform the surgical plan. It can also be used during the procedure to visualize the lesion

in the resection cavity and after excision to visualize margin extent on the excised specimen. Like seed-

based methods, the use of IOUS for BCS localization has increased from use in only 4% of cases in a 2015

study cohort to use in 28% of cases in a 2019 study cohort shown in Figure II.4. Six recent studies that

have used IOUS for localization have reported re-excision rates ranging from 1.5-28.6% with an aggregate

average re-excision across all studies of 12.6% [87; 94; 114; 115; 116; 117]. In two direct comparison

studies, BCS performed with IOUS demonstrated significantly improved re-excision rates compared to wire-

guided localization (3% compared to 13%) but comparable re-excision rates to seed-based localization (11%

compared to 8%) [118; 119]. Other related surgical outcomes effected by IOUS include positive margin

rates, total excised lesion volume, and cosmetic outcomes. In a randomized controlled trial, the use of IOUS

reduced the positive margin rate from 17% to 3% compared to palpation alone [120]. IOUS has also been

shown to result in smaller excised lesion volumes – averaged excised volumes of 38 cm3 with IOUS compared

to 57 cm3 without IOUS – suggesting favorable postoperative cosmetic outcomes [120]. When cosmetic

outcomes were directly evaluated by measuring patient satisfaction, 20% reported excellent cosmesis and 6%

reported poor cosmesis in the IOUS patient group, compared to 14% excellent and 13% poor in the palpation

only patient group [121].
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While IOUS is considered to be beneficial and effective for improving surgical outcomes, especially for

nonpalpable lesions, several disadvantages should be noted. The use of IOUS may extend surgical procedure

time, leading to higher costs and more risk for the patient. However, one study noted an extra 2-5 minutes

required for IOUS which is likely negligible given the potential guidance benefits [122]. Surgeons require

technical training to acquire and interpret breast ultrasound imaging. While this is a barrier, one study showed

that breast surgeons demonstrated proficiency in IOUS after eight procedures [123]. Finally, IOUS requires

a designated US machine, but the portability and low cost of US makes resource availability a minor concern

in most hospitals.

Another concern when using IOUS for guidance is tumor visibility on US imaging. Not all breast le-

sions are echogenic, which confounds the use of IOUS. Results from studies quantifying the presence of

sonographically occult breast lesions (not visible on US) have been variable. One study estimated that only

50% of nonpalpable lesions are visible on ultrasound, meaning that IOUS is not applicable in all cases [124].

Another study found that out of 231 nonpalpable breast lesions, 32 (13.8%) were sonographically occult but

noted that the true rate of not visible lesions is likely higher [125]. Small microcalcifications often associated

with DCIS can be missed with IOUS since its presentation can mimic that of normal breast structures [126].

Non-mass-like lesions are difficult to detect using IOUS, particularly when they are small and flat in shape.

[127]. Obesity and large breast volumes can also limit IOUS abilities for localizing deeply posterior lesions.

US artifacts like acoustic shadowing and imaging artifacts from air or foreign bodies can make IOUS difficult

in practice [128]. To assist with IOUS visualization, the placement of sonographic visible clips bracketing

the lesion under mammography guidance has been proposed so that the region of interest can be quickly

and easily identified during IOUS [129]. However, this method does not solve the problems outlined for

seed-based methods like clip migration and lack of full boundary visualization.

Research efforts have expanded the capabilities of IOUS to tracked IOUS, where an ultrasound imaging

device is combined with an optical or electromagnetic tracking device [130]. Tracked IOUS involves mon-

itoring the position and orientation of the ultrasound transducer combined with a 3D navigation view that

provides a more intuitive view of the imaging plane and patient anatomy. This improves the surgeon’s ability

to visualize the ultrasound plane and navigate during a procedure. The use of tracked IOUS in BCS is lim-

ited, but one study demonstrated a tracked IOUS navigation platform used successfully for navigation during

six BCS procedures [131]. Tracked IOUS has been explored more extensively in neurosurgery, abdominal

surgery, and orthopedic surgery. In this work, tracked IOUS is leveraged not for the direct imaging of the

tumor boundary because, as noted above, direct IOUS imaging of breast tumors is variable. Instead, it is used

to locate specific anatomical structures (namely the breast chest wall) in a BCS image guidance system. This

is explored more in Chapter VI.
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Intraoperative MR Imaging

Intraoperative MR imaging has also been explored to image residual tumor in the cavity after excision in BCS

procedures. This methodology has been limited to the Advanced Multimodality Image Guided Operating

Suite (AMIGO) at Brigham and Women’s Hospital, which is an operating room equipped with a ceiling-

mounted MR scanner so that a patient can be imaged while on the operating table. Intraoperative MR imaging

was acquired on 12 BCS patients demonstrating the feasibility of the approach, and 2 out of the 12 enrolled

patients needed a re-excision procedure [13]. While intraoperative MR imaging for BCS guidance would

allow high resolution imaging of tumor position and extent, intraoperative MR suites are not an available

resource outside of the AMIGO Suite. This limitation and the importance of pursuing alternative image

guidance approaches for improved BCS outcomes are noted in the study.

II.3.4 Navigation Platforms

To combat the fact that intraoperative imaging is not an available option for all BCS cases, navigation plat-

form approaches that leverage preoperatively acquired imaging have been proposed. Acquiring imaging

prior to surgery and registering these images to the surgical field provides an estimate of the tumor location

and boundaries that can help guide excision. Several research-grade navigation platform systems have been

developed and tested for tumor localization.

One proposed approach is to use patient-specific, 3D printed molds created from preoperative imaging to

help localize the tumor intraoperatively. A study with N = 19 BCS patients used a 3D printed, bra-like guide

generated from preoperatively acquired supine MR imaging to inject blue dye around the tumor border for

guidance during BCS [132]. This method was shown to be effective at transferring MR imaging cues to the

surgeon. Another study used a similar method – a patient specific 3D printed guide from supine MR imaging

was generated and used to trace the tumor outline shape onto the breast surface and inject blue dye [133].

The guide was also used to verify post-excision shape and volume. In N = 88 patients, 18.0% had positive

margins after first-pass excision.

Rather than having a physical 3D printed object, another navigation platform strategy is to display tumor

geometry in a virtual 3D scene space that is registered to the patient anatomy. This was done in a study that

acquired preoperative supine MR imaging and then used optical tracking and optical scanning to rigidly reg-

ister the segmented 3D tumor model to the patient in the OR, shown in Figure II.5 [8]. The surgeon then used

tracked tools to mark the projected tumor boundary on the breast surface to guide excision. The effectiveness

of this method was compared to wire-guided localization and was shown to significantly improve positive

margin rates from 23% to 12% in a group of N = 138 patients. An additional navigation platform method

utilized electromagnetic tracking with tracked ultrasound imaging, a tracked guide-wire needle, and a nav-
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igation display screen [131]. A virtual 3D tumor model was generated from segmented tracked ultrasound

imaging, and the tumor model moved relative to the tracked guide-wire needle throughout excision. This sys-

tem was tested on breast phantom experiments and evaluated for feasibility in six BCS patients. One out of

the six BCS patients had positive margins. This study cited breast deformations as a remaining challenge for

achieving negative margins with their navigation system. This approach could be enhanced when combined

with preoperatively acquired imaging, especially for use on sonographically occult lesions.

Figure II.5: The navigation platform proposed in Barth et al. showing the display monitor with 3D tumor,
breast geometry, optically tracked skin fiducials, and a tracked stylus tool. Image reprinted from [8] with
permission.

The interest in augmented reality (AR) as a potential surgical visualization tool has led researchers to

explore AR for BCS as a navigation platform. In a proof-of-concept study with ten breast cancer patients,

supine preoperative MR was acquired, and a 3D tumor model was segmented in the MR image. Prior to

surgery, a HoloLens AR headset was used to display a rigidly registered hologram of the segmented breast

tumor on the breast surface which was compared to the palpated location. Preliminary results showed effec-

tive rigid localization but noted discrepancies from nonrigid breast deformations [134]. A similar study also

acquired supine MR imaging and used a HoloLens to visualize a 3D tumor model prior to the start of surgery.

Preoperative planning with the HoloLens was compared to the standard-of-care planning using skin markings

in one example case [135]. Another AR study used an implanted fiber optoacoustic guide seed combined with

the HoloLens device for continuous visualization of the seed location. While this study showed accurate seed

localization and was demonstrated in a cadaver study, this method is akin to seed-based methods with the AR

device replacing the handheld probe, rather than a full navigation platform that visualizes tumor boundary

and extent [136]. A fourth study compared localization accuracy between using a 3D-printed physical guide

and an AR guide for tumor bracketing, and both guides had similar targeting accuracies. However, this com-

parison was only performed on a breast phantom, and the study noted errors from soft tissue deformations
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[137]. While AR is an exciting new visualization tool, these methods have the potential to be improved by

deformation correction methods to better align physical and imaging space, whether the imaging space is

displayed in AR or on a traditional monitor.

Previous investigations into nonrigid registration deformation correction methods for BCS guidance in-

clude an approach that combined breast surface data and tracked ultrasound chest wall contours to retrospec-

tively evaluate tumor position with nonrigid registration compared to ground-truth tracked ultrasound tumor

position [138]. A later approach expanded this work by improving the nonrigid registration method to work

with sparse-data sources that were specifically designed for intraoperative BCS data collection and guid-

ance purposes [139]. While these works do propose nonrigid registration methods, they were not evaluated

prospectively with active deformation correction in an intraoperative setting. The work in this dissertation

aims to demonstrate active nonrigid deformation correction in a BCS-IGS system. Mechanics based breast

deformation modeling methods, from which the nonrigid registration algorithm outlined in this work is de-

rived, are reviewed in the next section.

II.4 Breast Biomechanical Modeling

II.4.1 Anatomy

Designating tissue composition and constitutive material properties is an important part of breast biomechan-

ical modeling, and it requires detailed knowledge about the anatomy of the breast. The healthy breast is

composed of multiple tissue types including skin, adipose tissue, glandular tissue, muscle, ligaments, and

fascia. These tissues are organized in a heterogeneous fibro-adipose network that forms the structure and

shape of the breast shown in Figure II.6. The first description of the suspensory ligaments in the breast is

attributed to Sir Cooper in 1840, resulting in the name “Cooper’s ligaments” [140]. A more recent anatom-

ical dissection study notes that fascia layers including the superficial fascia and the pectoral fascia surround

fibro-adipose tissue pockets that are located both anterior and posterior to the corpus mammae. The breast

is positioned anterior to the pectoral muscles, and the boundary between muscle tissue and the fibro-adipose

tissue is referred to as the chest wall [9]. The structure and makeup of the breast is also known to change

composition over a woman’s lifetime. Menstruation, pregnancy, breastfeeding, menopause, and hormone

medications can all cause breast tissue property changes.

II.4.2 Material Properties

Understanding the material properties of the breast is critical for developing accurate biomechanical deforma-

tion models. Multiple studies, including ex vivo and in vivo measurement techniques, have been performed

to characterize breast adipose, glandular, skin, muscle, and tumor tissue [141]. In the simplest linear-elastic
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Figure II.6: Breast anatomy. Image reprinted from [9] with permission.

model, tissue can be represented by two material properties – the Young’s Modulus value E, which quantifies

a tissue’s stiffness and is equal to the ratio between the imparted stress on object and the resulting axial strain,

and the Poisson’s ratio value ν which quantifies a tissue’s compressibility and is equal to the negative of the

ratio between transverse and axial strain. Biological tissue is generally regarded as nearly incompressible

with Poisson’s ratio values ranging between 0.45 < ν < 0.49 [142]. However, some have suggested that

tissue’s degree of compressibility is actually variable with values as low as ν = 0.3 and changes in Poisson’s

ratio being an early indicator of disease [143]. Studies quantifying Young’s Moduli values in breast tissue

have also been variable. One ex vivo study that tested 38 adipose and 31 glandular tissue samples reported

stiffness ranges of 18-22 kPa for adipose tissue and 28-35 kPa for glandular tissue at 5% preload compression

[144]. Another study reported average stiffness values of 0.7 kPa for 33 adipose tissue samples and 0.8 kPa

for 27 glandular tissue samples at a low stress range between 0-0.2 kPa [145]. Both studies were performed

ex vivo with uniaxial compressive force tests.

The process of excising, preserving, and freezing tissue samples for material property testing may itself

alter the measured properties. In vivo tissue measurement techniques are advantageous in that they main-

tain the surrounding environment, and patient-specific properties can be measured with pre-existing imaging

modalities. One study quantified adipose and glandular tissue stiffness using ultrasound shear wave elastog-

raphy and found average shear stiffness moduli values ranging between 4.7-5.0 kPa for adipose tissue and
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6.5-6.7 kPa for glandular tissue [146]. MR elastography has also been used to generate high resolution elas-

togram maps of breast tissue stiffness, with one study from six healthy volunteers reporting average shear

stiffness moduli values of 7.5± 3.6 kPa and 3.3± 1.9 kPa for glandular and adipose tissue measured with

MR elastography [147]. Note that for both results, the Young’s modulus and the shear stiffness modulus µ

are related in a linear elastic material, µ = E
2(1+ν) . Computational reconstruction techniques have also been

explored to characterize breast tissue stiffness with noninvasive excitation like gravity excitation [148]. This

study estimated Young’s moduli values of 0.2±0.1 kPa and 2.8±4.0 kPa for adipose and glandular tissue.

While many of the breast material property studies have focused on characterizing adipose and glandular

tissue, there is also specific interest in Cooper’s ligaments and fascia as a main factor influencing breast

shape and structure. Both MR and ultrasound have been used to quantify the directional anisotropy in the

breast caused by ligaments and fascia structures [149; 150]. A recent 2022 study characterized Cooper’s

ligaments material properties using uniaxial tensile tests of excised cadaver ligament specimens [151]. The

study proposed an original anisotropic hyperelastic constitutive law that best fit the collected empirical data

and concluded that Cooper’s ligaments were 2-3 orders of magnitude stiffer than other breast tissues. This

work suggests that deformation modeling approaches may benefit from incorporating the distinct material

properties exhibited by Cooper’s ligaments.

Like material property measurements, the exact constitutive model employed for modeling breast tissue is

another source of variation in the literature. The linear-elastic constitutive model is the simplest. It represents

the stress-strain relationship as a linear function with Hooke’s Law, σ = Eε , where σ is stress, ε is strain, and

E is Young’s Modulus [152]. While simple and adequate for small deformations, the linear elastic constitutive

law is thought to be less accurate under large strain and deformation conditions. The neo-Hookean hypere-

lastic constitutive model has a nonlinear stress-strain curve. For incompressible tissues, it can be written as

W =C1(I1−3) where W is the strain energy density, I1 is the first invariant of the Cauchy-Green deformation

tensor, and C1 is the material property constant. The Mooney-Rivlin hyperelastic constitutive model is a more

general case of the neo-Hookean model where (for an incompressible material) W =C1(I1 −3)+C2(I2 −3)

where I2 is the second invariant of the Cauchy-Green deformation tensor and C2 is a second material prop-

erty constant [153]. Other nonlinear constitutive models include the Ogden and Arruda-Boyce models, but

neo-Hookean and Mooney-Rivlin appear most frequently in the literature for modeling breast tissue.

The variation in constitutive models is demonstrated in Figure II.7, which compares the stress-strain

curves for glandular and adipose tissue used in six different studies [1]. The six studies indicated by their first

authors – Wellman, Samani, Krouskop, Bakic, Lorenzen, and Schnabel – leveraged a variety of constitutive

models including linear, exponential, and neo-Hookean models [154; 155; 144; 156; 157; 158]. In a similar

investigation, a comprehensive review by Eder et al. directly compared twelve different constitutive models
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for breast deformations that had been previously proposed in the literature [159]. The twelve models included

linear, piecewise-linear, exponential, Neo-Hookean, and Mooney-Rivlin constitutive models derived from ten

different publications [144; 154; 160; 155; 161; 162; 163; 164; 165; 166]. Two models in particular – the

model by Tanner et al. and the model by Rajagopal et al., both neo-Hookean constitutive models – had the

best accuracy for modeling breast deformations caused by gravity [163; 165]. While nonlinear constitutive

models are thought to better represent large breast tissue dynamics, it should be noted that incorporating

nonlinear properties in FEM modeling increases computation time and requires iterative methods that may

have instability or convergence issues. Given the variability in the literature, the choice of a constitutive

model and material properties for breast mechanics based modeling should be evaluated depending on the

application.

Figure II.7: Strain-stress relationship graphs showing the variability in glandular (left) and adipose (right)
tissue properties used by multiple authors for breast biomechanical models. Image reprinted from [1] with
permission.

II.4.3 Deformation Modeling Approaches

Mechanics based modeling utilizes the laws of continuum mechanics to predict nonrigid deformations in

breast tissue subject to designated forces. These forces include external forces like changes in patient posi-

tioning relative to gravity or internal forces like pectoral muscle movement that causes tension in the con-

nected breast fascia and ligaments [167]. While image guidance is one of the main applications for breast

biomechanical models, these models have been used for other clinical and research purposes. Multi-modality

fusion provides imaging information from multiple modalities for improved breast cancer detection. Since

the loading conditions for different imaging systems vary – for example, in mammography the breast is com-
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pressed between two plates and in MR imaging the breast is pendant – biomechanical models have been

used to compensate for these different imaging positions to register images from different modalities [1].

Biomechanical models require three main components – (1) a geometric representation of the breast geom-

etry and tissues, (2) constitutive material models that represent the mechanical response of different breast

tissue types, and (3) designation of boundary loading conditions or forces that are acting on the breast [168].

Two of these three components have already been discussed. For (1), patient-specific representations of

breast geometries are generated from breast imaging (Section II.1.3), and for (2), breast material properties

and various constitutive models are selected from several reported methods (Section II.4.2).

For the third component, which involves designating loading conditions and computing a resulting de-

formation field, many of the biomechanical models implemented for breast use the finite element method

(FEM). FEM is a numerical technique used to solve for a particular solution to a partial differential equation

by discretizing the domain with a mesh composed of nodes and elements. For modeling deformations, FEM

solves for a particular displacement solution to the Navier-Cauchy equations for a set of known boundary

conditions. An aggregate summary of 12 papers that have used patient-specific breast FEM biomechanical

models is presented in Table II.1 [169; 170; 171; 172; 173; 174; 175; 138; 176; 177; 178; 139]. This table

is an updated and expanded version of a table presented in a review paper by Garcı́a et al. [1]. As shown in

the table, these FEM implementations vary in their complexity ranging from modeling breast tissue as one

homogeneous volume to including 6 different tissue types (adipose, glandular, skin, muscle, ligaments, and

fascia tissue). They also vary in their choice of mesh size, element type, and constitutive model. The wide

variation in these methods suggest that engineering implementation decisions about model complexity should

be made on a case-by-case basis depending on the application.

Hyperelastic constitutive models are more accurate when modeling biological tissue deformations un-

der large strain conditions. Yet, linear-elastic models are used throughout this dissertation. As previously

stated, modeling linear elasticity is less computationally expensive and more stable than nonlinear constitu-

tive models. Model complexity is a limiting factor given the application in BCS and the goal of near real-time

deformation correction. Also, several studies have shown that a linear elastic model has been sufficient for

approximating breast deformations compared to nonlinear models, despite it being a less realistic model

[171; 179; 180]. Tanner et al. compared displacement errors from several constitutive models and observed

no significant difference between linear and nonlinear models, concluding that errors were much more de-

pendent on perturbations to the boundary conditions and Poisson’s ratio rather than the selected constitutive

model [163].

Although FEM has been widely employed for various breast deformation modeling applications, it can

be computationally expensive and relies on 3D mesh generation which can be cumbersome. Several mesh-
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free methods for modeling soft tissue deformations have been proposed as FEM alternatives. These include

the moving least squares method, the element-free Galerkin method, and others [181]. While these methods

have been used for modeling soft tissue deformations in several organs and for virtual surgery simulations,

their direct use in breast modeling has been limited. Machine learning approaches have also been proposed

as an FEM alternative, especially for applications where real-time deformation modeling is required. These

approaches involve training machine learning models on results from FEM simulations. Demonstrations in

breast deformation modeling include a method for predicting deformations from compression during mam-

mography imaging and a method for predicting deformations caused by gravity from variations in patient

positioning in one patient [182; 183]. In both applications, the proposed machine learning models’ general-

izability is limited. For [182], the model is not generalizable to new loading conditions outside of mammog-

raphy compression, and for [183], the model is not generalizable to new patient geometries.

In summary, breast deformation modeling has been an active field of research for more than thirty years,

and many different modeling approaches with various applications have been evaluated. The mechanics

based breast deformation methods in the following chapters build upon previously proposed methods in the

literature, with the aim of proposing a method specifically designed for use in a BCS-IGS system.
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CHAPTER III

Methodology

This chapter provides an overview of the mechanics based methodology used in this work, including linear

elasticity, transverse isotropy, the finite element method, and regularized Kelvinlet functions. It then describes

the linearized iterative boundary reconstruction (LIBR) method for registration. Finally, methods regarding

the BCS-IGS system implementation are discussed.

III.1 Linear Elasticity

Linear elasticity is a fundamental concept in continuum mechanics that can be used as an approximate model

for soft tissue deformations [153]. The constitutive model governing linear elasticity can be represented using

Hooke’s Law written in matrix form,

σ =Cε (III.1)

ε = Sσ (III.2)

σ =



σxx

σyy

σzz

σxy

σyz

σxz


ε =



εxx

εyy

εzz

εxy

εyz

εxz


(III.3)

The vectors σ and ε are representations of the Cauchy stress tensor and the Cauchy strain tensor in engi-

neering notation. The constitutive model can either be expressed using the material stiffness matrix C or the

compliance matrix S, where S =C−1.

A linear elastic isotropic material has no characteristic orientation and is defined by two material property

parameters - Young’s Modulus E which describes the stiffness of the material and is the slope of the linear

stress-strain curve, and Poisson’s ratio ν which describes the compressibility of the material and is the ratio

of lateral to longitudinal strain in uniaxial tensile stress. The compliance matrix satisfying Equation III.2 for

an isotropic linear elastic material can be written as,
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S =
1
E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 1+ν 0 0

0 0 0 0 1+ν 0

0 0 0 0 0 1+ν


(III.4)

When following infinitesimal strain theory, the constitutive model equations above can be substituted

into the linear momentum balance equation (also known as the Cauchy momentum equation from Newton’s

Second Law) to derive the Navier Cauchy displacement equations,

E
2(1+ν)

∇
2u+

E
2(1+ν)(1−2ν)

∇(∇ ·u)+F = 0 (III.5)

where ∇2u = ∇ ·∇u, u is displacement, and F is a forcing vector. The Navier Cauchy equations are partial

differential equations that describe the relationship between displacements and forces in an isotropic linear

elastic domain at static equilibrium.

