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CHAPTER I 

INTRODUCTION 

Microelectronics are used in virtually every human-produced system in the modern era, 

making microelectronics reliability a paramount issue for engineers. As electronic parts are used, 

wear-down due to operational and external stresses results in degradation and eventually failure in 

these parts. The ability to precisely define the failure behavior of electronic parts and predict when 

they might fail is essential for insuring mission success. In space, the situation is even more dire 

than that on the surface of Earth as parts cannot be replaced, and the operational environment is 

far more hostile due to extreme temperature and radiation. 

Radiation hardness assurance (RHA) is necessary for evaluating the suitability of an 

electronic part for operating in a radiation environment, particularly a space environment. Military 

guidelines incorporate worst-case (WC) constants for environment radiation dose and a mean part 

failure dose when calculating a radiation design margin (RDM) to categorize the hardness of parts 

for space missions [1]. However, the RDM method does not account for the variability of the 

environment, and categorizations lack formal mathematical rigor and design flexibility. As such, a 

high degree of overdesign is inherent in this method of RHA. In space missions with billion-dollar 

payloads and human life onboard, the overdesign required by this framework is acceptable due to 

the high cost of failure. However, for missions with higher risk tolerance, such overdesign may be 

an unnecessary burden and even prohibit mission completion. Incorporating all aspects of failure 

variability allows more flexibility in determining the suitability of the part for a mission. Additional 

engineering flexibility reduces overdesign, a cost- and time-saver that can significantly benefit 

NewSpace and smaller space missions (e.g., CubeSats) [2], [3].  
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RHA has evolved over the past decade as probabilistic radiation environment models have 

been released [4], [5], [6], [7]. With the availability of these probabilistic environment models, a 

new method to RHA was developed in [2] for analyses of total ionizing dose (TID) and 

displacement damage dose (DDD) effects. This method uses stress-strength inference, integrating 

the product of an environment dose distribution and a distribution describing device behavior over 

a range of doses to obtain a TID failure probability. This method is more mathematically rigorous 

than the RDM method and provides engineers with a metric directly incorporating the variability 

of both the environment and the device response separately. Using the probabilistic method allots 

greater design flexibility to the radiation effects engineer for qualifying the part for space usage 

[2].  

To bound the error from device sample size, a method was developed in [3] that uses 

likelihood ratios to achieve a confidence-bounded family of curves and assess the worst-case 

failure probability. Within a 90% confidence level (CL) contour of the lognormal parameter space, 

the worst-case fit was selected as g(x) and used in the integration. The confidence bounds relied 

on fitting a set of total-dose failure levels obtained in radiation testing of the device. 

This work expands the likelihood ratio method of bounding failure probability [3] to 

incorporate datasets consisting of devices that survived radiation testing (survivors) or a mixture 

of failures and survivors. This scenario occurs often in missions using commercial-off-the-shelf 

(COTS) technologies, as manufacturers frequently test to a certain dose rather than to failure. 

COTS technologies may be preferential over their radiation-hardened counterparts due to their 

superior performance and capacity. Therefore, developing a framework to incorporate available 

TID data on these parts is beneficial. To use survivor data, an alternative likelihood definition 

incorporating tests not followed to failure is used to identify an area of interest within the device 



3 

 

failure parameter space. The 90% confidence bound is used as a mask that, coupled with an upper 

bound on physically relevant distributions, allows for the determination of the worst-case failure 

probability to a 90% confidence level in a given environment with stress-strength analysis. This 

probability is selected as the metric for determining whether a part is suitable for use in the space 

environment under consideration. It is demonstrated that bounding the failure probability due to 

cumulative damage of piece-parts with survivor data permits a more comprehensive analysis of 

survivability in variable space environments than existing methods. 