III.2 Transverse Isotropy

A transverse isotropic material is an anisotropic material that contains a plane of isotropy, meaning that the

object can be rotated around one axis with no change to the object’s elastic response. It is the simplest

form of anisotropy, as it requires specifying material properties in one additional orthogonal direction. The

directions are typically described as the longitudinal direction, sometimes called the fiber direction, and

the transverse directions which are the two orthogonal directions spanning the isotropic plane. When the x

direction is assumed to be the longitudinal direction and the y and z directions are the transverse directions, the

compliance matrix satisfying Equation III.2 for an transverse isotropic linear elastic material can be written

as,

S =



1
EL

−νLT
EL

−νLT
EL

0 0 0

−νT L
ET

1
ET

−νT T
ET

0 0 0

−νT L
ET

−νT T
ET

1
ET

0 0 0

0 0 0 1
GLT

0 0

0 0 0 0 1
GT T

0

0 0 0 0 0 1
GLT


(III.6)
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−νLT

EL
=

−νT L

ET

GT T =
ET

2(1+νT T )

where 5 unique properties need to be designated: ET (Young’s modulus transverse direction), EL (Young’s

Modulus longitudinal direction), νLT (Poisson’s ratio in the longitudinal direction), νT T (Poisson’s ratio in

the transverse directions), and GLT (shear modulus) [153]. For simplification, GLT can be assumed to be the

harmonic mean of EL and ET [184]. The compliance matrix in Equation III.6 is defined with longitudinal

and transverse directions aligned with the coordinate system. In practice, the local compliance matrix can be

rotated to align to an arbitrary longitudinal vector direction by applying a rotation matrix.

III.3 Finite Element Method

The finite element method is a mathematical technique developed to solve partial differential equations like

the Navier-Cauchy equations. It involves discretizing the domain into a geometric mesh containing volu-

metric elements designated as a list of vertices and edges. The displacements on a local element level are

described using weighting functions, and the partial differential equations are enforced by leveraging the

weighted residuals weak formulation. In a forward-solve problem, boundary conditions in the form of known

displacements or forces are applied to the system to solve for a displacement field. When the effects from

gravitational and body forces are assumed to be negligible, the Navier-Cauchy equations in Equation III.5

can be rewritten in a simplified form using the shear modulus coefficient G,

G =
E

2(1+ν)

∇ ·G∇u+∇
G

1−2ν
(∇ ·u) = 0 (III.7)

The solution to the simplified Navier-Cauchy equations in Equation III.7 is achieved using the Galerkin

method of weighted residuals. The method begins with the volume integration of Equation III.7 using the

spatially continuous weighting functions φi,

〈
φi∇ ·G∇u

〉
+

〈
φi∇

G
1−2ν

(∇ ·u)
〉
= 0 (III.8)

where
〈
·
〉

represents integration over the problem domain. φi is the ith member of the complete set of

scalar position functions. In this work, linear Lagrange weighting functions - the standard Co local Lagrange

polynomial interpolants - are used with tetrahedral finite elements, although other element types and higher-

order weighting functions can be substituted.
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Applying integration by parts and Stokes’ divergence theorem yields the weighted residual vector expres-

sion,

〈
G∇u ·∇φi

〉
+

〈
G

1−2ν
(∇ ·u)∇φi

〉
=

∮
σs · n̂φids (III.9)

where
∮

denotes the surface integral over the applied boundary stress σs acting on the enclosed domain

boundary, and n̂ is the outward-pointing unit normal direction on this boundary. Spatial discretization of the

displacement solution u is also written using the Galerkin method, where the unknown displacement vector

is represented as unknown coefficients multiplied by the weighting position functions,

u(x) = ∑
j

u jφ j(x) (III.10)

Substituting Equation III.10 into III.9 as the representation of u produces the set of ordinary differential

equations,

∑
j

u j

〈
G∇φ j ·∇φi

〉
+∑

j
u j ·

〈
∇φ j

G
1−2ν

∇φi

〉
=

∮
σs · n̂φids (III.11)

Finally, Equation III.11 is associated with the finite element assembly process and can be rewritten in the

conventional linear system of equations form,

Ki ju = bi (III.12)

where Ki j is the global stiffness matrix of size 3M x 3M, u is the displacement vector of size 3M, bi is the

forcing vector of size 3M, and M is the number of mesh nodes. Boundary conditions can be prescribed in

this form by setting direct values for u or bi. The resulting displacement vector u is computed by inverting

the global stiffness matrix.

u = K−1
i j bi (III.13)

III.4 Regularized Kelvinlet Functions

Section III.3 describes a numerical method to approximate a solution to the Navier Cauchy equations by

discretizing the geometry. However, analytical solutions to the Navier Cauchy equations exist for simplified

forcing functions and geometries. One such solution is the Kelvinlet (also known as Kelvin’s state or Kelvin

Solution), which is a fundamental solution of linear elasticity corresponding to a singular point load δ (x−x0)

applied to an infinite elastic space. Multiple techniques exist for solving for the Kelvinlet equation including
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using Fourier transforms and using the Papkovich Neuber potentials [153]. The Papkovich Neuber potentials

are three equations - a displacement field, harmonic vector potential, and harmonic scalar potential - that

satisfy the Navier Cauchy equations from Equation III.5.

u(x) =
2(1+ν)

E

[
Ψ(x)+

1
4(1+ν)

∇(Φ(x)−x ·Ψ(x))
]

(III.14)

∇
2
Ψ(x) =−F(x) (III.15)

∇
2
Φ(x) =−x ·F(x) (III.16)

By setting the forcing function F(x) equal to a scaled impulse response function such that F(x) = fδ (x−x0),

particular solutions to Equations III.15 and III.16 can be computed using the established solution for Poisson’s

equations. Note that r = x−x0 and r = ∥r∥.

Ψ(x) =
1

4π

∫
R3

fδ (s−x0)

∥x− s∥
ds =

f
4πr

(III.17)

Φ(x) =
1

4π

∫
R3

x · fδ (s−x0)

∥x− s∥
ds =

x · f
4πr

(III.18)

Equations III.17 and III.18 can be substituted into Equation III.14 and simplified to arrive at the Kelvinlet

function, where the material parameter coefficients are a = (1+ν)
2πE , b = a

4(1−ν) , and I is the identity matrix.

u(r) =
[

a−b
r

I +
b
r3 rrt

]
f (III.19)

Examining Equation III.19, displacements and displacement gradients are singular at the point forcing

location x0. To address this, de Goes et al. proposed the regularized Kelvinlet function for digital sculpting

purposes [19]. The regularized Kelvinlet function uses the “bump” forcing function in Equation III.20 as the

point load, which was first proposed for solving the equations for Stokes flow [185]. Using the regularized

forcing function with the Papkovich Neuber potentials from Equations III.14 - III.16 yields the regularized

Kelvinlet function in Equation III.21, where rε =
√

r2 + ε2 is the regularized distance, and ε is the regular-

ization radial scale.

Fε(r) = f
[

15ε4

8π

1
r7

ε

]
(III.20)
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uε(r) =
[

a−b
rε

I +
b
r3

ε

rrt +
a
2

ε2

r3
ε

I
]

f (III.21)

Regularized Kelvinlet functions can also be extended to affine loads by using a matrix-based load distri-

bution instead of a forcing vector [19]. The locally affine regularized Kelvinlet function (Equation III.22) is

derived from a 3x3 forcing matrix F , rather than a forcing vector f.

uε(r) =−a
(

1
r3

ε

+
3ε2

2r5
ε

)
Fr+b

[
1
r3

ε

(F +FT + tr(F)I)− 3
r5

ε

(rT Fr)I
]

r (III.22)

For a skew-symmetric matrix, the forcing matrix F can be represented by a vector q using the cross product

operation. This simplifies Equation III.22 to a regularized Kelvinlet function that models twisting deforma-

tions.

uε(r) =−a
(

1
r3

ε

+
3ε2

2r5
ε

)
q× r (III.23)

The resulting deformations from the regularized Kelvinlet functions in Equations III.21 and III.23 are

visualized with varying ε values in Figure III.1. In this work, regularized Kelvinlet functions are distributed

in a predetermined geometry on an object, and their displacement fields are superposed to result in a defor-

mation field for registration. More information about regularized Kelvinlet functions and their use in breast

registration is presented in Chapter V.

Figure III.1: Regularized Kelvinlet deformations from Equations III.21 (blue) and III.23 (red) with varying
ε values. E = 2100 Pa and ν = 0.45.
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III.5 LIBR Method

The methods discussed thus far have described deformation modeling as a forward problem, where the forces

acting on an object are known, and a mechanics based method (whether FEM or regularized Kelvinlet func-

tions) is used to calculate resulting displacements. However, in many applications, the exact forces acting

on an object are ambiguous. In BCS, breast deformations can be caused by arm motion and forces from

the pectoral muscles, which are difficult to estimate directly. To address this, the mechanics based methods

can be reframed as inverse problems that estimate the likely forces acting on an object that caused observed

displacements. In this framework, observed displacements are used as model inputs. The observed displace-

ments are partial, or sparse, measurements of the object geometry and subject to measurement noise. These

sparse-data sources are used to solve for an optimal estimate of forces applied to the object. Solving for this

force estimate provides a displacement vector field that can be applied to the entire object for registration.

Because the input data is sparse, there is an infinite set of forces that could result in displacement fields that

satisfy the observed sparse data. The inverse problem is ill-posed, as the uniqueness criteria describing a well-

posed problem is violated [186]. This means that to solve for an optimal set of forces, additional constraints

must be imposed. In previous work, the linearized iterative boundary reconstruction (LIBR) method was

proposed to constrain this inverse problem and solve for an optimal registration [20]. The LIBR method

predefines a set of possible deformations, a displacement basis, intended to span likely object deformations.

In the original LIBR algorithm, these displacements were computed using FEM from point load perturbations

followed by Saint-Venant point load relaxation. In this work, they are computed using regularized Kelvinlet

functions distributed on the object geometry. Using the principle of superposition, a deformation state can be

linearized and estimated,

ũ = Juααα (III.24)

σ̃ = Jσ ααα (III.25)

ε̃ = Jε ααα (III.26)

where ũ, σ̃ , and ε̃ are the displacement, stress, and strain estimates, Ju, Jσ , and Jε are the displacement,

stress, and strain response matrices, and ααα is the weighting vector for the displacement bases (in this context,

ε refers to strain, not the regularized Kelvinlet relaxation radius). To adapt the LIBR method for regularized

Kelvinlet functions, the J matrices can be replaced with the Kelvinlet response matrices, where the matrix

columns are composed of displacement, stress, and strain vectors calculated from unit forcing vectors for a

set of regularized Kelvinlet functions.
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Then, the optimal registration is iteratively computed as the linear combination of weighted displacement

basis functions that minimizes the error between sparse data inputs and deformed model geometry. In addition

to calculating the displacement basis function weights ααα , rigid registration parameters including translation

τττ and rotation θθθ are also computed. The ααα , τττ , and θθθ parameters are combined such that βββ = [ααα,τττ,θθθ ], and

βββ represents the deformation state. Written in this form, the deformed model state x at every iteration can be

calculated as,

xxx = R(xxx0 − x̄xx0 + Juααα)+ τττ + x̄xx0 (III.27)

where xxx0 is the original undeformed mesh, x̄xx0 is the mesh centroid, and the rotation matrix R is defined from

the θθθ parameter R(θθθ) = R(θx)R(θy)R(θz).

The least squares objective function used to calculate the optimal βββ vector is shown in Equation III.28,

and it contains two model-data error terms - epoint and esur f ace. The epoint error is the model-data error for

corresponding fiducial points. It is computed as the Euclidian distance between the input sparse data fiducial

point yi and the fiducial point in model space after the deformation state βββ is imposed, xi. To calculate xi, the

deformed mesh vector xxx is calculated using Equation III.27, and the resulting displacements interpolated onto

the original model space fiducial point location x0. The esur f ace error term calculates the model-data error

when exact point correspondence is unknown, but a model surface geometry is available. At each iteration,

correspondence is established as the closest xi point in xxx for every feature point yi. Then, a sliding constraint

is imposed such that the vector between xi and yi is projected onto the surface unit normal vector at xi. This

allows for sliding between the model surface and the sparse input data resulting in better alignment.

Ω(βββ ) =
1

npoint

npoint

∑
i=1

(ei
point)

2 +
1

nsur f ace

nsur f ace

∑
i=1

(ei
sur f ace)

2 +wSE(eSE)
2 (III.28)

In addition to the model-data error terms, a strain energy regularization term eSE is included which penalizes

deformations with large strain energies, and it is scaled by weight wSE . eSE is calculated at every iteration as

the average strain energy of the deformation state in Equation III.29, where M is the number of mesh nodes.

eSE =
1

2M
ααα

T (JT
ε Jσ)ααα (III.29)

Levenberg-Marquardt optimization is used to iteratively solve for βββ at each iterative step k using the

standard nonlinear least-squares form,

βββ k+1 −βββ k = (JTWJ+λdiag(JTWJ))−1JTWeee (III.30)
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where the error vector eee is a concatenated vector of all epoint , esur f ace, and eSE terms. The Jacobian of the

error J is analytically computed as J = deee
dβββ

. λ is a trust region prediction ratio, and the termination criteria

is set at |∆Ω(βββ )| < 10−12. More information about the LIBR method and its use with regularized Kelvinlet

functions in breast registration are presented in Chapter V.

III.6 Image Guidance System Development

The BCS-IGS system was developed for bedside data collection and active deformation correction. It features

a mobile cart with a display monitor, computer, extendable arm, and monitoring sensors. More details on the

guidance system hardware are presented in Section VI.4.1.

Figure III.2: System architecture diagram for the BCS-IGS system with hardware (blue) and software (or-
ange) components.

The custom software for the guidance system module was developed as a scripted Python module for 3D

Slicer v4.11. The system architecture for the BCS-IGS system is shown in Figure III.2. The software ecosys-

tem features four modules so far – BreastIGT for the data collection and nonrigid registration presented

in this dissertation, LiverIGT for guidance during hepatic surgeries, StereoCameraCalibration for

calculating the co-registration calibration between optical tracker and stereo camera coordinate systems, and

UltrasoundCalibration for calculating calibration matrices for tracked ultrasound. These modules

load functionality saved in modular helper files so that capabilities can be easily shared between differ-

ent modules. The helper files include Registration.py for executing rigid and nonrigid registrations,

StereoVision.py for interfacing with the ZED stereo camera, and Ultrasound.py for interfacing

with the ultrasound data. Functions in StereoVision.py directly control the ZED stereo camera through

the PyZED API, unlike the other hardware devices that communicate through the PLUS Toolkit. All modules

can be cloned through a Github Repository. The guidance system module’s functionality is detailed in Sec-

tion VI.4.2. The methods for the stereo camera calibration and ultrasound calibration modules are presented
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below.

III.6.1 Stereo Camera Calibration

Figure III.3: Stereo camera calibration module in 3D Slicer.

The module for stereo camera and optical tracker co-registration is shown in Figure III.3. A tracked

checkerboard calibration object was used for co-registration [187]. The calibration object was made from an

aluminum plate with a 7x8 black and white checkerboard with 18 mm squares mounted to the plate surface.

The aluminum plate had 4 machined mounts where passive optically reflective spheres were attached for

optical tracking of the calibration object. For calibration, the checkerboard was placed in 10 positions at

different tilts covering the field-of-view of the optical tracker and stereo camera. The module was used for

simultaneous collection of the optically tracked calibration object position and stereo camera images in each

of the 10 positions. In optical tracking space, the 42 internal checkerboard square intersects were tracked

relative to the calibration object. In stereo camera space, the intersect points were identified in the left camera

color image using OpenCV. The stereo camera calibration between the left and right cameras is set internally

by the manufacturer. The PyZED API was used to convert left image pixel space to a 3D coordinate in stereo

camera space. After collection at the 10 checkerboard positions, all collected points (420 for each space)

were aggregated into point vectors qO in optical tracking space and qS in stereo camera space. Then, the

calibration matrix O
S T was computed using conventional least-squares singular value decomposition point-

based registration [188]. This resulted in a calibration matrix registering optical tracking and stereo camera

spaces such that,

qO = O
S T qS (III.31)
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Because the optical tracker and stereo cameras are rigidly mounted in a stable configuration, this process only

needs to be performed once, barring adjustments to the sensor mounting. Calculating this calibration matrix

allows for data collected with the stereo camera to be transformed into optical tracking space, and for both

spaces to be co-registered in the breast guidance module.

III.6.2 Tracked Ultrasound

Figure III.4: Ultrasound calibration module in 3D Slicer.

The module for tracked US probe calibration is shown in Figure III.4. A custom US transducer case was

designed and 3D printed to attach an optical tracking rigid body to the top of the transducer in a reproducible

way (see Figure VI.1 from Chapter VI). The case was made to minimize line-of-sight problems from the

rigid body to the optical tracker while also maintaining US probe functionality and usability. Tracked US

calibration was performed using the N-wire calibration method [189]. This method requires two optically

tracked rigid bodies – one attached to the US probe, and another attached to the N-wire calibration phantom.

The N-wire calibration phantom contains wires threaded between two plates in distinct triangular patterns,

such that the wire geometries are known relative to the attached rigid body. The phantom is submerged in

water for US imaging. The calibration process includes (1) acquiring a US image, (2) manually labeling the

wire intersect points visible in the image, and (3) computing the rigid transformation between image-labeled

wire points and physical N-wire phantom points. Tracked ultrasound calibration was performed at 12 depths

ranging from 3 - 9 cm to achieve the image-to-physical calibration matrix for each individual depth.
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CHAPTER IV

Informing biomechanical breast modeling using supine magnetic resonance image registration

This chapter details Aim 1 of this dissertation, which is to utilize image-to-image registration of supine breast

MR imaging to inform FEM breast modeling approaches. First, a supine MR imaging dataset that simulates

surgical deformations from healthy volunteers is collected. Then, image-to-image registration between MR

images acquired in different positions is performed. These registrations are used to examine tissue mechanical

properties and infer FEM boundary conditions. Finally, three FEM breast modeling approaches are evaluated

and compared – a homogeneous isotropic model, a heterogeneous isotropic model, and a heterogeneous

transverse-isotropic model.

IV.1 Abstract

Simulating soft-tissue breast deformations is of interest for many applications including image fusion, lon-

gitudinal registration, and image-guided surgery. For the surgical use case, positional changes cause breast

deformations that compromise the use of preoperative imaging to inform tumor excision. A biomechanical

modeling approach to simulate supine breast deformations for surgical applications must be both accurate and

computationally tractable. A supine MR breast imaging dataset from N = 11 volunteers was used to simulate

surgical deformations by acquiring images in arm-down and arm-up positions. A diffeomorphic image regis-

tration method from the Advanced Normalization Tools (ANTs) repository was used to calculate deformation

metrics (volume change and anisotropy) from the ANTs deformation field and derive biomechanical model-

ing boundary conditions. Then, three linear-elastic modeling approaches with varying levels of complexity

(heterogeneity and anisotropy) were used to predict deformations caused by this arm motion. The average

target registration error (TRE) after ANTs registration was 2.8±1.3 mm (mean ± standard deviation). The

mechanics-based deformation metrics revealed an overall anisotropic tissue behavior and a statistically sig-

nificant difference in volume change between glandular and adipose tissue. These metrics were consistent

with the biomechanical modeling results, which revealed a statistically significant improvement in TRE when

using the heterogeneous anisotropic model compared to both the homogeneous and heterogeneous isotropic

models (p < 0.01). While a model that fully incorporates all constitutive complexities of anatomical structure

likely achieves the best accuracy, these image registration and biomechanical modeling methods may be of

interest for predicting surgical deformations in the supine position.
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IV.2 Contributions

This chapter is adapted from two publications, namely “Supine magnetic resonance image registration for

breast surgery: Insights on material mechanics” published in the Journal of Medical Imaging, and “Incorpo-

rating Heterogeneity and Anisotropy for Surgical Applications in Breast Deformation Modeling” published

in Clinical Biomechanics. These works have been reproduced with permission from the publishers.

[190]: M. J. Ringel, W. L. Richey, J. S. Heiselman, M. Luo, I. M. Meszoely, and M. I. Miga, “Supine magnetic

resonance image registration for breast surgery: Insights on material mechanics,” Journal of Medical Imaging,

vol. 9, no. 6, pp. 065001, 2022.

[191]: M. J. Ringel, W. L. Richey, J. S. Heiselman, I. M. Meszoely, and M. I. Miga, “Incorporating Hetero-

geneity and Anisotropy for Surgical Applications in Breast Deformation Modeling,” Clinical Biomechanics,

vol. 104, pp. 105927, 2023.

IV.3 Introduction

Breast biomechanical modeling is of interest for multiple clinical and research applications. One use case

is multi-modality image fusion, where biomechanical models are used to compensate for variable imaging

positions when registering images from two or more modalities such as mammography imaging and magnetic

resonance (MR) imaging [172; 174]. Another application is for longitudinal comparison, where alignment

is needed to understand disease progression at different imaging timepoints [192; 193]. Additional relevant

uses include employing biomechanical models for enhancing diagnostic information through elastography

measurements and for predicting treatment responses [148; 194]. For all of the aforementioned applications,

a breast biomechanical modeling approach that achieves accurate co-registration is required. However, the

correct modeling implementation to optimally simulate breast deformations is unclear.

This work focuses specifically on the context of image-guided surgery, wherein preoperatively acquired

breast MR imaging data informs tumor localization and excisions in breast conserving surgeries via image-

to-physical alignment of preoperative and intraoperative breast anatomy [8; 138]. However, the primary

confounding factor within this context is that the breast can undergo large nonrigid soft-tissue deformations

between the imaging and intraoperative positions which can compromise the usability and accuracy of preop-

erative imaging for guidance purposes. With conventional MR imaging, this issue is especially problematic

as breast MR imaging is typically acquired in the prone position with the breast pendant. However, dur-

ing surgery, the patient lies supine with their arm abducted 90 degrees, which drastically deviates from the

prone imaging position. Biomechanical models have been used for prone-to-supine registration to correct

for these deformations, but the large scale of the tissue movement makes the approach quite challenging
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[195; 196; 197]. MR imaging in the supine position has been explored as a solution to acquire imaging that

more closely reflects the patient’s positioning in the operating room [17]. However, even when imaging in the

supine position, breast deformations caused by arm motion and repositioning still alter the breast geometry

resulting in large image-to-physical misalignments [18]. Any soft tissue deformations that occur to the breast

degrade the relevancy of preoperatively acquired imaging. Compensating for deformations in the supine

position by using breast biomechanical modeling approaches may prove to be useful for informing surgical

procedures, thus leading to more successful first-pass tumor excisions and improved patient outcomes.

In general, breast biomechanical modeling approaches consist of three conventional steps: (1) extract-

ing breast geometric information to create a simulated breast model, (2) setting breast material properties

to describe breast tissue’s response to external forces, and (3) designating boundary conditions to model the

loading forces applied to the breast [1]. These three components vary considerably in their implementations.

For creating geometric breast mesh models, tetrahedral elements and hexagonal elements have been used

with the finite element method (FEM) to model breast elasticity [173; 178]. Additionally, different tissue

types in the breast have been designated in various modeling approaches. The simplest implementations

model the breast as a homogeneous tissue like in Mertzanidou et al., while more complex models are het-

erogeneous like the model by Mira et al. with designated adipose, glandular, skin, muscle, ligaments, and

fascia tissue types [174; 177]. For designating material properties, a linear elastic stress-strain relationship

based on Hooke’s Law has been used as a material property constitutive model for breast tissues. Nonlinear

hyper-elastic models such as the Neo-Hookean and Mooney-Rivlin models have also been employed [1]. An

implementation by Garcı́a et al. featured a transverse-isotropic Neo-Hookean material model to simulate the

effect of anisotropic Cooper’s ligaments for breast MR and mammography co-registration [198]. Most breast

tissue material models are derived using ex vivo tissue characterization with mechanical tests, but these can

have wide variability in their measurement values[144; 145]. A recent breast tissue characterization study by

Goodbrake et al. examined adipose and glandular tissue specimens and found that both tissue types displayed

complex anisotropic behavior [199]. The third step, designating boundary conditions, varies depending on

the application. For some applications, like for mammography compression between two plates or for prone

to supine deformations caused by gravity, the boundary conditions are relatively straightforward [200]. How-

ever, repositioning from imaging unit to surgical configuration causes deformations that are a combination

of internal body forces as well as changes to breast lateral support, and these deformations are non-trivial

to implement in forward-solve problems [138]. Additionally, when combining these loading conditions with

those that take place during surgery, the complexity of boundary conditions can rapidly escalate.

To address the challenge of assigning boundary conditions that accurately model surgical deformations,

nonrigid image-to-image registration is used. Image registrations produce dense displacement mappings
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between the moving and fixed images, which can be used to inform model boundary conditions and defor-

mation characteristics with voxel-level specificity. The image registration method selected for this study was

a symmetric diffeomorphic image-to-image registration algorithm with B-spline regularization available in

the Advanced Normalization Tools (ANTs) repository [201]. Although many algorithms are available, this

method in the ANTs repository was chosen because of its ease of use, ability to capture large deformations,

and robustness in many different medical imaging applications. Along with inferring boundary conditions,

the image registration deformation field is also used to analyze volume change and anisotropy for the en-

tire breast and for adipose and glandular tissue independently to better understand the underlying material

mechanics associated with breast deformations. This has an added benefit in that insights from the mate-

rial mechanics measured from the image registration may be able to inform biomechanical modeling design.

Material mechanics measured from the image registrations are presented alongside biomechanical modeling

results in this work.

While many different breast biomechanical models have been proposed with varying levels of complex-

ity, only a few studies have directly investigated how adding tissue heterogeneity and anisotropy affects

modeling accuracy, and neither of these studies were performed in the supine position [170; 169]. While

adding model complexity may improve realism by more accurately capturing physical effects, it may also

introduce a model implementation that is more cumbersome and less applicable to a near real-time model-

ing approach for intraoperative surgical guidance. A quantitative assessment that addresses which additional

modeling complexities have the largest effect on results would provide clinicians and researchers guidance

for implementing biomechanical breast modeling approaches. Given the different tissue types in the breast,

incorporating heterogeneity within breast models is quite logical. The breast also contains the suspensory

ligament structure known as Cooper’s ligaments, which are thought to significantly inform the breast’s shape

and structure. These ligaments range from 0.04–0.3 mm in diameter and are typically not resolved with con-

ventional clinical breast imaging modalities [151]. However, given that the ligaments are embedded within

the breast parenchyma, we hypothesize that modeling breast tissue as an anisotropic material may capture the

composite effect that the Cooper’s ligaments have on breast deformation.

Overall, the goal of this work is to address how heterogeneity and anisotropy affect modeling accuracy

when incorporated into biomechanical models of breast deformation, while using image registration to in-

form model boundary conditions. This was investigated using a supine MR imaging dataset meant to mimic

deformations caused by positional changes during surgery specifically for the image-guided surgery appli-

cation. Biomechanical insights were extracted from the nonrigid image-to-image deformation field. Target

registration error (TRE) was used to quantify accuracy and provide a data-driven evaluation of the poten-

tial performance improvement when using a heterogeneous, anisotropic model compared to a homogeneous,
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isotropic model.

IV.4 Methods

The methods can be largely divided into four general steps: (1) MR image acquisition and preprocessing, (2)

performing deformable image registration, (3) calculating registration-derived tissue mechanics-based met-

rics, and (4) implementing biomechanical modeling methods with varying levels of complexity. In summary,

supine breast MR image volumes were acquired from healthy volunteers in arm-down and arm-up positions

to simulate intraoperative deformations, and 3D anatomical models were generated from the image volumes.

Then, registration between the arm-down and arm-up images was performed, and mechanics-based metrics

were derived from these deformation fields. These deformation fields also provided the boundary conditions

for the biomechanical models. Three biomechanical modeling approaches were implemented and evaluated -

a homogeneous isotropic model (Model A), a heterogeneous isotropic model (Model B), and a heterogeneous

anisotropic model (Model C).

IV.4.1 Image Acquisition and Preprocessing

Seven healthy adult women volunteers were enrolled in an MR imaging study approved by the Institutional

Review Board at Vanderbilt University. Supine breast MR imaging was performed on the left and right

breasts of seven healthy volunteers using a Phillips 3.0 Tesla closed bore scanner (Philips Healthcare, Best,

The Netherlands) and a 16-channel torso coil. T1 High Resolution Isotropic Volume Excitation (THRIVE)

sequence scans were obtained with one of two voxel sizes (0.357×0.357×1 mm3 or 0.391×0.391×1 mm3)

with the ipsilateral arm down by the torso to mimic preoperative positioning and with the ipsilateral arm up

by the head to mimic intraoperative positioning. The field of view included the entire breast volume, and the

primary image slice was acquired in the axial direction. While true intraoperative positioning usually extends

the arm to a T-shape pose, the arm-up configuration represents a more challenging configuration that enables

quantitative image-to-image comparison. Prior to imaging, 23-26 MR visible synthetic fiducials (IZI Medical

Products, Owing Mills, MD, USA) were placed on the surface of each breast. Two out of the fourteen breast

images were omitted due to imaging artifacts. For one subject, only the left breast was imaged leaving eleven

(N = 11) breasts from seven individuals with ages ranging from 25 to 57 years included in the study.

3D breast volumes were manually segmented from the MR images along the boundary between the chest

wall and breast parenchyma using ITK-SNAP. The surface fiducial markers were manually labeled and used

as corresponding points in the mock preoperative and intraoperative positions. For each volunteer, 18-26

corresponding subsurface features were manually picked in the mock preoperative and intraoperative images

for target evaluation by visual inspection of the glandular features in the breast. Target points were chosen
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Table IV.1: Volunteer breast volume and glandular tissue percentage. Each Roman numeral denotes one
volunteer with (a,b) indicating an individual breast.

Case Volume (cm3) % Glandular
I 1198 4

II.a 701 9
II.b 682 9
III.a 672 36
IV 649 15
V 629 50

III.b 611 44
VI.a 596 60
VI.b 519 42
VII.a 444 32
VII.b 398 37

Mean ± std 645 ± 208 31 ± 19

so that they were evenly distributed throughout the breast mesh volumes. These subsurface target points

were independent from the MR skin surface fiducial points. Breast tissue was labeled as either adipose or

glandular tissue semi-automatically using Otsu thresholding with manual correction [202]. Volunteer breast

segmentation volumes and glandular tissue percentages are reported in Table IV.1. After segmentation, 3D

meshes in the arm-down position with 2 mm edge length tetrahedral elements were generated for the FEM

modeling complexity experiments. The breast meshes were created based on the segmentation volumes using

a marching cubes algorithm with custom mesh generation software [203]. To create a heterogeneous mesh,

elements were classified as either adipose or glandular tissue based on each element’s centroid location. The

interfaces between adipose and glandular tissue mesh elements were treated the same as all other internal

mesh interfaces. These data preprocessing steps are shown in Figure IV.1.

IV.4.2 Image Registration

After data preprocessing, 3D image-to-image registration that registered the arm-down and arm-up MR im-

ages was performed. This approach registered the mock preoperative and intraoperative images using a sym-

metric diffeomorphic image registration algorithm with explicit B-spline regularization available in the ANTs

repository [201]. Images were masked using a dilated breast volume segmentation mask so that the MR vis-

ible fiducials were included in the masked volume. The registration was initialized with a rigid point-based

registration calculated from the surface fiducials using a conventional least-squares singular value decom-

position point-based registration method [188]. This was followed by the deformable B-spline symmetric

normalization method. Registration was performed using multi-threading on 2.3 GHz Intel Xeon (E5-4610

v2) CPUs. The optimal parameters used for ANTs registration are reported in Table IV.2.
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Figure IV.1: MR breast data preprocessing. (A–B) Axial slices of the arm-down (A) and arm-up (B) images
with manual segmentation contours. (C) Segmentation of adipose tissue (blue) and glandular tissue (red).
(D) Segmentation after mesh discretization.

Table IV.2: ANTs registration parameters.

Parameter Value
ANTs Script antsRegistrationSyN.sh
Initialization Rigid point-based registration
Stages Deformable b-spline symmetric normalization
Similarity metric Cross-correlation
Multiresolution sampling levels 5
Histogram bins 32
Histogram matching Yes
Spline distance 26
Gradient step size 0.1

IV.4.3 Evaluation of Registration Accuracy

The resulting deformations from either the image registration deformation fields or biomechanical modeling

deformation fields were applied to the preoperative skin fiducials or the subsurface targets and compared

to their ground truth imaging locations to measure accuracy. These accuracy measures were formulated as

fiducial registration error (FRE) and target registration error (TRE). FRE was calculated as the root mean

squared error between corresponding deformed and ground-truth fiducial points,

FRE =

√
1
N

N

∑
i=1

FRE2
i (IV.1)
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where FREi is the distance between the deformed ith fiducial and the corresponding ith intraoperative (ground-

truth) fiducial. Similarly, TRE was calculated as the root mean squared error between deformed and ground-

truth target points,

TRE =

√
1
N

N

∑
i=1

T RE2
i (IV.2)

where T REi is the distance between the deformed ith target and the corresponding intraoperative (ground-

truth) ith target.

IV.4.4 Image Registration-based Tissue Characterization

Mechanics-based metrics representing volume change and directional preference in volume change were

calculated as a means of interpreting the ANTs deformation field as described in Amelon et al. and utilized

for breast in Jahani et al. [204; 205]. The Jacobian determinant index (J) to measure volume change and the

anisotropic deformation index (ADI) to measure anisotropy were computed using the following formulas,

J = λ1λ2λ3 (IV.3)

ADI =

√(
λ1 −λ2

λ2

)2

+

(
λ2 −λ3

λ3

)2

(IV.4)

where λ are the eigenvalues, or the principal stretches, of the deformation gradient tensor with λ1 > λ2 > λ3

for material that has anisotropic behavior in all 3 principal directions and λ1 = λ2 = λ3 for isotropic materials.

J < 1 indicates volume contraction, J = 1 indicates no volume change, and J > 1 indicates volume expansion.

ADI = 0 indicates isotropic deformation and ADI > 0 indicates increasingly anisotropic deformation [204]. J

and ADI were calculated at every element in the breast mesh using the data provided by the ANTs deformation

field. The metrics were averaged within segmented adipose tissue and within segmented glandular tissue.

Average metrics were compared across tissue types using paired t-tests (α = 0.05).

IV.4.5 FEM Modeling Implementation

Linear-elastic FEM models with varying levels of complexity were used to predict deformations caused by

the arm-down to arm-up positional change. While more sophisticated nonlinear models exist, the selection

of a linear model was made as it balances accuracy with computational tractability. The boundary condition

designation methods, three model implementations, and model experimentation are detailed in the sections

below.
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FEM Boundary Condition Designation

Designating boundary conditions for biomechanical modeling is challenging, especially when deformations

are caused by variable sources such as the deformations imparted by arm motion. To address this challenge,

the same intensity-based nonrigid image-to-image registration method described in Section IV.4.2 above was

used to establish correspondence between the arm-down and arm-up positions. After registration, displace-

ment boundary conditions extracted from the image-to-image registration field were enforced on the entire

mesh boundary for FEM modeling. This was done by interpolating the resulting displacement field after

registration onto the mesh boundary nodes. These displacement vectors were enforced as Dirichlet boundary

conditions for FEM modeling comparisons. Displacements at the boundary of the biomechanical model were

defined to exactly match the estimates from the nonrigid image-to-image registration. Boundary conditions

were applied to all boundary mesh nodes as shown by the segmentation contours in Figure IV.1. Although this

undoubtedly has some degree of error, each modeling approach being investigated is provided with equivalent

boundary conditions derived using this method. This allows for quantitative evaluation of the impact of the

changes to constitutive relationships.

Model A – Homogeneous Isotropic Linear Elastic Model

The simplest elastic model employed was Model A —a homogeneous isotropic FEM model. This FEM

model utilized the Galerkin method of weighted residuals with linear Lagrange basis functions to solve for a

displacement solution governed by the Navier Cauchy equations for linear elasticity. This model represented

all breast tissue as one tissue type and did not incorporate directional variation in the material property

constitutive model. It is not necessary to define a Young’s Modulus value for this model because the entire

mesh boundary is defined by Dirichlet boundary conditions. This implementation was used as a baseline

comparator for Model B and C implementations.

Model B – Heterogeneous Isotropic Linear Elastic Model

The next model employed was Model B —a heterogeneous isotropic FEM model with two different tissue

types (adipose and glandular tissue) that were incorporated for heterogeneity. Since the mesh boundary nodes

are defined by Dirichlet boundary conditions (rather than applied stress), only the relative stiffness between

adipose and glandular tissue affects the displacement solution. This glandular-to-adipose stiffness ratio is

defined as,

R1 =
EGlandular

EAdipose
(IV.5)

where EAdipose and EGlandular are the Young’s Moduli values for adipose and glandular tissue.
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Model C – Heterogeneous Anisotropic Linear Elastic Model

The last comparator model employed was Model C —a heterogeneous transverse-isotropic FEM model.

Transverse isotropy is defined by a plane of isotropy where material properties are symmetric (in transverse

directions) and a direction normal to the plane of isotropy where the material properties vary (in the longitudi-

nal direction). The linear stress-strain relationship can be written such that ε = Sσ , where S is the compliance

matrix and ε and σ are the strain and stress tensors, respectively. This relationship can be written as,
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GT T =
ET

2(1+νT T )
(IV.8)

where 5 unique properties need to be designated to properly characterize the material: ET (Young’s modulus

transverse direction), EL (Young’s Modulus longitudinal direction), νLT (Poisson’s ratio in the longitudinal

direction), νT T (Poisson’s ratio in the transverse directions), and GLT (shear modulus) [153]. In Equations

IV.6-IV.8, the longitudinal direction is oriented along the x-axis. To reduce the number of degrees of freedom,

GLT was assumed to be the harmonic mean of EL and ET which is consistent with a previous implementation

of a transverse-isotropic model [184]. This simplified the number of independent material properties charac-

terizing stiffness to two Young’s Moduli values, namely EL and ET . The longitudinal-to-transverse isotropic

stiffness ratio is defined as,

R2 =
EL

ET
(IV.9)

The relationship in Equation IV.6 implies that the direction of longitudinal property difference is known at

the local tissue element level. Based on a general structural anatomy associated with breast parenchyma and

Cooper’s ligaments, the longitudinal direction for each mesh element was designated as the unit vector normal

to the segmented chest wall surface. The longitudinal directions and boundary conditions are visualized in

Figure IV.2.
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Figure IV.2: Boundary conditions and anisotropic longitudinal directions. (Top) Axial slices for three rep-
resentative cases - I, V, and VII.b. (Bottom) 2D views of the arm-down mesh outline (black contours), the
longitudinal directions for the transverse-isotropic model (black arrows), and the arm-down mesh outline
deformed into arm-up position using image-to-image registration (green contours). The displacements be-
tween the green and black contours were implemented as boundary conditions.

FEM Modeling Experimentation

Logarithmic parameter sweeps were used to investigate the effects of heterogeneity (R1) in Model B and

the effects of heterogeneity and anisotropy (R1 and R2) in Model C. The parameter sweep of R1 values was

R1 = {2−4,2−3,2−2,2−1,20,21,22,23,24}, and this parameter sweep was used for both Models B and C. The

parameter sweep of R2 values was R2 = {21,24,27}, and this parameter sweep was used for Model C. For

Models A and B, the Poisson’s ratio was ν = 0.45 to model soft tissue as nearly incompressible based on

previous modeling implementations [139; 190]. For Model C, the Poisson’s ratios in both directions were

νLT = νT T = 0.45 to reduce the number of degrees of freedom and model nearly incompressible tissue.

Measuring TRE provided a quantitative model accuracy measurement that was compared for the models

across the parameter sweeps. For Model B, the R1 parameter value that resulted in the lowest TRE was

selected for each individual case. For Model C, the lowest R1 and R2 parameter combination that resulted

in the lowest TRE was selected for each individual case. Significance testing was performed using paired

Wilcoxon signed-rank tests on TRE values across all 11 cases to test for a statistically significant difference

in performance when using Models A–C at a significance level of α = 0.01 [206].
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IV.5 Results

IV.5.1 Image Registration Results

The average of the root mean squared error FRE values across all breasts was 3.1 ± 1.1 mm after ANTs

image registration (mean ± standard deviation). When compared to rigid registration, ANTs resulted in a

60% improvement in FRE (p < 0.001). The average of the root mean squared error TRE values across all

breasts was 2.8 ± 1.3 mm after ANTs image registration (mean ± standard deviation). When compared to

rigid registration, ANTs resulted in a 73% improvement in TRE (p < 0.001). ANTs registration took 7.4

hours on average for each case and would not be feasible for real-time applications.

The ANTs image registration results and deformation field were further analyzed for insights into breast

deformation patterns. Subsurface target distributions and errors from three example cases are shown in Figure

IV.3A. The target locations were distributed evenly throughout the breast volume. The maximum target

errors were 1.7 mm, 6.6 mm, and 5.9 mm for the low (VII.b), medium (V), and high (I) volume example

cases, respectively. For all 237 targets aggregated across the N = 11 cases, the average absolute error in

the inferior-superior direction was slightly yet significantly higher than in the medial-lateral and anterior-

posterior directions (p < 0.05). This result is likely because the inferior-superior direction corresponds to the

image acquisition direction with the larger voxel dimension. There were no observable correlations between

error directionality and anatomical target location. The mesh deformations generated from the ANTs image

registration are shown in Figure IV.3B as the signed deformation distance on the mesh surface. In the coronal

view, outward extension was seen in the upper outer quadrant and inward compression was seen around

the nipple although there was variation in different cases. Overall, the ANTs image registration deformation

revealed stretching in the superior-inferior direction and flattening in the anterior-posterior direction occurring

with arm-down to arm-up motion. While qualitative, the results agree with anticipated behavior.

Image registration was also evaluated by comparing deformed and ground truth image volumes shown in

Figure IV.4A. The glandular features were similar in corresponding axial slices of the deformed and target

image volumes indicating an accurate image registration. Example images are shown with four targets from

four different cases. For each quartile, one target is shown with error within 0.1 mm of the quartile median

target error. Although the 4th quartile target shown has a larger error distance, the glandular image features

in the deformed and target images still show strong agreement. 75% of all target errors were below 3 mm as

shown in the histogram in Figure IV.4B, implying that the ANTs image registration was accurate throughout

the image volume for all cases.

51



Figure IV.3: ANTs image registration results from a large (I), medium (V), and small (VII.b.) breast volume
case displayed on coronal (top) and axial (bottom) views of breast meshes with a gray cross marking the
nipple location. (A) Spheres indicate subsurface target locations and are colored according to individual tar-
get error. (B) Mesh color indicates the signed distance from ANTs image registration deformation moving
from arm-down to arm-up with warm colors representing outward surface extension and cool colors repre-
senting inward surface compression.
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IV.5.2 Tissue Characterization Results

The average eigenvalues, or principal stretches, of the deformation gradient tensor computed at each mesh

element deformed by the ANTs deformation field and stratified by tissue type are reported in Table IV.3.

These average eigenvalues suggest that the breast exhibits orthotropic behavior and that the three eigenvalues

vary in magnitude. There is also consistency in the eigenvalue magnitudes exhibited across all N = 11 cases.

Table IV.3: Average eigenvalues from the deformation gradient tensor for adipose and glandular tissue.

Case λ1 λ2 λ3
Adipose Glandular Adipose Glandular Adipose Glandular

I 1.27 1.54 0.98 0.96 0.76 0.70
II.a 1.28 1.42 0.97 0.99 0.78 0.74
II.b 1.27 1.52 0.97 0.94 0.78 0.71
III.a 1.23 1.20 1.01 1.01 0.81 0.82
IV 1.31 1.46 1.00 1.01 0.72 0.69
V 1.32 1.35 0.99 1.00 0.71 0.73

III.b 1.29 1.37 0.97 0.99 0.73 0.74
VI.a 1.38 1.40 0.99 1.00 0.70 0.72
VI.b 1.31 1.37 0.97 1.00 0.73 0.75
VII.a 1.30 1.31 1.04 1.04 0.73 0.75
VII.b 1.27 1.28 1.00 0.99 0.74 0.81

Mean ± std 1.29 ± 0.04 1.39 ± 0.10 0.99 ± 0.02 0.99 ± 0.03 0.74 ± 0.03 0.74 ± 0.04

The distribution of the average J and ADI values computed from the ANTs deformation field and strat-

ified by tissue type are shown in Figure IV.5, and the metric values for each individual case are reported

in Table IV.4. The average J value for adipose tissue was 0.96 ± 0.02 across all cases (mean ± standard

deviation). Comparatively, the average J value for glandular tissue was 1.01 ± 0.02, which was slightly yet

statistically significantly higher than adipose tissue (p < 0.001). This difference indicates that on average,

ANTs predicted a minor contraction of adipose tissue and a minor expansion of glandular tissue during the

deformation from arm-down to arm-up positions. The average ADI value for adipose tissue was 0.54 ± 0.09

across all cases, and the average ADI value for glandular tissue was 0.60 ± 0.15 (mean ± standard deviation).

There was no statistically significant difference in ADI value between adipose and glandular tissue (p= 0.23).

This finding suggests that ANTs registration predicts both tissue types to have anisotropic behavior.
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Figure IV.5: Distribution of average (A) Jacobian - J and (B) Anisotropic Deformation Index - ADI values
for adipose and glandular tissue calculated from the ANTs deformation field. Whiskers represent minimum
and maximum index values. Statistical significance is denoted with asterisks (J∗p < 0.001).

Table IV.4: Average Jacobian and anisotropic deformation index values for adipose, glandular, and total
tissue.

Case J ADI
Adipose Glandular Total Adipose Glandular Total

I 0.95 1.00 0.96 0.48 0.81 0.49
II.a 0.97 1.03 0.97 0.44 0.64 0.46
II.b 0.96 1.00 0.96 0.45 0.79 0.48
III.a 1.01 1.00 1.01 0.38 0.34 0.37
IV 0.95 1.00 0.96 0.60 0.73 0.61
V 0.93 0.99 0.96 0.64 0.58 0.61

III.b 0.93 1.00 0.96 0.53 0.57 0.55
VI.a 0.96 1.02 0.99 0.68 0.66 0.67
VI.b 0.94 1.05 0.98 0.57 0.58 0.57
VII.a 1.01 1.02 1.01 0.57 0.54 0.56
VII.b 0.93 1.03 0.97 0.57 0.40 0.51

IV.5.3 Finite Element Method Modeling Results

TRE performance for the three linear-elastic models with varying levels of complexity is shown in Table IV.5.

For Model A (homogeneous isotropic model), the average TRE across all 11 cases was 5.4 ± 1.5 mm. In

Model B (heterogeneous isotropic model), for 4 out of 11 cases, at least one R1 parameter value improved

TRE. In 7 out of 11 cases, adding heterogeneity in Model B for the instances where R1 ̸= 1 worsened TRE

compared to Model A where R1 = 1, and there was not a heterogeneous R1 parameter value that improved

TRE. For the 4 cases where TRE improved, the average improvement was very modest with the average

optimal TRE across all 11 cases for Model B being 5.3±1.5 mm. There was no significant difference in TRE

values between Model A and Model B (p > 0.01, p = 0.1250).
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For Model C (heterogeneous anisotropic model), there was at least one parameter sweep R1 and R2

combination that improved TRE compared to Model A for every case. The average of the minimum TRE

values across all 11 cases was 4.7 ± 1.4 mm for Model C, which corresponds to a 11.7 ± 8.7% average

improvement in TRE. There was a statistically significant difference in TRE values between Model A and

Model C when tested using a paired Wilcoxon signed-rank test (p < 0.01, p = 0.0010). There was also a

statistically significant difference in TRE values between Model B and Model C (p < 0.01, p = 0.0010).

These model performance results are displayed visually in Figure IV.6. To summarize, the x-axis of each

subfigure designates varying glandular-to-adipose elastic stiffness contrast R1, and each color-encoded line

represents variations in longitudinal-to-transverse stiffness contrast ratios among the anisotropic properties

R2 (Model C). The black line in each subfigure represents the results of the heterogeneous isotropic model

(Model B), with the dashed-black vertical line at log2(R1) = 0 representing the line of homogeneity (Model

A). As shown in Fig. 4, there is large variability in TRE behavior as a function of R1 and R2 for each individual

case. However, the addition of model anisotropy on average improves TRE performance compared to the

isotropic models. Due to the sparsity of the R1 and R2 parameter sweeps, we caution against interpreting the

R1 and R2 values as individualized stiffness characterizations for each individual case.

IV.6 Discussion

This work demonstrates accurate deformable image registration between supine MR breast imaging taken in

two distinct arm positions (arm-up and arm-down) meant to mimic surgical deformations. The results from

these image registrations were then used to extract inferences about breast tissue material properties using J

and ADI as mechanical indices. Both J and ADI value differences implied that nonrigid modeling methods

may benefit from incorporating material properties reflecting heterogeneity and anisotropy. To explore this

hypothesis, a quantitative evaluation of how incorporating heterogeneity and anisotropy affects modeling

accuracy for a finite element method biomechanical modeling approach was performed in biomechanical

modeling experiments.

One contribution of this work was utilizing the ANTs registration package for breast MR supine-to-supine

image registration and analysis. While ANTs registration has been used extensively on neuroimaging data, its

application for breast image registration is more limited. The specific method used here was the ANTs sym-

metric image normalization method with explicit B-spline regularization (a directly manipulated free-form

deformation algorithm) with cross correlation as the similarity metric. Using Gaussian smoothing regulariza-

tion instead of explicit B-spline regularization was explored, but the explicit B-spline regularization method

performed significantly better (p < 0.01) in terms of TRE. This behavior likely arose because B-spline regu-

larization can better capture the large deformations present in the breast. Using mutual information instead of
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Figure IV.6: Parameter sweep results. TRE performance results from R1 and R2 parameter sweeps for each
individual case labeled I - VII.b. The heterogeneous isotropic model, Model B, is shown as the black line.
The heterogeneous transverse-isotropic models, Model C, are shown with the three R2 parameter sweep
values as the blue, red, and yellow lines. The vertical dashed line represents the line of homogeneity, with
the circles intersecting the dashed line implemented as either homogeneous isotropic or homogeneous
transverse-isotropic models. “X” indicates minimum TREs for Models A–C included in Table IV.5.

cross correlation as the similarity metric was also explored, and there was no significant difference (p > 0.05)

in TRE results when using the different similarity metrics. However, cross correlation was selected as most

applicable similarity metric for this dataset because it can be assumed that both the fixed and moving images

have similar intensity profiles given that they are both MR images of the same subject. Other diffeomorphic

image registration packages and algorithms have been applied to breast images previously including Elastix,

Thirion’s demons algorithm, and the DRAMMS algorithm [192; 207]. While more analysis is needed to

evaluate ANTs registration performance compared to other available image registration packages, the ANTs

registration parameters reported here may be applicable for additional breast image registration applications

including longitudinal studies, inter-subject comparisons when studying tumor treatment responses, and per-

forming multimodal registrations [208; 209].

With respect to understanding breast biomechanics and its material properties, the average J value across
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all cases was 0.97±0.02 suggesting, as expected, nearly no volume change (J = 1) in breast tissue between

arm-down and arm-up positioning. However, examining the average J value within adipose and glandular tis-

sue types separately showed statistically significant differences. While very modest, the J value for glandular

tissue was slightly higher than the J value for adipose tissue. This suggests a variable response to different

arm positions between adipose and glandular tissue, with glandular tissue expanding slightly more than adi-

pose tissue. Additionally, the average ADI value across all cases was 0.53± 0.09 suggesting that the breast

undergoes anisotropic deformation (ADI > 0) between arm-down and arm-up positions.

Insights into the heterogeneous and anisotropic nature of breast tissue led to a quantitative evaluation of

how incorporating these factors affects modeling accuracy. In a set of biomechanical modeling experiments,

three different models (Models A-C) with varying levels of complexity were implemented. There was very

little improvement in TRE when using a heterogeneous isotropic model that accounted for glandular and

adipose tissue (Model B) compared to using the homogeneous isotropic model (Model A). However, when

using the heterogeneous transverse-isotropic model (Model C), there was statistically significant improve-

ment in TRE performance compared to both the homogeneous isotropic and the heterogeneous isotropic

models (Models A and B). This suggests that incorporating anisotropy through a transverse-isotropic mate-

rial model can improve registration accuracy for breast modeling. This finding is consistent with anatomical

depictions of the breast which report that the Cooper’s ligaments and surrounding fascia form the breast’s

shape and structure. These tissues have directional variability, and Cooper’s ligaments’ tensile properties are

estimated to be significantly stiffer than breast tissue [210]. Incorporating this ligament structure through a

transverse-isotropic model may allow for tissue to deform in an anisotropic manner and more closely model

the true breast tissue mechanics. Another interesting observation in Table IV.5 is that the glandular-to-adipose

stiffness ratio (R1) had little effect when considering tissue-type isotropy alone (Model B offered little im-

provement over Model A), but the ratio became more pronounced when anisotropy among the tissue-type

components was introduced in Model C. This is shown by the difference in average reported R1 values be-

tween Models B and C, which were 20 and 2−1.2, respectively. Additionally, the longitudinal-to-transverse

stiffness ratio (R2) on average was 25.1 in Model C indicating a significantly stiffer longitudinal property.

Another important observation is that in 9 of the 11 cases, homogeneous anisotropic tissue outperformed

homogeneous isotropic tissue. Lastly, it should be noted that in 10 of 11 cases, the best performing param-

eter configuration was heterogeneous and anisotropic. Three general findings can be summarized from this

biomechanical modeling study - (1) adding adipose and glandular tissue heterogeneity alone does not provide

sufficient degrees of freedom to capture improvements in our modeling approach, (2) transverse isotropy pro-

vides additional degrees of freedom that resulted in localization improvement for all subjects, and (3) results

indicate that the best solution would likely be one that incorporates heterogeneity and anisotropy.
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IV.7 Limitations

Several limitations should be noted when interpreting the results of both the image registration and biome-

chanical modeling studies. The study cohort was limited to 7 volunteers with ages ranging from 23 to 57

years, and all volunteers were Caucasian. Studies about racial differences in breast material properties have

had variable results, but factors including age, body mass index, and reproductive factors are all known to

impact breast density and stiffness [211]. Also, cancerous tumors are typically stiffer than adipose and glan-

dular tissue [141]. While this cohort is sufficient for preliminary exploration, investigation on a larger, more

diverse population of breast cancer patients is of interest.

Another limitation is that all conclusions drawn from the biomechanical indices assume that the ANTs

deformation field is correctly representing the true local deformation field that occurs between arm-down and

arm-up positioning. For the biomechanical modeling study, the boundary conditions were derived from the

deformation field calculated from the image-to-image registration method available in the ANTs repository.

It is important to note that the ANTs deformation field is subject to method-specific bias from the image-

to-image registration algorithm and not necessarily constrained by mechanics. The TRE results show that

the ANTs registration achieves a registration accuracy lower than 3 mm for 75% of targets in all volunteers.

However, the average maximum target registration error across all cases is 8.9 mm for ANTs registration,

with the error from an individual target from one case being as high as 20.8 mm. This implies that there

are some regions of the image volumes where ANTs registration is not accurate. This may be because of

poor image quality in those regions, MR imaging artifacts, or a lack of distinguishable image features. These

inaccuracies should be considered when using the biomechanical indices to make inferences about tissue

properties.

Regarding the biomechanical modeling study, the R1 and R2 parameters were constrained by the sparsity

of the parameter sweep. This parameter sweep was chosen to explore a range of potential stiffness values

and demonstrate the effect of additional modeling parameters. However, because this sweep was limited, the

stiffness ratios reported in Table IV.5 should not be interpreted as individualized stiffness characterizations for

each case. More refinement with either a more localized parameter search or with the inclusion of direct elas-

ticity measurement techniques would be needed for a more accurate measurement of breast tissue stiffness

for each case. An optimization approach that solves for the R1 and R2 values that minimize target error could

also be used to provide more nuanced insights into the breast tissue stiffness of each individual case. An-

other design choice was the longitudinal direction when incorporating anisotropy in the transverse-isotropic

model. The longitudinal direction in the transverse-isotropic model was assumed to be perpendicular to the

chest wall to simulate the direction of Cooper’s ligaments, but the true orientation of Cooper’s ligaments in
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the breast is likely significantly more complex. It should be noted that in results not reported here, other

approaches were pursued. For example, in one approach, principal directions were derived from the defor-

mation gradient associated with the displacement field provided by the nonrigid image-to-image registration

used to derive boundary conditions. While interesting, this approach did not outperform the one adopted. A

high-resolution breast imaging technique that would specifically illuminate the underlying substructure of the

breast associated with Cooper’s ligaments may be useful for improved modeling approaches. While imaging

methods designed to uncover anisotropy such as MR diffusion tensor imaging have been applied to breast

parenchyma, it is not clear if these modalities can extract this substructure given the spatial size of these

ligaments relative to the typical breast MR resolution and the sparsely distributed spatial configuration that

is characteristic of these ligaments [212]. Additionally, given that ligament structures behave differently in

tension versus compression, it is likely that local aspects of the stress configuration in the tissue would need

to be considered. This awaits further study.

Another limitation in the biomechanical modeling study was the choice to use linear-elastic models.

Using nonlinear hyper-elastic models may better capture soft-tissue dynamics, especially with larger defor-

mations, and improve accuracy. However, a disadvantage of using nonlinear models is that they must be

implemented as iterative methods that are not guaranteed to converge to a realistic solution especially when

considering the methodology employed for boundary condition estimation. Additionally, nonlinear patient-

specific material parameter characterizations are less accessible compared to linear models when considering

clinically available elastography measurement techniques. More investigation is needed to evaluate the de-

gree to which a more complex material model would improve modeling performance. Additionally, this study

incorporated heterogeneity by including two breast tissue types – adipose and glandular tissue – as these two

tissue types constitute most of the breast parenchyma. However, other biomechanical modeling efforts have

included separate material models for skin, muscle, and fascia. These too await further exploration.

IV.8 Conclusion

In this work, an image registration method from the ANTs repository was used to register supine breast

MR images. Subsurface TRE was 2.8±1.3 mm between registered supine MR images acquired in two dis-

tinct arm positions (arm-down and arm-up). Biomechanical indices calculated from the ANTs deformation

field suggest that adipose and glandular tissue vary in terms of volume change and that the breast undergoes

anisotropic deformation during the arm-down to arm-up motion. This investigation suggests that model-based

registration may improve with approaches that incorporate anisotropic material properties and heterogeneous

tissue types. Linear elastic FEM models with varying levels of complexity were implemented to test this

hypothesis. Overall, quantitative accuracy measurements of biomechanical modeling approaches meant to
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simulate breast deformations in the supine position showed that a heterogeneous anisotropic model was sig-

nificantly more accurate than either a homogeneous isotropic model or a heterogeneous isotropic model.

Incorporating anisotropy by using a transverse-isotropic model offered an 11.7% improvement in target error

on average while still being relatively simple in terms of implementation. This analysis may be useful for

future work toward developing biomechanical models that can accurately predict supine breast deformations,

with the potential for more accurate patient-specific material properties as elastography imaging methods

continue to improve. It also demonstrates the utility of image-to-image registration in uncovering soft-tissue

mechanical properties, which is an underemphasized application of image-to-image registration compared to

its use for longitudinal and inter-subject comparisons.
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CHAPTER V

Regularized Kelvinlet functions for breast deformation modeling

This next chapter details Aim 2 of this dissertation, which is to establish a breast deformation model that can

be used in the intraoperative environment. Regularized Kelvinlet functions are proposed as a novel method

for mechanics based breast deformation modeling. These functions are combined with a method for nonrigid

image-to-physical registration. Registration accuracy is evaluated using the same dataset of healthy volunteer

supine MR images from Aim 1 in Chapter IV. Tumor overlap metrics are evaluated using an example case

from one breast cancer patient.

V.1 Abstract

Image-guided surgery requires fast and accurate registration to align preoperative imaging and surgical

spaces. The breast undergoes large nonrigid deformations during surgery, compromising the use of imag-

ing data for intraoperative tumor localization. Rigid registration fails to account for nonrigid soft tissue

deformations, and biomechanical modeling approaches like finite element simulations can be cumbersome

in implementation and computation. In this work, regularized Kelvinlet functions are introduced for breast

registration. These functions are closed-form smoothed solutions to the partial differential equations for

linear elasticity. Analytical equations that represent nonrigid point-based translation (“grab”) and rotation

(“twist”) deformations embedded within an infinite elastic domain are derived and presented. Computing

a displacement field using this method does not require mesh discretization or large matrix assembly and

inversion conventionally associated with finite element or mesh-free methods. For registration, the optimal

superposition of regularized Kelvinlet functions that achieves alignment of the medical image to simulated

intraoperative geometric point data of the breast is computed. Registration performance is evaluated using a

dataset of supine MR breast imaging from healthy volunteers mimicking surgical deformations with 237 in-

dividual targets from 11 breasts. An analysis of the method’s sensitivity to the regularized Kelvinlet function

hyperparameters is included. To demonstrate application, registration is performed on a breast cancer patient

case with a segmented tumor, and performance is compared to other image-to-physical and image-to-image

registration methods. This method was shown to have comparable accuracy to a previously proposed image-

to-physical registration method with improved computation time, making regularized Kelvinlet functions an

attractive approach for image-to-physical registration problems.
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V.2 Contributions

This chapter is adapted from a conference proceedings paper, “Regularized Kelvinlet Functions to Model

Linear Elasticity for Image-to-Physical Registration of the Breast” presented at the Medical Image Computing

and Computer Assisted Intervention (MICCAI) 2023 conference. The summary and discussion sections are

supplemented with text from a journal article, “Comparing Regularized Kelvinlet Functions and the Finite

Element Method for Registration of Medical Images to Sparse Organ Data” released on arXiv and currently

in review at Medical Image Analysis. This work has been reproduced with permission from the publisher.

[213]: M. J. Ringel, J. S. Heiselman, W. L. Richey, I. M. Meszoely, and M. I. Miga, “Regularized Kelvin-

let Functions to Model Linear Elasticity for Image-to-Physical Registration of the Breast,” Medical Image

Computing and Computer Assisted Intervention – MICCAI 2023, pp. 344–353, 2023.

[214]: M. J. Ringel, J. S. Heiselman, W. L. Richey, I. M. Meszoely, W. R. Jarnagin, and M. I. Miga, “Com-

paring Regularized Kelvinlet Functions and the Finite Element Method for Registration of Medical Images

to Sparse Organ Data,” arXiv, Medical Image Analysis (In Review), 2023.

V.3 Introduction

Image-to-physical registration is a necessary process for computer assisted surgery to align preoperative

imaging to the intraoperative physical space of the patient to inform surgical decision making. Most intraop-

eratively utilized image-to-physical registrations are rigid transformations calculated using fiducial landmarks

[14]. However, with better computational resources and more advanced surgical field monitoring sensors,

nonrigid registration techniques have been proposed [215; 216]. This has made image-guided surgery more

tractable for soft tissue organ systems like the liver, prostate, and breast [217; 138; 218]. This work focuses

specifically on nonrigid breast registration, although these methods could be adapted for other soft tissue

organs. Current guidance technologies for breast conserving surgery localize a single tumor-implanted seed

without providing spatial information about the tumor boundary. As a result, resections can have several cen-

timeters of tissue beyond the cancer margin. Despite seed information and large resections, reoperation rates

are still high (∼17%), emphasizing the need for additional guidance technologies such as computer assisted

surgery systems with nonrigid registration [11].

Intraoperative data available for registration is often sparse and subject to data collection noise. Image-to-

physical registration methods that accurately model an elastic soft tissue environment while also complying

with intraoperative data constraints is an active field of research. Determining correspondences between

imaging space and geometric data is required for image-to-physical registration, but it is often an inexact and

ill-posed problem. Establishing point cloud correspondences using machine learning has been demonstrated
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on liver and prostate datasets [219; 220]. Deep learning image registration methods like VoxelMorph have

also been used for this purpose [221]. However, these methods require extensive training data and may strug-

gle with generalizability. Other non-learning image-to-physical registration strategies include [222] which

utilized a corotational linear-elastic finite element method (FEM) combined with an iterative closest point

algorithm. Similarly, the registration method introduced in [20] iteratively updated the image-to-physical

correspondence between surface point clouds while solving for an optimal deformation state.

In addition to a correspondence algorithm, a technique for modeling a deformation field is required. Both

[222] and [20] leverage FEM, which uses a 3D mesh to solve for unique deformation solutions. However,

large deformations can cause mesh distortions with the need for remeshing. Mesh free methods have been in-

troduced to circumvent this limitation. The element free Galerkin method is a mesh free method that requires

only nodal point data and uses a moving least-squares approximation to solve for a solution [223]. Other

mesh free methods are reviewed in [181]. Although these methods do not require a 3D mesh, solving for a

solution can be costly and boundary condition designation is often unintuitive. Having identified these same

shortcomings, [19] proposed regularized Kelvinlet functions for volumetric digital sculpting in computer an-

imation applications. This sculpting approach provided deformations consistent with linear elasticity without

large computational overhead.

In this work, we propose an image-to-physical registration method that uses regularized Kelvinlet func-

tions as a novel deformation basis for nonrigid registration. Regularized Kelvinlet functions are analytical

solutions to the equations for linear elasticity that can be superposed to compute a nonrigid deformation field

nearly instantaneously [19]. “Grab” and “twist” regularized Kelvinlet functions are utilized with a linearized

iterative reconstruction approach (adapted from [20]) that is well-suited for sparse data registration problems.

Sensitivity to regularized Kelvinlet function hyperparameters is explored on a supine MR breast imaging

dataset. Finally, our approach is validated on an example breast cancer case with a segmented tumor by

comparing performance to previously proposed registration methods.

V.4 Methods

In this section, closed-form solutions to linear elastic deformation responses in an infinite medium are derived

to obtain regularized Kelvinlet functions. Then, methods for constructing a superposed regularized Kelvinlet

function deformation basis for achieving registration within an iterative reconstructive framework are dis-

cussed. Equation notation is written such that constants are italicized, vectors are bolded, and matrices are

double-struck letters.

65



Figure V.1: Visualization of (A) “grab” and (B) “twist” regularized Kelvinlet functions on 2D breast geome-
try axial slices at various ε values. (+) denotes nipple location, (•) denotes x0 location.

V.4.1 Regularized Kelvinlet Functions

Linear elasticity in a homogeneous, isotropic media is governed by the Navier Cauchy equations in Equation

V.1, where E is Young’s modulus, ν is Poisson’s ratio, u(x) is the displacement vector, and F(x) is the

forcing function. Analytical displacement solutions to Equation V.1 that represent elastostatic states in an

infinite solid can be found for specific forcing functions F(x). Equation V.2 represents the forcing function

for a point source Fδ (x), where f is the point source forcing vector and x0 is the load location. The closed-

form displacement solution for Equation V.1 given the forcing function in Equation V.2 is classically known

as the Kelvin state in Equation V.3, rewritten as a function of r where r = x−x0 and r = ∥r∥. The coefficients

are a = (1+ν)
2πE , b = a

4(1−ν) , and I is the identity matrix.

We note that the deformation response is linear with respect to f, which implies that forcing functions

can be linearly superposed. However, practical use of Equation V.3 becomes numerically problematic in

discretized problems because the displacement and displacement gradient become indefinite as x approaches

x0.

E
2(1+ν)

∇
2u(x)+

E
2(1+ν)(1−2ν)

∇(∇ ·u(x))+F(x) = 0 (V.1)

Fδ (x) = fδ (x−x0) (V.2)

u(r) =
[

a−b
r

I+
b
r3 rrt

]
f =K(r)f (V.3)
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To address numerical singularity, regularization is incorporated with a new forcing function in Equation

V.4, where rε =
√

r2 + ε2 is the regularized distance, and ε is the regularization radial scale. Solving Equation

V.1 using Equation V.4 yields a formula for the first type of regularized Kelvinlet functions used in this

work in Equation V.5, which is the closed-form, analytical solution for linear elastic translational (“grab”)

deformations.

Fε(x) = f
[

15ε4

8π

1
r7

ε

]
(V.4)

uε,grab(r) =
[

a−b
rε

I+
b
r3

ε

rrt +
a
2

ε2

r3
ε

I
]

f =Kgrab(r)f (V.5)

The second type of regularized Kelvinlet functions represent “twist” deformations which are derived

by expanding the previous formulation to accommodate locally affine loads instead of displacement point

sources. This is accomplished by associating each component of the forcing function in Equation V.4 with

the directional derivative of each basis gi of the affine transformation, leading to the regularized forcing

matrix in Equation V.6. An affine loading configuration consisting of pure rotational (“twist”) deformation

constrains Fi j
ε (x) to a skew-symmetric matrix that simplifies the forcing function to a cross product about a

twisting force vector f in Equation V.7. The pure twist displacement field response uε,twist(r) to the forcing

matrix in Equation V.7 can be represented as the second type of regularized Kelvinlet functions used in this

work in Equation V.8.

Superpositions of Equation V.5 and Equation V.8 are used in a registration workflow to model linear

elastic deformations in the breast. These deformations are visualized on breast geometry embedded in an

infinite medium with varying ε values in Figure V.1.

Fi j
ε (x) = gi ·∇f j

[
15ε4

8π

1
r7

ε

]
(V.6)

[
Fi j

ε

]
×
(x) =−r× f

[
15ε4

8π

1
r7

ε

]
(V.7)

uε,twist(r) = a
(

1
r3

ε

+
3ε2

2r5
ε

)
r× f = [Ktwist(r)]× f (V.8)

V.4.2 Registration Task

For registration, x0 control point positions for k number of total regularized Kelvinlets “grab” and “twist”

functions are distributed in a predetermined configuration. Then, the fgrab and ftwist vectors are optimized to
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solve for a displacement field that minimizes distance error between geometric data inputs.

For a predetermined configuration of regularized Kelvinlet “grab” and “twist” functions centered at dif-

ferent x0 control point locations, an elastically deformed state can be represented as the summation of all reg-

ularized Kelvinlet displacement fields where ũ(x) is the superposed displacement vector and k = kgrab+ktwist

in Equation V.9. Equation V.9 can be rewritten in matrix form shown in Equation V.10, where ααα is a concate-

nated vector of length 3k such that ααα =
[
f1
grab, f

2
grab, . . . , f

k
twist

]
.

ũ(x) =
kgrab

∑
i=1

ui
ε,grab(x)+

ktwist

∑
i=1

ui
ε,twist(x) (V.9)

ũ =K(x)ααα (V.10)

This formulation decouples the forcing magnitudes from the Kelvinlet response matrix K(x), which is

composed of column uε,grab(x) and uε,twist(x) vectors calculated with unit forcing vectors for each Kgrab(x)

and Ktwist(x) function. This allows for linear scaling of K(x) using ααα . By setting x0 locations, εgrab, and

εtwist as hyperparameters, deformation states can be represented by various ααα vectors with the registration

task being to solve for the optimal ααα vector.

An objective function is formulated to minimize misalignment between the moving space xmoving and

fixed space xfixed through geometric data constraints. For the breast imaging datasets in this work, simulated

intraoperative data features that realistically could be collected in a surgical environment are used, and these

features are shown in Figure V.2. The first data feature is MR-visible skin fiducial points placed on the breast

surface (Figure V.2, red). These fiducials have known point correspondence. The other two data features are

an intra-fiducial point cloud of the skin surface (Figure V.2, light blue) and sparse contour samples of the chest

wall surface (Figure V.2, yellow). These data features are surfaces that do not have known correspondence.

These data feature designations are consistent with implementations in previous work [139; 224].

For a given deformation state, each data feature contributes to the total error measure. For the point data,

the error ei
point for each point i is simply the distance magnitude between corresponding points in xfixed and

xmoving space. For the surface data, the error ei
sur f ace is calculated as the distance from every point i in the

xfixed point cloud surface to the closest point in the xmoving surface, projected onto the surface unit normal

which allows for sliding contact between surfaces.

The optimization using the objective function in Equation V.11 includes two additions to improve the

solution. The first is rigid parameters, translation τττ and rotation θθθ , that are optimized simultaneously with the

vector ααα . βββ represents the deformation state with βββ = [ααα,τττ,θθθ ], and this compensates for rigid deformation

between xfixed and xmoving. The second is a strain energy regularization term eSE which penalizes deformations
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Figure V.2: Sparse data features on breast geometry in the xfixed space.

with large strain energy. eSE is the average strain energy density within the breast geometry, and it is computed

for each βββ at every iteration. It is scaled by weight wSE . The optimal state βββ is iteratively solved using

Levenberg-Marquardt optimization terminating at |∆Ω(βββ )|< 10−12.

Ω(βββ ) =
1

npoint

npoint

∑
i=1

(ei
point)

2 +
1

nsur f ace

nsur f ace

∑
i=1

(ei
sur f ace)

2 +wSE(eSE)
2 (V.11)

V.5 Experiments and Results

In this section, two experiments are conducted. The first explores sensitivity to regularized Kelvinlet function

hyperparameters kgrab,ktwist ,εgrab, and εtwist and establishes optimal hyperparameters in a training dataset of

11 breast deformations. The second validates the registration method in a breast cancer patient and compares

registration accuracy and computation time to previously proposed methods.

V.5.1 Hyperparameters Sensitivity Analysis

This dataset consists of supine breast MR images simulating surgical deformations of 11 breasts from 7

healthy volunteers. Volunteers (ages 23-57) were enrolled in a study approved by the Institutional Review

Board at Vanderbilt University. Prior to imaging, 23-26 skin fiducials were distributed on the breast surface.

MR images (0.391 x 0.391 x 1 mm3 or 0.357 x 0.357 x 1 mm3) were acquired with the volunteers’ arms

placed by their sides. This image was used as the xmoving space. The volunteers were then instructed to

raise one arm above their heads, causing deformation of the ipsilateral breast. A second MR image in the

deformed state was acquired to create simulated intraoperative physical data and to use for validation. This

second image was used as the xfixed space.

The breast in xmoving was segmented at the boundary between the chest wall and breast parenchyma to

create a 3D model. The posterior surface was labeled to inform x0 control point locations. The skin fiducials

and intra-fiducial surface point clouds were labeled in both images as data features. Sparse tracked ultrasound

data collection patterns were projected on the posterior surface for use as the third data feature. Subsurface

anatomical targets were labeled in both images and used to compute target error after registration.
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Three configurations were explored to test different distributions of grab and twist regularized Kelvinlet

functions - grab functions only, twist functions only, and a combination of grab and twist functions. Grab

function control points were distributed evenly on the posterior surface of the breast to approximate forces

from the chest wall. Twist function control points were distributed evenly within the breast to approximate

internal body forces. Three hyperparameter sweeps were used:

• Configuration 1: kgrab = {10,40,70,100},εgrab = {0.005,0.05,0.5}

• Configuration 2: ktwist = {10,40,70,100},εtwist = {0.05,0.1,0.2}

• Configuration 3: kgrab = 40,εgrab = 0.05,ktwist = {1,5,10,20},εtwist = {0.05,0.1,0.2}

For all registrations, mechanical breast properties were set at ν = 0.45,E = 2100 Pa, and wSE = 10−9 Pa−2

[139; 225]. Accuracy was evaluated by measuring target error (distance magnitude between targets in xfixed

and registered xmoving spaces) for all targets in 11 breast imaging sets totaling 237 targets per registration.

Target error results from hyperparameter sweep registrations are shown in Figure V.3. The registration

with the lowest root mean squared error was from Configuration 3 - kgrab = 40,εgrab = 0.05,ktwist = 1,εtwist =

0.1. These hyperparameters were used on a different dataset for validating and comparing the registration

method in Section V.5.2.

Figure V.3: Target error results from regularized Kelvinlet functions hyperparameter sweeps. Outliers are
noted as (x) and are 1.5· IQR.

V.5.2 Registration Methods Comparison

This dataset consists of supine breast MR images simulating surgical deformations from one breast can-

cer patient. A 71-year-old patient with invasive mammary carcinoma in the left breast was enrolled in a

study approved by the Institutional Review Board at Vanderbilt University. Skin fiducial placement, image

acquisition, arm placement, and preprocessing steps followed the same protocol detailed in Section V.5.1.

The tumor was segmented in both images by a subject matter expert, and a 3D tumor model was created to

evaluate tumor overlap metrics after registration.
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Regularized Kelvinlet function registration was compared to three other registration methods - rigid reg-

istration, an FEM-based image-to-physical registration method, and an image-to-image registration method.

A point-based rigid registration using the skin fiducials provided a baseline comparator for accuracy without

deformable correction. The FEM-based image-to-physical registration method, detailed in [20] and imple-

mented in breast in [139], utilizes the same optimization scheme as this method but with an FEM-generated

basis. k = 40 control points were used for the FEM-based registration. The image-to-image registration

method was a symmetric diffeomorphic method with explicit B-spline regularization publicly available in

the Advanced Normalization Toolkit (ANTs) repository [201; 190]. Image-to-image registration would not

be possible for intraoperative registration in most surgical settings. However, it was included to demonstrate

accuracy when volumetric imaging data is available, as opposed to sparse geometric point data as in the sur-

gical application case. The rigid and image-to-physical registrations were performed on a single thread of a

3.6 GHz AMD Ryzen 7 3700X CPU. Image-to-image registration was multithreaded on 2.3 GHz Intel Xeon

(E5-4610 v2) CPUs.

Registration results for the 4 methods are shown in Table V.1. The regularized Kelvinlet method accuracy

was comparable (if not slightly improved) to the FEM-based method for this example case. Runtime for the

regularized Kelvinlet method was improved compared to the FEM-based method. As expected, registration

without deformable correction was poor, and image-to-image registration had the best accuracy. Registered

tumor geometry results are shown in Figure V.4.

Table V.1: Registration performance for 4 methods. HD - Hausdorff distance.

Rigid Image-to-Physical Image-to-Image
FEM R. Kelvinlets

Point Fiducial Error (mm) 7.4 ± 2.0 0.7 ± 0.5 1.4 ± 0.6 2.0 ± 1.7
Metrics Target Error (mm) 6.1 ± 1.4 3.3 ± 1.1 3.0 ± 1.1 2.3 ± 1.5
Tumor Dice Coefficient 2.3% 32.7% 49.5% 85.8%
Overlap Centroid Distance (mm) 7.3 4.4 3.5 1.3
Metrics Modified HD (mm) 4.1 2.2 1.7 0.6
Runtime (seconds) <1 188 14 15,942

V.6 Discussion

The results show that regularized Kelvinlets can be used for reconstructing deformation states on an in vivo

breast imaging dataset. Previous applications of regularized Kelvinlets have been confined to creating realistic

in silico deformations for 2D or 3D animation. This work evaluates regularized Kelvinlets for modeling elas-

tic deformations in the physical world. Regularized Kelvinlet deformations are computed in an infinite elastic

domain that is not representative of deformations for physical elastic objects with finite material bounds. Al-

though this is a constraint, the results here demonstrate that regularized Kelvinlets can offer computational
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Figure V.4: Tumor overlap after registration. Black – xfixed tumor used for validation. Blue – rigidly reg-
istered xmoving tumor. Green – FEM-based registered xmoving tumor. Pink – regularized Kelvinlet function
registered xmoving tumor. Orange – image-to-image registered xmoving tumor.

advantages without significant degradation in accuracy specifically for sparse data organ registration prob-

lems.

One implementation consideration is the selection of the regularization radial scale ε and number of

control points k parameters for a registration application where validation data is not available. Registration

accuracy demonstrated little degradation (< 1 mm) within a range of ε and k values as shown in Figure

V.3, showing that accuracy performance is robust for varying parameter values. Because the k parameter is

directly related to precomputation and reconstruction computation time, k = 40 is likely an adequate choice

for similar registration problems to balance between accuracy and computation time. However, the kgrab and

ktwist parameters should be re-evaluated depending on the availability of sparse data inputs. With more sparse

data availability, the registration problem would be more constrained. Increasing k in this scenario would

allow more flexibility in resolving a larger set of possible registrations without causing an ill-conditioned

inverse problem with too many degrees of freedom. Selecting an optimal k should be determined by the

amount of sparse data available, and it is expected that performance suffers at very small and very large

k values relative to the amount of available sparse data. For the regularization radial scale parameter ε ,

εgrab = 0.05 and εtwist = 0.1 were selected as the optimal parameters. Similar to the k parameter, ε values

similar to the ones used in this work are likely sufficient for other registration applications, assuming a similar

geometric scale to breast. However, the ε parameter controls the smoothness of the superposed regularized

point loads and the degree of subsurface field penetration. These factors should be considered on a case-by-

case basis when applying this method to new applications.
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V.7 Limitations

Several limitations should be noted. Regularized Kelvinlet functions describe solutions that assume a physical

embedding within an infinite elastic domain, which does not account for organ-specific geometry. This

approach may not be well suited for problems where geometry has significant influence. This method is

derived from a linear elastic model, and nonlinear models are known to better describe soft tissue mechanics.

Additionally, this method assumes homogeneity and isotropy – it does not account for different tissue types

and directional structures in the breast. With regards to clinical feasibility, supine MR imaging with skin

fiducials is not the standard-of-care. However, using supine MR imaging for surgery is becoming increasingly

investigated, and previous work demonstrated the potential of ink-based skin fiducial markings on the breast

[5; 226]. Despite these limitations, this method’s accuracy and speed may be appropriate for surgical guidance

applications.

V.8 Conclusion

In this work, we demonstrated the use of regularized Kelvinlet functions for image-to-physical registration

of the breast. We achieved near real-time registration with comparable accuracy to previously proposed

methods. We believe that this approach is generalizable to other soft-tissue organ systems and is well-suited

for improving navigation during image-guided surgeries.
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CHAPTER VI

Image guidance system with integrated breast deformation correction

This chapter details the final Aim 3 of this dissertation, which is to present a fully integrated BCS-IGS system

for prospective nonrigid registration. First, the system hardware and software components are discussed. The

system includes a portable cart with optical tracking and stereo camera sensors for surgical scene monitoring.

The mechanics based breast deformation model presented in Aim 2 is integrated into the system for near real-

time nonrigid registration. Finally, the BCS-IGS system is demonstrated during breast phantom experiments

and on one healthy volunteer.

VI.1 Abstract

Breast conserving surgery (BCS) is a common treatment option for women with early stage breast cancer,

but these procedures have high and variable reoperation rates due to positive margins. Current tumor local-

ization technologies do not provide real-time spatial information about the tumor boundary, emphasizing the

need for additional navigation tools. This work proposes an image-guidance system for BCS that combines

stereo camera soft tissue monitoring with nonrigid registration to account for misalignments from soft-tissue

deformations. The guidance system integrates an optical tracking sensor and a 3D stereo camera sensor for

surgical field monitoring. A custom user interface and display, developed using 3D Slicer, facilitates data col-

lection and visualization of patient-specific imaging data and models. Near real-time deformable correction

is driven by tissue displacement measurements and compensates for breast shape change. The feasibility and

effectiveness of the guidance system are demonstrated through breast phantom deformation experiments that

simulated tissue deformations. In 4 deformation states, 3D stereo camera sensor data is collected, and imag-

ing data is deformed in near real-time. Evaluation results show a reduction in fiducial and surface registration

errors after deformable correction compared to conventional rigid registration approaches. The guidance sys-

tem is then demonstrated on a healthy volunteer, where data collection and nonrigid correction are performed

in a mock intraoperative setting. Overall, the proposed system achieved data collection and navigation capa-

bilities compatible with current BCS workflows. However, quantitatively measuring navigation accuracy and

clinical value is not addressed here and should be the focus of future work.

VI.2 Contributions

This chapter is adapted from a conference proceedings paper, “Image Guidance System for Breast Conserv-

ing Surgery with Integrated Stereo Camera Monitoring and Deformable Correction” presented at the SPIE
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Medical Imaging 2024 conference. This work is accepted and pending publication.

[227]: M. J. Ringel, W. L. Richey, J. S. Heiselman, A. Stabile, I. M. Meszoely, M. I. Miga, “Image Guidance

System for Breast Conserving Surgery with Integrated Stereo Camera Monitoring and Deformable Correc-

tion” in Proceedings of SPIE Medical Imaging, Accepted (pending publication), 2024.

VI.3 Introduction

Breast conserving surgery (BCS) is a commonly used treatment option for early-stage breast cancer that aims

to completely resect the tumor with negative margins while preserving healthy breast tissue and maintaining

cosmesis. Positive margin rates for BCS range widely among surgeons and centers, impacting patient out-

comes and necessitating additional treatments like reoperation procedures. Similarly, reoperation rates also

vary by provider and hospital, but recent studies suggest aggregate reoperation rates range between 17-22%

in the United States due to positive or close margins [11; 12]. This means that approximately 1 in every 5

women undergoing BCS will have to return to the operating room for a second surgery, causing patient stress,

delays in postoperative adjuvant therapies, worse cosmetic outcomes, and additional healthcare costs.

Current tumor localization technologies including wire-guided localization and seed-based methods lack

the ability to provide updated spatial information about the tumor boundary during surgery. In recent years,

efforts to overcome this limitation by integrating image guidance into soft-tissue surgeries such as BCS have

been underway. Registering preoperative imaging to the surgical scene can offer navigational assistance when

planning tumor resections and localizing key nearby anatomical structures. However, translating registration

approaches to BCS is challenging due to intraprocedural soft-tissue deformations occurring between surgical

and imaging positions. The typical diagnostic imaging modality is mammography where the breast is com-

pressed between two plates. In some circumstances, magnetic resonance (MR) imaging is performed where

the patient lies prone with the breast pendant. In both of these positions, the breast positioning is consider-

ably different from the surgical positioning where the patient lies supine with the ipsilateral arm extended and

positioned away from the body. To address this, acquiring MR imaging with the patient in the supine posi-

tion has been proposed, as this configuration is similar to the surgical presentation [95]. Breast MR imaging

has been shown to have high sensitivity and accuracy when measuring tumor extent, which is required for

the image guidance application [228]. However, even when imaging is acquired in the supine position, the

breast can still undergo deformations as large as 70 mm between imaging and surgical positioning due to arm

motion, emphasizing the need for an image guidance system (IGS) with deformable correction [18]. While

re-imaging the patient continuously could be an option, the encumbrance and cost would prohibit its real-time

use. Alternatively, monitoring the surgical field to capture breast shape changes and then using that data to
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inform deformable registration algorithms could be a workflow friendly means to establish image guidance

for BCS. Previous work focused on a technique for achieving this by measuring the breast geometry with

stereo camera monitoring and ink-based surface fiducials [226]. Inked fiducial points and alphabetic letters

were written on the breast surface and matched with labeled points in an MR image. These inked fiducials

were tracked throughout a range of breast deformations, meaning that the 3D breast surface geometry could

be measured noninvasively to inform nonrigid registration for BCS image guidance.

Surgical field monitoring is vital for a BCS-IGS, but just as important is an accurate algorithm for de-

formation correction utilizing sparse data sources. To address this problem, retrospective studies have been

performed to evaluate the accuracy of nonrigid registration methods for breast image-to-physical registration.

One of these algorithms is the linearized iterative boundary reconstruction (LIBR) method, first proposed

for liver image-to-physical registration and adapted for breast registration [20; 139]. This method employs

finite element modeling (FEM) to compute a set of predetermined organ deformations with different bound-

ary conditions. For registration, both conventional rigid registration parameters and the linear combination

of these superposed deformation states are iteratively adjusted to minimize the error between sparse breast

measurements and their imaged counterparts. Recently, an adaptation to the LIBR algorithm that utilizes

regularized Kelvinlet functions for a deformation basis instead of FEM has been explored [19; 213]. Regu-

larized Kelvinlet functions provide closed-form, analytical solutions that model linear elasticity in an infinite

medium. Using regularized Kelvinlet functions with the LIBR framework for registration in a BCS-IGS pro-

vides a several orders of magnitude reduction in precomputation time, allowing for near real-time registration

that compensates for soft tissue deformations in the breast.

In this work, both BCS-IGS components – live stereo camera surgical field sensing and sparse data non-

rigid image-to-physical registration – have been integrated to provide active deformation correction. The

integrated guidance system features calibrated, co-registered optical tracking and stereo camera monitoring

sensors for surgical scene surveillance. A custom user interface and display built in 3D Slicer enables data

collection and visualization of patient specific imaging data and models. Finally, data from the surveillance

system instantiates a system integrated, nonrigid alignment approach to compensate for soft tissue deforma-

tions. While both the surgical field monitoring and nonrigid registration have been demonstrated previously

as separate algorithmic developments, this work is the first to showcase full system integration with collected

stereo camera data being directly used as input data for near real-time deformation correction performed

during the system demonstration. A series of breast phantom deformation experiments are performed to

demonstrate guidance system capabilities and feasibility of intraoperative use. Then, the system is used on a

healthy volunteer in a mock intraoperative setting to evaluate its potential as a surgical navigation tool. The

purpose of this work is to assess if bedside nonrigid registration is feasible for realistic clinical use. The ques-

76



tion of whether the nonrigid registration reliably achieves adequate accuracy for true procedural guidance is

not directly quantified in this work and should be the focus of future study.

VI.4 Methods

VI.4.1 Guidance System Hardware

Figure VI.1: The BCS-IGS with labeled components.

The BCS-IGS is shown in Figure VI.1. It features a display monitor, computer, extendable arm, and moni-

toring sensors mounted on a portable cart that can be positioned for bedside data collection. The extendable

arm can be raised approximately 0.75-1.5 m above operating table height, and the arm’s multiple degrees of

freedom allow for manual adjustment to the best field of view of the surgical scene. The PC computer and

display monitor are used to run guidance system module software. The monitoring sensors include both an

optical tracking sensor (Polaris Vicra Optical Tracker from Northern Digital Inc., Waterloo, ON, Canada)

and a 3D stereo camera sensor (ZED 2i Stereo Camera from Stereolabs Inc., San Francisco, CA, USA) for

surgical field monitoring. The optical tracking sensor has a 20 Hz frame rate for tracking up to 6 unique tools

with attached reflective passive marker spheres in the field. The 3D stereo camera sensor acquires 3D video at

1080p resolution and a 30 Hz frame rate. Its depth sensing capabilities include a neural depth mode meant to

improve depth reconstruction accuracy and completeness. The two sensors offer complementary information

for the guidance system. The optical tracking sensor is conventionally used in image guidance systems and

77



offers live tracking of surgical tools for interaction with the surgical scene. The 3D stereo camera sensor

offers noninvasive monitoring of tissue deformation which is useful for BCS where the breast is exposed.

Both sensors are rigidly coupled with a custom-made bracket for overlapping field-of-views. A BK5000 ul-

trasound machine (BK Medical UK, Peabody, MA, USA) and optically tracked 18L5 linear transducer probe

can be used with the guidance system to acquire tracked ultrasound imaging.

Both sensors (the 3D stereo camera sensor and the optical tracking sensor) collect spatial data relative to

their individual coordinate systems. Prior to data collection, a coordinate space transformation was calculated

using a calibration object to co-register the sensor coordinate systems. The calibration object was a 7x8

checkerboard with attached optical tracking passive marker spheres for simultaneous sensor detection [187].

The checkerboard square intersections were tracked in the optical tracking sensor using the attached tracking

spheres, and they were tracked in the 3D stereo camera sensor using OpenCV. A separate guidance system

module was developed to facilitate this calibration process (see Section III.6.1). Images of the checkerboard

placed in 10 locations covering the field-of-view were captured. Conventional least-squares singular value

decomposition point-based registration was performed to calculate the rigid transformation between sensor

spaces, with a residual fiducial registration root mean squared error value of 1.77 mm [188].

VI.4.2 Guidance System Module

Figure VI.2: The custom guidance module user interface built in 3D Slicer, which includes a control panel
(left) and a 4-panel display (right).

A custom user interface and guidance display shown in Figure VI.2 facilitates data collection and navigation

for the BCS-IGS. The custom module was built in 3D Slicer [229]. It utilizes functionality developed in
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SlicerIGT [230], OpenIGTLink [231], and the PLUS toolkit [232] to stream live data from both sensors into

3D Slicer. It includes user interface panels for (1) loading previously acquired imaging data and 3D models

derived from imaging data including the breast model and tumor model, (2) collecting optically tracked stylus

point data, (3) collecting stereo camera skin surface and point data, (4) collecting ultrasound data from the

optically tracked transducer for ultrasound plane localization, and (5) performing deformation correction

between imaging data and sensor data. These panels are displayed on the left pane in Figure VI.2. The

guidance screen displays a 4-panel display containing the 3D scene and cross-sectional views of imaging

data, which are shown for a silicone breast phantom on the right pane in Figure VI.2. Registered optically

tracked tools, 3D stereo camera data, and imaging data enable real-time navigation interaction with the breast

anatomy using the guidance system display. This is shown in Figure VI.3, where the 3D scene view showing

the breast and tumor models with an optically tracked stylus (Figure VI.3A) is synced to the stereo camera

data stream (Figure VI.3B). The distance between the stylus tip and tumor boundary is updated and displayed

as the user moves the stylus. The tracked ultrasound capabilities are shown in Figure VI.4. During active

imaging, the guidance module displays the B-mode ultrasound image and the imaging plane’s 3D orientation

relative to the breast and tumor models. The tracked ultrasound is calibrated using the N-wire ultrasound

calibration technique [189]. The module facilitates data collection and guidance visualizations in test and

surgical settings.

Figure VI.3: Guidance system navigation with an optically tracked stylus showing (A) the 3D scene view
and (B) the left stereo camera image view. The 3D scene view includes the fiducials measured from imag-
ing data (yellow letters), the fiducials measured from stereo camera data (blue letters), stereo camera point-
cloud (blue), mock tumor (dark gray), breast phantom model (light gray), and stylus (black). Distance from
stylus tip to mock tumor is displayed in green.
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Figure VI.4: Guidance system tracked ultrasound capabilities with (A) active breast ultrasound imaging, (B)
a collected B-mode image, and (C) the 3D scene view with the tracked ultrasound imaging plane.

VI.4.3 Deformable Correction

The guidance system requires a preoperatively acquired imaging volume of the breast anatomy to use in

the 4-panel display. The breast and tumor geometries are segmented from this imaging volume to generate

the 3D anatomical models used in the 3D scene view. However, nonrigid deformations occur between the

imaging and surgical positions, meaning that aligning the imaging and 3D models to the physical scene

with rigid registration alone is not sufficient for accurate navigation. Deformation correction is employed in

the guidance module to augment the imaging data, the 3D breast model, and the 3D tumor model to better

match the stereo camera sensor data collected in shape-change states. By doing so, the imaging data used for

guidance can account for shape differences between the imaging position and the surgical positions.

To create a set of possible breast deformations to use for registration, regularized Kelvinlet functions were

employed as deformation basis functions. These functions, previously used for digital sculpting, provide a

closed-form solution to a linear elastic tissue response to a regularized point force in an infinite medium [19].

They can also be linearly scaled and superposed to create many different deformed geometries. k = 45 reg-

ularized Kelvinlet functions were centered and evenly distributed on the posterior chest wall surface of the

3D breast geometry using k-means clustering. Each regularized Kelvinlet function was parameterized with

mechanical tissue material properties (Young’s modulus E = 2100 Pa, Poisson’s ratio ν = 0.45) and a radial

relaxation parameter ε = 0.05. More details about this method and its implementation for breast registration

are available in previous work [213]. To calculate a displacement field that registers the imaging data to

physical sparse-data inputs, the linearized iterative boundary reconstruction (LIBR) method was employed

[20; 139]. This method computes the optimal linear scaling vector for each of the regularized Kelvinlet forc-

ing functions that minimizes alignment error using Levenberg-Marquardt optimization. For this registration,

the same objective function Ω(βββ ) introduced in Chapter V is used. It is reprinted in Equation VI.1 below:
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This objective function relies on acquiring specific data from the 3D stereo camera sensor, namely breast

surface fiducial points that correspond to fiducial points labeled in the preoperatively acquired imaging vol-

ume and an intra-fiducial breast surface point cloud that represents the breast surface geometry. In Equation

VI.1, βββ is the parameter vector that represents the deformation field, ei
point is the distance error for each sur-

face fiducial i, npoint is the number of surface fiducial points, ei
sur f ace is the normal projected distance error

for each surface point-cloud point i, and nsur f ace is the number of surface point-cloud points. To penalize

high strain energy deformations, the objective function also includes eSE which is the strain energy of the

deformation, and wSE is a strain energy weighting factor which is set to 10−9 Pa−2.

In some of the registrations, an additional term from tracked ultrasound data is included in the esur f ace

error term. Tracked ultrasound imaging is collected and the chest wall is segmented from B-mode imaging.

This sparse chest wall sampling is used to constrain the posterior region of the breast imaging volume by

minimizing the normal projected distance error from the segmented ultrasound data to the chest wall surface

on the breast model.

Registration is initialized with a point-based rigid registration between the imaging data fiducial points

and the stereo camera fiducial points [188]. The 3D stereo camera sensor is acquired and saved with a button-

click in the guidance module. Then, the deformable correction algorithm is initiated with another button-

click in the guidance module, using the imaging data and stereo camera data as inputs. Once registration is

complete, the deformed image volume and 3D geometry models are automatically loaded into the guidance

module. The runtime for deformable correction is variable, depending on the time to convergence for each

specific input data configuration. In the previous work where this algorithm was presented, registration

took 14 seconds computed on a single thread of a 3.6 GHz AMD Ryzen 7 3700X CPU [213]. Similar

computation times were observed when running the algorithm in the guidance system. To evaluate accuracy

after registration, fiducial error was measured as the distance between the deformed imaging data fiducials

and the stereo camera fiducials. Projected surface error was also measured as the normal-projected distance

between the imaging data model surface and the stereo camera intra-fiducial surface point cloud. It should

be noted that although these measurements describe surface alignment, they are not an adequate surrogate

for measurements that quantify target accuracy. Investigation into subsurface target accuracy was explored in

previous work with simulated surgical scene data [139; 213].
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VI.4.4 Phantom Experiment

To demonstrate guidance system feasibility for surgical scenarios, a series of experimental tests were per-

formed using a breast deformation phantom. The breast phantom was constructed of 75% Ecoflex 00-10

platinum cure silicone rubber, 12.5% silicone rubber thinning fluid, and 12.5% tactile mutator (Smooth-On

Inc., Macungie, PA, USA). The phantom shape was modeled after the Breast Probe Model for breast ultra-

sound training from Simulab (Simulab Corporation, Seattle, WA, USA). 26 red-ink fiducial markers were

placed on the phantom surface to mimic skin fiducials that have been proposed for skin surface tracking in

previous work [226]. These red-ink fiducials were placed on top of red glass beads so that they were visible

in stereo camera imaging and CT imaging. CT imaging data of the phantom with a voxel size of 0.65 x 0.65

x 0.67 mm3 was obtained to create the imaging data and 3D mesh model to use in the guidance system. The

breast geometry was segmented from the CT imaging volume using ITK-SNAP, and the fiducial points were

manually labeled. A 3D mesh generation software was used to create a mesh model from the image segmen-

tation [203]. A 3D mock breast tumor model was placed in the breast phantom model in the guidance system

for demonstration purposes. All of these experimental setup and data preprocessing steps were performed

prior to mock intraoperative data collection.

For data collection, the phantom was placed in a rig that applies deformations in four sections where

the breast tissue would intersect with surrounding tissues in vivo. In the undeformed and each of the four

deformation states, stereo camera data was collected using the guidance system. Color channel-based im-

age processing methods outlined in previous work were utilized for automatic fiducial point detection [226].

Fiducial points were manually labeled with an alphabet letter, and falsely detected points were corrected with

a GUI in the guidance system if necessary. Using the ZED SDK for Python (PyZED), 3D stereo camera data

consisting of the 3D fiducial point coordinates and the intra-fiducial surface point cloud were displayed in

the guidance system and used for deformable correction. After each stereo camera data capture, deformable

correction was initiated. Once completed, the deformed images and 3D models were displayed in the guid-

ance system and fiducial and surface errors were measured. Tracked ultrasound was not collected in this

experiment.

VI.4.5 Volunteer Demonstration

One healthy female volunteer was enrolled in a study approved by the Institutional Review Board at Vander-

bilt University to test the BCS-IGS in a mock intraoperative setting. Prior to the mock intraoperative data

collection session, supine MR breast imaging was collected. 26 MR visible fiducials were placed on the left

breast skin surface. The center of each fiducial was marked with a semi-permanent red ink marker pen. The

volunteer was positioned in a supine position with the ipsilateral arm down by her side, and a 32-channel torso
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coil was placed over the breast. A Phillips 3.0 Tesla closed bore scanner was used to acquire a fat suppression

mDixon scan of the left breast with a voxel size of 0.4375 x 0.4375 x 1 mm3. After image acquisition, the

breast geometry was segmented at the chest wall boundary using ITK-SNAP, and a 3D model was created

with mesh generation software like in the phantom experiment. A mock 3D tumor model was placed in the

upper outer quadrant for demonstration purposes. Image acquisition and preprocessing were performed two

days before the mock intraoperative session.

For data collection and guidance system demonstration, the volunteer was positioned in the supine po-

sition with the ipsilateral arm extended in a T-shape to mimic surgical positioning. The guidance system

extendable arm was positioned over the left breast. 3D stereo camera data was acquired with the same fidu-

cial point detection methods used in the phantom experiment, and deformable correction was performed.

The optically tracked stylus was used to swab the breast surface and measure distance to the mock tumor

after registration. The stereo camera and guidance system monitor streams were recorded during navigation,

and fiducial and surface errors were measured. Six tracked ultrasound images were collected and the chest

wall was manually segmented in these images. Deformable correction was performed both with and without

tracked ultrasound data for comparison.

VI.5 Results

VI.5.1 Phantom Experiment Results

Data collection and deformable correction using the guidance system for the undeformed and 4 deformation

states are displayed in Figure VI.5. The left camera stereo images in Figure VI.5A show the deformation

states with the breast phantom rig. The collected stereo camera point fiducials and intra-fiducial surface point

cloud are rigidly registered to the imaging data fiducials (black) and imaging data model (gray) in Figure

VI.5B. The breast models and mock tumor models from the 4 deformation states after deformable correction

are shown in Figure VI.5C, which qualitatively match the applied deformations shown in Figure VI.5A.

Evaluation results are presented in Table VI.1. For all 4 deformation states, fiducial error and projected

surface error decreases after deformable correction as compared to rigid registration. This is expected, given

that the fiducial error and projected surface error terms are both minimized in the objective function Ω(βββ ).

Table VI.1: Evaluation results for breast phantom deformation experiments. Avg ± std (maximum) mm.

Fiducial error (mm) Projected surface error (mm)
Rigid Nonrigid Rigid Nonrigid

Undeformed 1.7 ± 0.6 (2.9) - 1.1 ± 0.8 (5.1) -
1 3.5 ± 1.4 (6.8) 0.9 ± 0.4 (1.6) 1.4 ± 1.3 (7.7) 0.7 ± 0.7 (5.9)
2 5.0 ± 2.6 (13.0) 1.0 ± 0.5 (1.9) 1.8 ± 1.6 (8.8) 0.8 ± 0.7 (6.5)
3 2.6 ± 1.1 (4.9) 1.0 ± 0.5 (2.8) 1.6 ± 1.3 (8.5) 0.7 ± 0.7 (8.4)
4 3.4 ± 1.6 (7.2) 1.0 ± 0.5 (2.5) 2.0 ± 1.4 (8.6) 0.6 ± 0.6 (7.1)
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Figure VI.5: Visualization of breast phantom deformations. (A) Left stereo camera images of the breast
phantom. (B) Imaging data breast model (gray) and fiducial points (black) with rigidly registered collected
stereo camera fiducial and intra-fiducial point cloud data for deformation states 1-4 in red, green, orange,
and blue respectively. (C) Post-deformation correction breast and tumor models for states 1-4 overlayed on
undeformed models (gray).

VI.5.2 Volunteer Demonstration Results

Three timepoints from the BCS-IGS demonstration on a healthy volunteer are shown in Figure VI.6 both

with and without tracked ultrasound data. The guidance system display shows successful image and model

alignment to the 3D stereo camera data. As the optically tracked stylus swabs the breast surface, the displayed

distance to the mock tumor surface updates according to the deformed tumor model. The stylus also controls

the deformed image volume axial slice shown in the 4-panel display. The 3D scene view provides a view

of the stylus relative to the breast and tumor models. Like in the phantom experiment, fiducial error and

projected surface error decreases after deformable correction shown in Table VI.2.
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Figure VI.6: Guidance system views showing three timepoints during the healthy volunteer demonstration
with and without tracked ultrasound data. Synced left stereo camera images, axial MR image slices, and
the 3D scene view are displayed. The MR image, breast model, and tumor model are registered to stereo
camera data of the breast geometry. The distance from the stylus tip to the mock tumor boundary during
navigation is displayed in green.

Table VI.2: Evaluation results for volunteer demonstration. Avg ± std (maximum) mm.

Fiducial error (mm) Projected surface error (mm)
Rigid 7.3 ± 3.3 (18.6) 1.2 ± 1.0 (5.7)
Nonrigid (no US) 2.0 ± 0.9 (4.0) 0.4 ± 0.3 (2.2)
Nonrigid (with US) 3.4 ± 1.6 (8.3) 2.0 ± 1.3 (6.8)
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Figure VI.7: Guidance system axial MR imaging views before deformation correction (left) and after defor-
mation correction (right).

A comparison between rigid and nonrigid alignment was also tested in the BCS-IGS. The stylus tip

was placed on the volunteer’s breast surface, and the axial MR imaging view was captured. Figure VI.7

shows these views, with the axial MR image on the left captured before deformation correction and the right

captured after deformation correction. The crosshairs better align to the breast surface after deformation

correction compared to rigid alignment.

VI.6 Discussion

Both the phantom experiment and healthy volunteer demonstration showcased an effective BCS-IGS ap-

proach. The guidance system hardware includes a portable cart with mounted overhead sensors for surgical

scene monitoring. The guidance system module features a user interface to streamline data collection and

deformable correction in a surgical setting. The phantom experiment and volunteer demonstration required

using the 3D stereo camera sensor to collect data, and then using this data as the input to a deformable cor-

rection algorithm. Successful completion of data collection and near real-time deformable correction in these

mock intraoperative settings demonstrates that the guidance system is compatible with surgical workflows.

Regarding limitations, one limitation of the presented experiments is the lack of subsurface validation

for measuring deformable correction accuracy. In both the phantom and volunteer experiments, registration

accuracy was measured by calculating breast surface errors. While these measures indicated correction on

the breast surface, having an accurate registration at the site of the tumor is most important for navigation

purposes. In previous work, subsurface accuracy was evaluated by acquiring supine breast MR images of

healthy volunteers in an arm-down position and labeling targets in the breast parenchyma based on the tissue

glandular features. Then, a second MR image in an arm-up position was acquired, and registration-predicted

target locations were compared to imaged target locations. These studies showed acceptable deformable

correction subsurface accuracy with the same registration algorithm used in this guidance system [139; 213].

However, these previous studies used simulated surgical scene data rather than actual surgical scene data

acquired from a 3D stereo camera. Future studies should include rigorous nonrigid registration accuracy
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evaluation to ensure that the proposed guidance system is suitable for BCS procedural requirements. Another

limitation is the fact that the system was demonstrated on only one healthy volunteer. Recruiting more

volunteers and breast cancer patients for study participation is important for further demonstrating guidance

system utility and is the focus of ongoing work.

VI.7 Conclusion

This work demonstrates the feasibility of a novel BCS-IGS for improving navigation and tumor localization

during procedures. The system features both an optical tracking sensor and a 3D stereo camera sensor for

surgical scene monitoring and data collection. Using the collected geometric sensor data for deformation

correction enables alignment between the imaging data and the surgical scene, which is vital for guidance

in soft-tissue organs such as the breast. The rapid advancements in computer vision and computational

technologies have made image guidance in BCS an achievable goal. Looking ahead, the effects of using such

a system on clinical outcomes has yet to be studied, but this work puts forth a promising solution that may

unlock new capabilities in surgical precision and reduce reoperation rates for BCS procedures.
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CHAPTER VII

Future Directions

This dissertation highlights progress towards developing an image guidance system for breast surgeries. How-

ever, nontrivial challenges persist in achieving clinical translation and realizing its full potential. This section

outlines two key areas for future development of the guidance system. The first is investigating alternate

system hardware designs to minimize workflow interruption in surgery. Although the current system design

sufficed for this dissertation and initial testing, future revisions of the cart overhead arm and display monitor

could improve data collection and guidance visualization. The second is expanding registration capabilities

to accommodate updates during the surgical procedure. While the initial emphasis was on tissue monitor-

ing before invasion and excision, this restricts guidance and tumor localization to the planning stage of the

procedure. Future work should investigate nonrigid registration methods that could be applied after incision,

which would expand the system’s potential use. Finally, the new methods presented here may have applica-

tions outside of breast surgery. Other potential use cases for the regularized Kelvinlet functions in medical

imaging are discussed.

VII.1 System Design

As described in Section VI.4.1, the image guidance system includes a portable cart with an overhead surgical

arm, display monitor, and computer. This design was informed by previously developed research grade image

guidance systems and met the needs for the volunteer studies conducted in this work. Future system designs

should be informed by the needs and constraints of using the system during surgery. To inform the system

design improvements proposed here, the image guidance system was brought into the operating room and

used for data collection during lumpectomy surgeries. Two patients undergoing breast conserving surgery

were enrolled in a study for developing an image-guided lumpectomy system approved by the Vanderbilt

Institutional Review Board. One patient was a 37-year-old woman undergoing a right lumpectomy, and one

patient was a 73-year-old woman undergoing a left lumpectomy. Supine MR imaging with skin fiducials

was not acquired for these patients. The guidance system cart was set up in the operating room after the

patient was anesthetized but before the field was sterilized. Stereo camera video and depth point cloud data

were recorded during key portions of the procedure. Because supine MR imaging was not acquired, it was

not possible register MR imaging to the surgical field and test tumor localization with the system guidance

module. Instead, this preliminary data acquisition was meant to test guidance system data acquisition in the

operating room and steer future system development. These data acquisition sessions highlighted system
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usability challenges that were not evident during volunteer studies, and potential system design solutions to

address these challenges are presented in this section.

VII.1.1 Overhead Surveillance Positions

The current guidance system features an adjustable overhead surgical arm. This configuration allows for the

mounted surveillance sensors to be manually adjusted to provide the best view of the surgical scene. In the

volunteer studies, the guidance system and ultrasound machine were positioned directly next to the volunteer

with one additional person as the guidance system user and no additional equipment. During preliminary

system testing in the operating room, there were more constraints on positioning the guidance system than

during volunteer studies. At times, there were up to four people assisting with the operation – the attending

surgeon, resident surgeon, surgical technician, and medical student. Having up to four people assisting with

the operation led to more field of view obstructions throughout the procedure than anticipated. Also, there

were other equipment carts that needed to be positioned next to the patient during the procedure. These carts

included an intraoperative ultrasound machine, the headlamp light source mounted on a rolling stand, the

magnetic seed localization system cart, and the sterile tray. In practice, the positioning of these carts during

the procedure limited the guidance system view. These factors made it difficult to constantly adjust the

overhead arm throughout the procedure to acquire surgical field depth measurements. The tested guidance

system configuration in the OR and camera views displaying both unobstructed and obstructed views are

shown in Figure VII.1.

Figure VII.1: Tested guidance system setup during breast surgery. Camera views display unobstructed (mid-
dle) and obstructed (right) views during different timepoints of the procedure.
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For future development, alternative overhead surveillance positions that improve the guidance system

field of view should be explored. One possible surveillance position may be to position the guidance sys-

tem cart at the patient’s head. The adjustable overhead arm would be positioned over the sterile drape that

separates the surgical field and anesthesia. This positioning may be able to offer a less obstructed view of

the surgical scene. This configuration would need to be tested to ensure that the guidance system footprint

does not interfere with the anesthesia equipment. Some commercially available surgical overhead lighting

products, like the StrykeCam HD (Stryker Corporation, Kalamazoo, MI, USA) and the 7D Surgical System

(SeaSpine, Carlsbad, CA, USA), offer integrated camera mounting where a camera is rigidly attached to the

center of one of the overhead surgical lights. These setups allow for unobstructed overhead views of the

surgical field. Another possible configuration for the guidance system would be to design a mounting bracket

that could attach the surveillance sensors to the overhead surgical light. This viewpoint may offer a better

vantage point for collecting depth measurements and localizing tracked tools in the field. Finally, one of the

reasons why acquiring a continuously unobstructed view is challenging is because lumpectomy surgeries are

dynamic. The surgeons frequently manipulate and reposition the breast throughout the procedure. To truly

adapt to the dynamic field, a third alternative configuration could be to mount the surveillance sensors to

a robotic arm whose position could be easily adjusted during surgery. For this configuration, repositioning

the field of view would not rely on an additional operator to manually move the overhead arm during the

procedure. Instead, the surgical scene could be tracked, and the positions of the surveillance sensors adjusted

automatically to prevent scene obstructions. While automatic sensor repositioning would be optimal from a

workflow perspective, even a robotic arm that is passively updated by an additional operator through a soft-

ware interface would be an improvement compared to having to manually adjust the overhead arm. Robotic

arms that may be well suited for this application include the LBR Med 7 R800 robot from KUKA (KUKA,

Augsburg, Germany) and the VS-S2 Series robot from DENSO Robotics (DENSO Robotics, Long Beach,

CA, USA). These models have either been used in surgical applications or been approved for medical device

use cases, and they offer working volumes with enough degrees of freedom to correct for obstructions in the

field.

VII.1.2 Display Visualization

Currently, the guidance module features a 4-panel display for visualization. The 4 panels show either the MR

axial, sagittal, and coronal views and a 3D rendering view, or the MR coronal view is replaced with the live

ultrasound imaging feed view. The settings panel is displayed on the left of the screen. While adequate for

initial testing and data collection, these display options should be revisited so that they are more informative

for intraoperative guidance. Preliminary qualitative feedback from users suggests that the additional sagittal
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and coronal MR panels do not add much value for tumor localization. Primarily, users report relying on the

axial MR panel and the 3D rendering view to orient themselves spatially and use the guidance system. Thus,

a more optimal display may be a 2-panel display that features just these views. A user study that asks users

to locate a mock tumor with the guidance system in a breast phantom and mark the incision location could

be conducted to better inform these system design considerations.

In the present system, the display monitor is rigidly attached to the base of the cart, which limits the

display monitor positioning in the OR. A display monitor mounted on a separate stand may be more conve-

nient for surgeons using the guidance system. Utilizing existing but unused display monitors available in the

OR may be another convenient option for displaying the guidance system module. Both options should be

explored as more end users test the guidance system in OR studies.

VII.1.3 Augmented Reality

The system display presented in this work requires the user to divert their gaze from the surgical field to view

the guidance system module on a monitor. Having a display monitor for the navigation system requires the

surgeon to split focus between the display monitor and the surgical field. This user experience has been shown

to distract from the surgical workflow and increase cognitive load [233]. Alternative display solutions should

be explored to improve usability. Augmented reality (AR) devices offer head mounted optical see-through

displays that are placed in front of the user’s line of sight. Using stereoscopy, these displays render holograms

as if they were present in the physical environment. They can show virtual elements that are superimposed

on top of the surgical field. Internal spatial sensors track the device’s location and allow the 3D rendered

holograms to appear stationary to the user, which creates immersive visualizations overlayed on the physical

environment. Commercially available AR devices that have been explored for surgical applications in recent

years include the Microsoft HoloLens (Microsoft Corporation, Redmond, WA, USA), Magic Leap (Magic

Leap, Plantation, FL, USA), and Moverio Smart Glasses (Epson America, Inc., Long Beach, CA, USA),

although the HoloLens is the platform of choice for the vast majority of research papers published about

AR for surgical guidance [234]. For the BCS guidance application, AR may offer benefits demonstrated in

other surgeries by previous studies. These benefits include better perception, reduced cognitive workload,

and improved usability [235].

Two potential AR display options could be investigated to advance this guidance system. The first pro-

posed AR display features the same 4-panel display overlayed as a semi-transparent 2D screen in the top

right corner of the user’s field of view, analogous to a picture-in-picture view (Figure VII.2A). This display

option would present the guidance system display in the surgeon’s peripheral vision for them to easily ref-

erence when needed, while not obstructing the surgical field of view. This consistent display view is not
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easily achievable when using a monitor in a crowded operating room. The second proposed display would

take full advantage of AR capabilities by projecting the 3D rendering view registered to the breast (Figure

VII.2B). Overlaying the 3D breast and tumor models directly onto the anatomy in the physical scene so that

surgeons can see the tumor shape and location in 3D space may improve spatial reasoning compared to using

the 3D rendering view with a monitor and tracked stylus. Other AR visualization variations could include

a 2-panel picture-in-picture view that would obstruct less of the visual field, or trajectory visualizations that

embed 3D spatial information without full 3D model overlays. Currently, the commercially available AR

devices on their own have spatial localization errors on the order of several centimeters, which is inadequate

for many clinical registration needs. AR devices used in combination with an external optical or electro-

magnetic tracker have been shown to correct localization errors to millimeters instead of centimeters, which

is acceptable for surgical guidance tasks [236]. Future AR device advancements may improve localization

errors such that external tracking devices are no longer needed for millimeter-scale accuracy [237]. While

AR for surgical guidance holds promise as a tool for improved visualization, the clinical value of the technol-

ogy has yet to be demonstrated. Because many surgical AR studies are conducted in the pre-clinical setting,

there is little evidence of improved patient outcomes when using AR devices compared to traditional surgical

methods [238].

Figure VII.2: Proposed guidance system with AR. (A) Mock-up of AR system with 4-panel display in top
right corner. (B) Mock-up of AR system with overlayed 3D breast and tumor models.

VII.2 Intraprocedural Guidance System Use

The current guidance system offers nonrigid registration to correct for breast shape change between imaging

and surgical positions. The proposed nonrigid registration method, outlined in Chapter V, deforms preop-

erative models and imaging for better alignment to the breast shape in the operating room. This alignment
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may be useful for visualizing the tumor location and extent during the planning stage of surgery when the

surgeon marks the incision location. However, the presented nonrigid registration method depends on col-

lecting a breast skin surface point cloud and breast skin fiducial points before tissue incision and invasion.

This method is not designed for intraprocedural updates. Nonrigid registration to compensate for deforma-

tions after tissue incision and invasion has not been thoroughly explored. This means that in its current state,

the guidance system cannot be used to reliably locate the tumor during the procedure. Methods that expand

the nonrigid registration capabilities so that the breast model, tumor model, and preoperative imaging can be

aligned to the surgical field during the surgery would enable true intraprocedural image guidance. This capa-

bility may allow for better tumor localization through continual updates, rather than localization only during

the planning stage of the procedure. Nonrigid registration methods that can accurately account for surgi-

cal dynamics and intraprocedural breast deformations may improve the utility of the guidance system and

should be pursued in future work. Preliminary investigation into (1) the nature of the intraprocedural point

clouds, (2) registration method alterations to accommodate incision, and (3) presenting margin predictions

after resection are presented in the following sections.

VII.2.1 Intraprocedural Data Collection

Figure VII.3: Sample intraprocedural breast surface point cloud data with a skin surface and dissection cav-
ity point cloud.

Intraoperative sparse data sources collected for the work in this dissertation include a breast skin surface

point cloud, breast skin fiducial points, and a chest wall surface point cloud acquired with tracked ultrasound.

During the procedure, the breast skin surface point cloud changes due to incision and surgical dynamics.

Instead of a smooth skin surface, this point cloud contains the skin surface and the dissection cavity. In-

traprocedural data collection capabilities were explored during the preliminary data acquisition study in the

operating room. An example breast surface point cloud acquired after incision but before specimen excision

is shown in Figure VII.3. The presented breast surface point cloud was extracted at a moment in the procedure

which had minimal obstructions from surgical tools in the field. Even so, acquiring breast surface point clouds

without obstructions was difficult due to the challenges outlined in Section VII.1.1 and the dynamic nature
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of these procedures. Nevertheless, the breast surface point cloud in Figure VII.3 shows both the breast skin

surface and a point cloud representation of the dissection cavity. In future work, configurations for collecting

reliable intraprocedural point cloud data should be explored. This may involve briefly pausing the procedure

and having the surgeons remove their tools and retractors from the field to acquire data for a guidance system

update. Alternatively, if the intraprocedural point cloud data is not reliable, surface data could be collected

by sweeping a tracked stylus over the area of interest. Further investigation into the variability and reliability

of these data collection methods is needed in future work to assess the feasibility of intraprocedural image

guidance.

VII.2.2 Registration Methods After Incision

Achieving intraprocedural guidance system updates not only relies on data collection, but also on having

registration methods to accommodate surgical dynamics like retraction and dissection. Methods for post-

incision registration with simulated intraprocedural data have been investigated with preliminary phantom

experiments [10]. The methods and results from these investigations were presented in a conference paper at

SPIE Medical Imaging in 2023. Parts of this section are adapted and reprinted with permission from,

[10]: A. Espinosa, M. J. Ringel, J. S. Heiselman, K. Pereira, F. Servin, W. L. Richey, I. Meszoely, and M.

I. Miga, “Modeling retraction for breast conserving surgery guidance,” in Proceedings of SPIE Medical

Imaging, vol. 12466, 2023.

In the phantom experiments, an incision phantom (Figure VII.4), was constructed from 75% Ecoflex sili-

cone mixed with 12.5% silicone thinner and 12.5% slacker tactile mutator. The phantom shape was modeled

after the Breast Probe Model for breast ultrasound training from Simulab (Simulab Corporation, Seattle, WA,

USA). 26 surface fiducials and 39 subsurface targets were used, with 11 of these 39 targets concentrated in

one area to mimic a tumor. The incision was cut in the medial-lateral direction, and the tissue was retracted

in the inferior-superior direction. The preliminary retractor rig was 3D printed and secured to a rigid board

for imaging. High resolution CT images of the breast phantom in the undeformed and retracted states were

acquired with an image voxel size of 0.65 x 0.65 x 0.67 mm.

This phantom was used to explore a potential post-incision registration method, which was adapted from

the LIBR method outlined in Chapter V. An incision plane that represented the retraction phantom incision cut

was used to split the mesh. A mesh-splitting technique where nodes on either side of the incision plane were

duplicated was used to separate the domain [239]. The LIBR method with a FEM displacement basis was

used to reconstruct retraction conditions. Eight control points were placed on the inside surface of the incision

cavity with four control points on either side of the incision plane. Five additional control points were placed
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Figure VII.4: Breast phantom for modeling retraction in the (A) undeformed state without retractors and (B)
in the retracted state. (C) An example CT image slice of the phantom with the embedded subsurface targets
and surface fiducial beads.

on the posterior surface of the phantom which is consistent with a previous implementation of the LIBR

method for modeling breast deformations [139]. Displacement modes were computed as FEM forward-solve,

homogeneous isotropic elastic boundary value problems with Young’s Modulus E = 2100 Pa and Poisson

ratio ν = 0.45. The optimal linear combination of the displacement modes generated from these 13 total

control points that minimized the distances between the model retracted surface fiducial bead locations and

the measured retracted surface fiducial bead locations was found using Levenberg-Marquardt optimization.

A strain energy regularization term was also included in the optimization to penalize deformations with high

strain energy.

Fiducial registration error (FRE) using the phantom surface beads and target registration error (TRE)

using the phantom subsurface beads were calculated to evaluate model performance. Given that retraction is

a local deforming event, FRE and TRE measurements were limited to a region of interest (ROI). Using an

ROI designated as a sphere with a 40 mm radius centered at the incision midpoint, 3 surface beads and 12

subsurface beads were found to fall in the ROI sphere. The FRE after retraction modeling of the 3 surface

beads in the ROI was 0.5 ± 0.1 mm with a maximum of 0.5 mm. The TRE after retraction modeling of the

12 subsurface beads in the ROI was 1.2 ± 0.6 mm with a maximum of 2.6 mm. Volumetrically, the LIBR

reconstruction pulled the incision plane in the inferior direction which resulted in the separation of the incision

plane. The model-predicted displacement magnitudes were largest in the area surrounding the incision. This

is consistent with the expected displacements caused by retraction in this scenario. The phantom mesh,

incision plane, control point placements, and deformed mesh after registration are visualized in Figure VII.5.

For future work, several improvements are needed to expand this preliminary post-incision registration

method for true intraprocedural use. First, the deformed model state was calculated by optimizing surface

fiducials only. Incorporating a skin surface point cloud and a dissection cavity point cloud, in addition to

surface fiducial points, would likely improve registration accuracy. More investigation into how to properly

accommodate the dissection cavity point cloud into a registration method is needed. Similarly, in the model
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Figure VII.5: (Left) The undeformed breast phantom mesh (gray), posterior control point placement
(black), incision control point placement (blue), and incision plane (red) for retraction modeling. (Right)
Deformed mesh after modeling retraction showing displacement magnitude. Arrow indicates the incision
area of interest. Image reprinted from [10] with permission.

mesh, the dissection cavity was represented as an incision plane. This representation is not entirely realistic,

and the dissection cavity should be represented with a more complex geometry.

Additionally, the preliminary approach is not ideal for near real-time intraprocedural updates. This is

because it requires additional computation time after incision to calculate the additional FEM displacement

modes. Also, it requires a mesh cutting strategy to duplicate elements with virtual nodes at the incision

boundary. Both requirements make this strategy cumbersome for near real-time implementation. Rapid

methods for accommodating dissection should be explored in future work. One possible solution may be to

implement a regularized Kelvinlet displacement basis, which does not require additional computation. Unlike

FEM modeling, it does not require a mesh to compute a displacement solution. Instead, a different approach

could be used to separate the domain at the incision boundary. Two different sets of regularized Kelvinlet

control points could be placed on opposing sides of the dissection boundary, and points in the domain could

be selectively assigned to these sets of control points. Points in the positive normal direction to the incision

would be assigned to one set of control points, points in the negative normal direction would be assigned

to another set of control points, and points below the incision would be assigned to both. This assignment

strategy may allow for independent deformations at the incision boundary and model the geometry as if there

were a discontinuity in the domain. More investigation is needed to evaluate the feasibility of this approach

and other alternative approaches for intraprocedural nonrigid registration model updates after incision.

VII.2.3 Cavity Shaving Guidance

The directions for future exploration thus far have focused on tumor localization for either planning prior to

incision or intraprocedural guidance during resection. Another area of interest and potential application is

using the system after resection to guide cavity shaving. In BCS after the first pass excision, intraoperative
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margin assessment methods are used to evaluate if an additional specimen resection, also known as cavity

shaving, is needed. These methods include X-ray or micro-CT imaging to visualize the tumor and intraoper-

ative frozen section histology to evaluate margin status. These methods are rapid assessments that take less

than 30 minutes such that they can be performed intraoperatively while the patient is still under anesthesia.

Intraoperative margin assessment is performed separately from postoperative margin assessment with hema-

toxylin and eosin (H&E) histology, which is the gold standard for margin evaluation and requires several days

to receive results after surgery. If intraoperative margin assessment shows involved margins, the surgeon will

perform a cavity shaving and excise a second specimen. Identifying the excision area in the cavity is chal-

lenging and is identified with anatomical directions (i.e., excise an additional inferior-posterior specimen). A

future application of this guidance system may be to better inform cavity shaving areas of interest beyond

anatomical directions.

The concept of using the guidance system to better inform cavity shaving localization is explored with a

proof-of-concept registration experiment. In theory, a 3D specimen model could be acquired by scanning the

specimen after excision with a stereo camera or by using 3D micro-CT data acquired during intraoperative

margin assessment. A stereo camera 3D point cloud of an excised specimen is shown in Figure VII.6A. For

this experiment, a 3D mesh model of a mock excised tumor specimen was created. Then, deformations were

applied to the 3D specimen model and a 3D model of a breast mesh after resection to simulate the challenging

intraoperative environment. Isotropic shrinkage was applied to the 3D specimen model to simulate specimen

dehydration after excision. Deformation caused by gravity was applied to the breast mesh to simulate cavity

collapse. Next, data to use for registration from the 3D specimen model and from the excision cavity was

created. This data included a sparse point cloud of the collapsed cavity that could be acquired with a tracked

stylus, and 6 corresponding points on the 3D specimen model and the cavity representing the anatomical

directions. Finally, LIBR reconstruction was used to register the deformed 3D specimen model back to the

deformed breast cavity. Note that this is different from previous applications of LIBR where the breast model

is deformed. In this application, deformation is applied to the excised specimen model. The registration

inputs and results from this experiment are visualized in Figure VII.6B.

The utility of registering a 3D specimen model back to the resection cavity is that it may aid in identifying

the region of the cavity wall for re-excision. After intraoperative margin assessment, the positive margin area

can be indicated on the 3D specimen model. After registration, this positive margin area can be directly

mapped onto the cavity wall. This may help orient surgeons and aid in excising a second specimen that

removes remaining tumor tissue. Additionally, if surgeons have more certainty and confidence in localizing

the re-excision area, they may be able to excise a smaller second specimen and improve cosmesis. This

proof-of-concept registration experiment demonstrates cavity shaving guidance for a simulated specimen and
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Figure VII.6: Proposed cavity shaving registration for guidance. (A) A stereo camera image (left), point
cloud (middle), and 3D model (right) of an excised BCS specimen acquired during surgery. (B) LIBR reg-
istration of a simulated specimen aligned to a breast resection cavity showing the breast mesh (gray), sparse
data inputs (black), and tumor specimen (red). Specimen-to-cavity alignment is shown before (left) and af-
ter (right) registration.

cavity. In future work, this registration should be tested using intraoperative data to assess the feasibility of

this method. More investigation is needed to evaluate the practicality and clinical value of using the guidance

system to help with cavity shaving localization. This application could be a research direction for future work

in BCS image guidance.

VII.3 Regularized Kelvinlet Applications

Chapter V introduced regularized Kelvinlet functions, which are closed-form, analytical solutions to the

Navier Cauchy equations for linear elasticity in an infinite medium for a concentrated point load. These

functions were used as the deformation basis for an image-to-physical registration method for the BCS image

guidance system. This section details other regularized Kelvinlet variations derived from Green’s function so-

lutions that may be of interest for medical imaging or biomechanical modeling applications. It also discusses
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using regularized Kelvinlets for registration in other organ systems besides breast and for image volume

warping.

VII.3.1 Regularized Kelvinlet Variations

Anisotropy with Regularized Kelvinlets

One limitation of using regularized Kelvinlets for modeling biological tissue is that the medium is assumed

to be isotropic. Follow-up work by Chen et al. in 2022 derived general Green’s function solutions, which

can be applied to any regularization scheme, not just the smoothed body load used in the first regularized

Kelvinlets paper [240; 19]. This general form is also compatible with any linear elastic material defined

by its fourth-rank elasticity tensor C, not just an isotropic linear elastic material defined by its two material

property parameters E and ν . This loss of simplicity prevents derivation of closed-form solutions like in

the original regularized Kelvinlets paper, but spherical harmonic decomposition is used to rapidly compute

displacements for these sculpting brushes with anisotropic materials in practice. The results are elasticity

solutions compatible with directionally variable materials.

For breast biomechanical modeling, computationally fast elasticity solutions for anisotropic materials

may be especially useful. As explored in Chapter IV, breast tissue exhibits heterogeneous and anisotropic

material properties that, when incorporated, improved modeling accuracy. This tissue characterization was

abandoned in favor of a simpler and computationally faster modeling method in Chapter V with regularized

Kelvinlets for the image guided surgery system. Future work could explore possible modeling improvements

by implementing a regularized Kelvinlet function with a transverse isotropic material. This may help expand

the use cases of regularized Kelvinlet functions to applications where preserving tissue anisotropy is required.

Regularized Half-Space Solutions

Another limitation of regularized Kelvinlets is the fact that they represent displacements in an infinite medium

and do not account for discrete domains. Conventionally, incorporating geometry requires domain discretiza-

tion. However, other closed-form solutions (aside from the Kelvinlet solution) may present opportunities to

include geometric boundaries. In addition to closed-form solutions to point forces in an infinite solid, closed-

form solutions to point forces applied to an infinite half-space in the normal and tangential forcing directions

exist in elastostatics literature, and these solutions are sometimes referred to as the Boussinesq–Cerruti so-

lutions [153]. Like the Kelvinlet solution, these solutions are singular at the forcing location. However, it

may be possible to derive half-space solutions with a regularized, smoothed forcing load analogous to the

regularized Kelvinlet. These regularized half-space solutions may offer a more accurate representation of

elasticity at discrete organ boundaries, even though it still would not incorporate the full organ geometry.
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More investigation into deriving and testing regularized half-space solutions is needed, but they may offer an

improved method for analytically modeling elasticity at domain boundaries.

VII.3.2 Additional Organ Systems

In this work, regularized Kelvinlet functions were proposed in the context of registration for BCS image

guidance. However, the methodology outlined in Chapter V is generally organ agnostic and can be adapted

for image guidance or registration applications in other soft tissue organ systems. Outside of breast, regu-

larized Kelvinlets were employed for registration in liver. The optimal control point and relaxation radius

parameters used in liver were different than those used in breast. The sensitivity to these parameters and the

liver registration results are described in detail in Appendix A. To date, regularized Kelvinlet functions were

also submitted as a method to the Sparse Data Challenge, which compares sparse data registration method

performance on a common dataset. Results are reported in published work [241; 242].

To adapt regularized Kelvinlets for registration in other organ systems, several factors should be consid-

ered. The first of these factors is how regularized Kelvinlet control points are distributed on the organ geome-

try. For breast registration, this distribution was informed by the chest wall geometry and loading conditions.

In other organ systems, control points should be deployed based on the likely deformations and expected

forces for that organ. The organ system environment, such as interstitial pressure changes that occur during

neurosurgery procedures or pressure changes from insufflation during minimally invasive procedures, should

be considered in this context. Another factor is the relaxation radius parameter ε . This parameter controls the

radius of the smoothing function extent, and it generally should correlate with the organ geometry size. With

other organ systems, this parameter may need to be adjusted to achieve realistic registration results. For ex-

ample, one might hypothesize that the ε parameter should be reduced for kidney registration compared to the

optimal ε for breast, given that the average breast has a larger extent and volume than the average kidney. The

ε factor should be verified for each application when applying regularized Kelvinlets for registration of other

organs. Finally, grab and twist regularized Kelvinlet functions were utilized for breast registration. Again,

this configuration could be altered depending on the organ of interest. Regularized Kelvinlet registration may

be of interest in several organs where registration for image guidance or soft tissue biomechanical modeling

is an active research area. Organ systems where regularized Kelvinlet registration may be applicable include

brain, prostate, kidney, lung, pancreas, and others. Future work should focus on expanding these methods to

apply to a broader set of registration problems and evaluating organ specific deployments on a case-by-case

basis.
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VII.3.3 Image Volume Warping

For the image guided surgery application in this work, warped image volumes after registration were pre-

sented as masked volumes. The transformation was applied only to the volume area contained in the 3D

mesh. This masked volume presentation may be distracting for surgeons accustomed to viewing full 3D

volumes with surrounding anatomy. Regularized Kelvinlet functions could be used to extrapolate the organ

transformation to the dense, full 3D volume instead of only the masked region. The full transformation can

be easily computed because regularized Kelvinlet functions are embedded in an infinite domain. In contrast,

an FEM-computed registration solves for displacements inside of the mesh only. Extrapolating to the full

image volume would require an interpolative decay function outside of the masked area.

A warped image volume example that utilizes regularized Kelvinlets to transform the image region outside

of the breast is shown in Figure VII.7. More investigation is needed to determine user preference between

masked, partially deformed image volumes and unmasked, fully deformed image volumes. Although the

unmasked image volumes include additional anatomical structures (in the case of supine breast imaging,

the pectoral muscles and ribs are visible), the imparted deformations on these structures may be unrealistic.

Presenting registration results in this way, instead of with masked volumes, may be an area of future interest

for image guidance applications.

Figure VII.7: Undeformed image volume (left) compared to a deformed image volume (right) where the
regularized Kelvinlet deformation field was applied to voxels outside of the breast mesh.

VII.4 Closing Remarks

This dissertation details advancements towards an image guidance system for BCS. State of the art methods

in breast biomechanical tissue modeling (Chapter IV), rapid sparse data registration (Chapter V), and system

development (Chapter VI) are employed. By presenting this work, the intention is to improve patient out-

comes and further the integration of advanced technology in BCS procedures, while simultaneously inspiring

novel research avenues in the image guided surgery field.
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APPENDIX A

Regularized Kelvinlet functions for liver deformation modeling

A.1 Introduction

The methods in Chapter V are presented in the context of breast deformation modeling for integration into

a BCS guidance system. However, these methods can be easily adapted for registration problems in other

soft tissue organ systems. Hepatic surgeries also suffer from large soft tissue deformations caused by in-

sufflation and organ manipulation. Without nonrigid registration, these deformations confound the use of

image guidance systems. This section details the adaptation of the image-to-physical registration method

with regularized Kelvinlet functions to register a liver phantom dataset. It also compares registration using

regularized Kelvinlet functions to registration performance using the finite element method (FEM) to create

the deformation basis. This section is adapted from, “Comparing Regularized Kelvinlet Functions and the Fi-

nite Element Method for Registration of Medical Images to Sparse Organ Data,” which is released on arXiv

and currently in review at Medical Image Analysis [214]. This method was also submitted as an entry in

the Image-to-Physical Liver Registration Sparse Data Challenge, which compares state of the art registration

methods on a common dataset [242].

A.2 Methods

The sparse data registration method features two phases: a precomputation phase where a basis of displace-

ment solutions is generated on a specific liver model geometry, and a reconstruction phase where the displace-

ment basis is used to deform the liver model to match sparse data inputs. First, the regularized Kelvinlets

displacement solutions detailed in de Goes et al. are proposed for generating a realistic biomechanical dis-

placement basis in the precomputation phase [19]. To assess fidelity, the regularized Kelvinlets displacement

basis is compared to a displacement basis generated using a more conventional FEM model from previous

work in Heiselman et al. [20]. Finally, the algorithm for the reconstruction phase from [20] is used for both

biomechanical model displacement bases realizations for direct comparison. Equation notation is written

such that constants are italicized, vectors are bolded, and matrices are double-struck letters.

A.2.1 Regularized Kelvinlets Displacement Solution

The same methodology outlined in Section V.4.1 for regularized Kelvinlet registration in the breast is used

in the liver. Solving for the analytical solution to the equations for linear elasticity with a smoothed forcing

function yields the formula for regularized Kelvinlets proposed in [19] and reproduced as follows:
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The solution in Equation A.1 assumes an infinite elastic medium, and it does not account for the geometry

of the domain. In Equation A.1, rε =
√

r2 + ε2 is the regularized distance, ε is the regularization radial scale,

and a and b are material parameter coefficients equal to a = (1+ν)
2πE and b = a

4(1−ν) . I is the identity matrix.

The r vectors and corresponding uε(r) vectors from a regularized Kelvinlet displacement solution can

be computed for every individual node in a liver mesh. The uε(r) vectors can be concatenated to form a

displacement vector:

dRK =



uε(r1)

uε(r2)

. . .

uε(rM)


(A.2)

where vector dRK is length 3M and M is the number of nodes in the mesh.

A.2.2 Finite Element Method Displacement Solution

The regularized Kelvinlet displacements are compared to displacement solutions derived from a conventional

elastic FEM model. For FEM model realization, liver volumes are discretized with tetrahedral meshes with

4 mm element edge lengths. The Galerkin weighted residual method with linear Lagrange basis functions

is applied to integrate the partial differential equations associated with the Navier Cauchy equations. This

process produces a coupled set of differential equations as:

uFEM =K−1F (A.3)

where K is the global stiffness matrix, uFEM is the vector of displacements, and F is the vector containing

forcing terms and boundary conditions.

To create a non-singular FEM displacement solution response to a distributed point load, the methodology

described in [20] perturbs and relaxes a singular boundary mesh point, rendering a comparable solution to

regularized Kelvinlets. For this displacement solution, a series of control points are distributed evenly on the

control surface of the organ. The control point at the load location x0 is perturbed while all other control

points are fixed. After perturbation, the Voronoi tile region surrounding the point load location is relaxed, and

a distributed load that results in identical far-field displacements is computed in accordance with the Saint-

Venant principle. The resulting displacement vector after relaxation is denoted as dFEM which is of length
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3M where M is the number of nodes in the mesh.

The displacement and strain norm fields from the relaxed FEM displacement solution and the regularized

Kelvinlets displacement solution at one point load location on the liver are shown in Figure A.1. Two values

of the radial scale parameter ε are shown for the regularized Kelvinlets displacement solutions. Both the

relaxed FEM and regularized Kelvinlets displacement solutions are approximations of deformation responses

to point load forces. As shown in Figure A.1, both solutions exhibit a local response centered on the point

at which the perturbation is applied. However, the relaxed FEM displacement solution accounts for organ

geometry, and it is also influenced by the mesh resolution and all other control point locations that are fixed

during perturbation. The regularized Kelvinlet solution is computed as if the organ is embedded in an infinite

elastic medium, and it does not account for organ specific geometry.

Figure A.1: Comparison of displacement and strain norm fields generated from perturbation of a singular
control point using the FEM method and the Regularized Kelvinlets (RK) method with two radial scale ε

values on liver geometry. Each field is normalized to have a maximum displacement value of 5 mm.

A.2.3 Sparse Data Registration

From the sections above, two linear elastic modeling methods have been presented for representing the dis-

placements caused by a distributed point load force. The linearized iterative boundary reconstruction (LIBR)

method, detailed in [20], uses a displacement basis composed of FEM displacement solutions and solves for

an optimal linear combination of these solution vectors to minimize model-data error and achieve a sparse-

data-driven nonrigid registration. In this work, the method proposed in [20] (referred to as LIBR+FEM)

has been re-engineered to employ regularized Kelvinlets displacement solutions as the displacement basis

(referred to as LIBR+RK) in lieu of FEM. Both LIBR+FEM and LIBR+RK displacement bases methods
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are linearly superposed and combined within an optimization framework to recover an optimal registration

displacement state.

To create the LIBR+FEM displacement basis, each control point is perturbed and relaxed in the x, y, and

z directions to create a series of dFEM basis vectors. In total, 3k basis vectors are generated where k is the

number of control points. As detailed in [20], the registered deformation state ũFEM can be approximated as:

ũFEM = Ju−FEMαααFEM =


| | |

dFEM−1 dFEM−2 . . . dFEM−3

| | |

αααFEM (A.4)

where ũFEM approximates the deformation state based on the linear combination of the displacement basis

functions written as the displacement response matrix Ju−FEM (size 3M x 3k), and αααFEM is the displacement

basis function weights of length 3k. Along with displacement, a 6M x 3k stress response matrix Jstress−FEM

and 6M x 3k strain response matrix Jstrain−FEM are formulated at mesh elements and interpolated onto nodes

using the conventional linear elasticity stress-strain and strain-displacement relationships. These response

matrices allow for a linearized representation of the stress and strain values for any given displacement basis

function weights αααFEM .

To create an analogous LIBR+RK displacement basis, the unit forcing vectors are used in Equation A.1

to formulate a set of dRK basis vectors that represent the displacement response to the unit forcing vectors at

every k control point. The ũRK approximate deformation state can be written as:

ũRK = Ju−RKαααRK =


| | |

dRK−1 dRK−2 . . . dRK−3

| | |

αααRK (A.5)

where Ju−RK , Jstress−RK , and Jstrain−RK are the displacement, stress, and strain response matrices and αααRK is

the weight vector.

The registration task is to solve for the optimal αααFEM or αααRK vector, combined with rigid transformation

parameters τττ (translation) and θθθ (rotation), that minimizes model-data error and the strain energy of the defor-

mation. The approach proposed in [20] for formulating the objective function, establishing correspondences

for calculating model-data error, incorporating a rigid transformation, and calculating the strain energy term

is kept identical for the LIBR+FEM and LIBR+RK methods. This algorithmic consistency allows for a direct

comparison of the two biomechanical models without the influence of other variables. The objective function

as described in [20] is as follows:
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Ω(βββ ) = ∑
F

wF

NF

NF

∑
i=1

f 2
i +wE f 2

E (A.6)

where βββ = [αααFEM,τττ,θθθ ] or βββ = [αααRK ,τττ,θθθ ] depending on the chosen basis functions. Two competing squared

error terms, f 2
i and f 2

E , are included in the objective function. The first error term, , f 2
i , corresponds to the

model-data error which controls the organ deformation. fi is the model-data displacement error at datapoint

i, wF is the weight of data feature F , and NF is the total number of data points in feature F . The data features

are chosen to mimic data that could theoretically be acquired in a surgical environment for intraoperative

registration and are discussed in more detail for liver registration in the next section. The second error term,

f 2
E , is a regularization term that prevents large strain-energy deformations. fE is the average strain energy

density across the mesh, computed as the sum of the nodal strain energy densities normalized by the number

of mesh nodes M, and wE is the strain energy regularization weight. fE is computed with either equation

below depending on the method (LIBR+FEM or LIBR+RK).

fE =
1

2M
ααα

T
FEM(JT

strain−FEMJstress−FEM)αααFEM (A.7)

fE =
1

2M
ααα

T
RK(JT

strain−RKJstress−RK)αααRK (A.8)

Levenberg-Marquardt optimization is used to iteratively solve for βββ by minimizing the objective function

with a termination criterion of |∆Ω(βββ )|< 10−12.

A.2.4 Phantom Liver Dataset

The phantom liver dataset was obtained from the Sparse Data Challenge for image-guided liver surgery [243;

217]. The challenge dataset includes a liver geometry mesh, 112 sparse data feature configurations, and 159

targets. The sparse data feature configurations were generated from contact and non-contact intraoperative

data collections. The liver phantom was composed of a silicone material cast from a mold that was obtained

from a human patient CT image volume and emulated the stiffness of liver tissue. Deformations were applied

to the phantom’s posterior surface. Parameter values of E = 2100 Pa, ν = 0.45, and wE = 10−8 Pa−2 were

used for both the LIBR+FEM and LIBR+RK methods based on parameter values used in previous work [20].

A.2.5 Experimental Setup

Registrations using the LIBR+FEM and LIBR+RK methods were performed on the liver dataset. 3D point

locations on the organ mesh surfaces were designated as control points. Two control point distribution strate-

gies were tested - placing control points distributed evenly just on the posterior surface of the organ and
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placing control points distributed evenly everywhere on the organ surface. K-means clustering was used

to distribute control points evenly on the organ’s surface, which partitioned the organ’s control surface into

Voronoi cells. This control point distribution created deformations that evenly perturbed different regions of

the organ surface. A parameter sweep of the number of control points k was performed iterating between

10-190 in increments of 30. For the LIBR+RK method, a parameter sweep of the radial scale parameter

ε was performed iterating through the values ε = [0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5] meters.

Registration performance was evaluated by calculating the root mean squared (RMS) target registration er-

ror (TRE), which is the root mean squared error of all individual target errors in one registration case. The

precomputation phase for the LIBR+FEM method was parallelized on 8 threads of an AMD Ryzen 7 3700X

CPU. All other computations (LIBR+FEM reconstruction and LIBR+RK precomputation and reconstruction)

were performed on a single thread of an AMD Ryzen 7 3700X CPU.

A.3 Results

A.3.1 Parameter Sweep Results

The registration accuracy results from the parameter sweep are shown in Figure A.2. Each square denotes

the average RMS TRE for a parameter sweep combination averaged across the 112 data configurations for

the liver dataset. Average RMS TRE is displayed as a function of registration method (LIBR+FEM or

LIBR+RK), control point placement strategy (either distributed on the organ’s posterior surface or on the

entire organ surface), radial scale ε for LIBR+RK registrations (x-axis), and number of control points (y-

axis).

The optimal number of control points and radial scale ε parameters for each method, control point place-

ment, and dataset are reported in Table A.1. The overall optimal registration for the liver dataset was with the

LIBR+FEM method with k = 40 control points distributed on the posterior surface, resulting in an average

RMS TRE of 3.2± 0.8 mm. The best registration accuracy for the liver dataset with the LIBR+RK method

was 4.6±1.0 mm which occurred with k = 160 control points distributed everywhere with ε = 0.01.

Examining the parameter sweep overall, many of the parameter combinations resulted in average RMS

TRE values that were within a 1 mm range of the optimal RMS TRE values. These parameter combinations

are indicated in Figure A.2 by the inner black borders. For the number of control points, the optimal parameter

combination for the LIBR+RK implementation had a higher number of control points than the LIBR+FEM

implementation. For the radial scale parameter ε , the extremes of the parameter sweep resulted in worse

average RMS TRE showing the importance of selecting an ε parameter appropriate for the scale of the

geometric organ. The average registration accuracy for the LIBR+RK method fell within the 4-7 mm range

for most parameter combinations, while the accuracy using the LIBR+FEM method fell in the 3-4 mm range.
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Figure A.2: Parameter sweep results for the liver dataset. Control points were distributed on the posterior
(left) and entire (right) surface of the organ. Average RMS TRE values are plotted as a function of the num-
ber of control points and radial scale parameter ε . Optimal average RMS TRE values are denoted by as-
terisks, and numerical values are reported in Table A.1. The black border denotes areas where RMS TRE
values are within 1 mm of the minimum.

Table A.1: Optimal average RMS TRE values resulting from the parameter sweep.

Control Point Method Optimal Average # Control Radial Scale
Placement RMS TRE ± std (mm) Points ε

Posterior surface FEM 3.2 ± 0.8 40 -
RK 5.4 ± 1.1 190 0.005, 0.05

Entire surface FEM 3.5 ± 0.9 10 -
RK 4.6 ± 1.0 160 0.01

A.3.2 Registration Accuracy

The optimal parameters for the LIBR+FEM and LIBR+RK registration methods were then used to com-

pare organ deformations and individual target errors for example cases. The following optimal registrations

were examined: 1) k = 40, posterior surface distribution for LIBR+FEM method on the liver dataset and

2) k = 160,ε = 0.01, entire surface distribution for the LIBR+RK method on the liver dataset. Individual

target ground-truth locations for 35 targets in 4 out of the 112 deformations (deformations 44, 57, 67, and

84 denoted as L1-L4) are provided as a part of the Sparse Data Challenge for visualization, calculation, and

examination of individual target errors. The global organ deformations for the LIBR+FEM (green) and the

LIBR+RK (purple) methods are shown on the liver geometries in Figure A.3. The registered deformation

states using both methods appear qualitatively similar. In addition to using RMS TRE as a metric for evaluat-

ing registration performance, comparing the organ mesh shape after registration confirms that both methods

are producing similar global deformations.
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Figure A.3: Registered organs and targets from 4 example liver registrations (L1-L4). The undeformed
geometry (black) is compared to the deformed geometry using the LIBR+FEM method (green) and the
LIBR+RK method (purple).

A.3.3 Image Deformation

For image-guided surgery, deforming a volumetric image may be useful for visualizing the deformed anatomy.

As noted above, the Sparse Data Challenge liver phantom geometry was derived from a patient’s liver CT

image volume. Despite deformations being based on a silicone phantom counterpart, the original liver image

volume can be deformed using the deformation fields from our applied registration methods as a means to

compare image similarity among all imaging volumes (original and deformed). This process is shown in Fig-

ure A.4 for the 4 example liver data configurations for the LIBR+FEM method (green), the LIBR+RK method

(purple), and the undeformed original organ for reference (yellow). Vasculature features within the liver seg-

mentations for the deformed images look qualitatively similar when comparing the resulting deformed images

from the two registration methods.

A.4 Conclusion

In this work, regularized Kelvinlet functions are used for reconstructing deformation states on an elastic

tissue-mimicking liver phantom dataset. This method is evaluated against a more traditional FEM registra-

tion method as a comparator. The accuracy of both registration methods is generally comparable, with the

average optimal RMS TRE values ranging between 3-7 mm for both methods shown in Figure A.2. The
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Figure A.4: Image deformation results from the phantom liver dataset. An axial slice of the undeformed
segmented liver (yellow) shows the original anatomy. The LIBR+FEM and LIBR+RK methods are used to
deform the volume and segmentation contours (green and purple) for 4 example data configurations (L1-
L4).

optimal RMS TRE values were lower when using the LIBR+FEM method with 40 control points distributed

on the organ’s posterior surface than when using the LIBR+RK method with 160 control points and ε = 0.01

distributed on the entire organ’s surface. The Sparse Data Challenge liver dataset was designed as a con-

trolled experiment with well-defined materials and loading conditions. The phantom was composed of a

linear elastic silicone material, and deformations were caused by adding and removing padding under the

posterior surface of the liver phantom. The LIBR+FEM method models the unique geometry of the liver

phantom. Placing control points on the posterior surface with the LIBR+FEM method designates the anterior

surface of the organ as stress free and accurately represents the experimental conditions. The LIBR+RK

method models deformations in an infinite elastic domain and cannot represent the experimental conditions

as accurately as the LIBR+FEM method, which may be a cause of the degradation in TRE results. Overall,

the application of this method on the liver dataset demonstrates its utility on another organ system outside of

breast registration. Overall, using regularized Kelvinlet functions for sparse data registration is a promising

method for performing nonrigid, near real-time correction in image-guided surgery applications.
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[219] M. Pfeiffer, C. Riediger, S. Leger, J.-P. Kühn, D. Seppelt, R.-T. Hoffmann, J. Weitz, and S. Speidel,
Non-Rigid Volume to Surface Registration Using a Data-Driven Biomechanical Model, p. 724–734.
Springer International Publishing, 2020.

125



[220] Y. Fu, Y. Lei, T. Wang, P. Patel, A. B. Jani, H. Mao, W. J. Curran, T. Liu, and X. Yang, “Biome-
chanically constrained non-rigid mr-trus prostate registration using deep learning based 3d point cloud
matching,” Medical Image Analysis, vol. 67, p. 101845, Jan. 2021.

[221] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “Voxelmorph: A learning frame-
work for deformable medical image registration,” IEEE Transactions on Medical Imaging, vol. 38,
p. 1788–1800, Aug. 2019.

[222] I. Peterlı́k, H. Courtecuisse, R. Rohling, P. Abolmaesumi, C. Nguan, S. Cotin, and S. Salcudean, “Fast
elastic registration of soft tissues under large deformations,” Medical Image Analysis, vol. 45, p. 24–40,
Apr. 2018.

[223] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free galerkin methods,” International Journal for Nu-
merical Methods in Engineering, vol. 37, p. 229–256, Jan. 1994.

[224] W. L. Richey, J. S. Heiselman, M. J. Ringel, I. M. Meszoely, and M. I. Miga, “Tumor deformation
correction for an image guidance system in breast conserving surgery,” in Medical Imaging 2022:
Image-Guided Procedures, Robotic Interventions, and Modeling (C. A. Linte and J. H. Siewerdsen,
eds.), SPIE, Apr. 2022.

[225] R. H. Griesenauer, J. A. Weis, L. R. Arlinghaus, I. M. Meszoely, and M. I. Miga, “Breast tissue stiffness
estimation for surgical guidance using gravity-induced excitation,” Physics in Medicine and Biology,
vol. 62, p. 4756–4776, May 2017.

[226] W. L. Richey, J. S. Heiselman, M. J. Ringel, I. M. Meszoely, and M. I. Miga, “Soft tissue monitoring
of the surgical field: Detection and tracking of breast surface deformations,” IEEE Transactions on
Biomedical Engineering, vol. 70, p. 2002–2012, July 2023.

[227] M. J. Ringel, W. L. Richey, J. S. Heiselman, A. Stabile, I. M. Meszoely, and M. I. Miga, “Image guid-
ance system for breast conserving surgery with integrated stereo camera monitoring and deformable
correction,” in Medical Imaging 2024: Image-Guided Procedures, Robotic Interventions, and Model-
ing (C. A. Linte and J. H. Siewerdsen, eds.), SPIE, 2024.

[228] M. Van Goethem, W. Tjalma, K. Schelfout, I. Verslegers, I. Biltjes, and P. Parizel, “Magnetic resonance
imaging in breast cancer,” European Journal of Surgical Oncology (EJSO), vol. 32, p. 901–910, Nov.
2006.

[229] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jen-
nings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis, “3d slicer
as an image computing platform for the quantitative imaging network,” Magnetic Resonance Imaging,
vol. 30, p. 1323–1341, Nov. 2012.

[230] T. Ungi, A. Lasso, and G. Fichtinger, “Open-source platforms for navigated image-guided interven-
tions,” Medical Image Analysis, vol. 33, p. 181–186, Oct. 2016.

[231] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng, H. Liu, J. Blevins, J. Arata,
A. J. Golby, T. Kapur, S. Pieper, E. C. Burdette, G. Fichtinger, C. M. Tempany, and N. Hata,
“Openigtlink: an open network protocol for image-guided therapy environment,” The International
Journal of Medical Robotics and Computer Assisted Surgery, vol. 5, p. 423–434, July 2009.

[232] A. Lasso, T. Heffter, A. Rankin, C. Pinter, T. Ungi, and G. Fichtinger, “Plus: Open-source toolkit
for ultrasound-guided intervention systems,” IEEE Transactions on Biomedical Engineering, vol. 61,
p. 2527–2537, Oct. 2014.
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