Some of the preceding paragraphs are reprinted and modified from C. Champagne et al., “A 

confidence-based approach to including survivors in a probabilistic TID failure assessment,” 

IEEE Trans. Nucl. Sci., Early Access, Nov. 2023. © 2023 IEEE. 
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CHAPTER II 

BACKGROUND ON RADIATION EFFECTS AND ENVIRONMENTS 

Total Ionizing Dose (TID) 

TID is a measure of the amount of ionizing energy deposited in a material per unit mass 

and can cause shifts in device parameters, posing a concern for devices operating in radiation 

environments. The parameter shifts are caused by charge build-up in gate and field oxides. As 

ionizing particles traverse a device, electron-hole pairs are excited out of their resting states. While 

electrons are swept away by electric fields, holes have much lower mobility and traverse the oxides 

more slowly. The holes may eventually be trapped within an oxide defect and become oxide trap 

charge. Additionally, holes may perturb hydrogen ions in the oxide, causing them to drift to the 

interface and create interface traps. This process for an MOS device is shown in Figure 1, taken 

from [8]. Different types of radiation generate different charge carrier yields, with Co-60 gamma 

rays typically having the highest yield; thus, Co-60 is often used in TID testing to generate a worst-

case bound on device response. The trapped charge can deplete the substrate at the oxide interface, 

causing leakage paths to form in the device. Additionally, interface traps can degrade carrier 

mobility.  

Factors contributing to TID-induced failure vary based on the type of device, device 

operating conditions, and radiation particle species. The very definition of failure may differ 

depending on the application. However, for most TID-induced parametric failure, the gradual 

build-up of charge in oxide regions as described above is the underlying failure mechanism. For 

MOS devices, the threshold voltage will shift, eventually going out of spec. Table I gives a 

summary of the main effects of the threshold voltage shift in MOS devices [9]. For bipolar devices, 

gain degradation is typically the parameter of interest [8], [10]. 
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Fig. 1. Band diagram of an MOS device being irradiated, generating charge carriers in the oxide 

and subsequently trapping them in defects, from [8]. 

 

Table I. Device-level TID effects in MOS devices and corresponding circuit-level effects [9]. 

Device-Level Effect Circuit-Level Effect 

+/- ΔVTH NMOS, - ΔVTH PMOS Failure to switch 

- ΔVTH NMOS Excessive leakage current 

+ ΔVTH NMOS, - ΔVTH PMOS Speed reduction 

+/- ΔVTH NMOS, - ΔVTH PMOS Loss of noise immunity 

 

 

Displacement Damage (DD) 

 DD occurs when incident energetic particles displace atoms within the lattice of a material. 

The displaced atom and corresponding gap in the atomic lattice form a ‘Frenkel pair’, and the 

stability of the pair is determined by dopants and impurities in the atomic lattice. A single displaced 

atom is known as a point defect, while larger cascades of defects are called cluster defects. Certain 

types of radiation, like gamma rays and electrons, tend to produce point defects, while neutrons 

tend to generate cluster defects. Energy ranges for protons and primary knock-on atoms and the 

corresponding defects are shown in Fig. 2. Cluster defects are more stable than point defects and 



6 

 

take longer to anneal. As such, neutrons tend to produce a worst-case bound on displacement 

damage effects [11]. 

 

Fig. 2. Number of defects (N) as a function of incident particle energy, with a corresponding 

schematic of displacement damage defects. Taken from [11]. 

 

Like with TID, DD can produce a variety of effects in devices which degrade performance 

and ultimately lead to parametric failure. The primary mechanism is the introduction of extra states 

in the band gap of the semiconductor, reducing the lifetime and mobility of minority carriers and 

enabling tunneling through energy barriers, as seen in Fig. 3. This can result in gain degradation 

in bipolar transistors as recombination current in the base-emitter junction increases, power output 

degradation in LEDs, and charge transfer ratio degradation in optocouplers [11], [12], [13], [14]. 
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Fig. 3. Five device-level effects resulting from extra band gap states induced by displacement 

damage. Taken from [12]. 

 

 The amount of damage induced by DD can be measured with displacement damage dose 

(DDD), an equivalent to rads for TID. DDD is calculated with the following equation,  

𝐷𝐷𝐷 = 𝐶 × 𝑁𝐼𝐸𝐿 × 𝜑                                            (1) 

where NIEL is the non-ionizing energy loss parameter, φ is the incident fluence, and C is a unit 

conversion constant. If C is 1, then DDD is in units of MeV/g [2]. Additionally, for a spectrum of 

fluence, DDD is calculated with the following,  

        𝐷𝐷𝐷 = ∫ 𝑁𝐼𝐸𝐿(𝐸) ∙
𝑑𝜑

𝑑𝐸
𝑑𝐸                                                     (2) 

where E is the energy of the incident particle [13]. NIEL allows incident fluence to be correlated 

with device damage and is the standard for DD hardness assurance, although it does have 

significant limitations [11].  
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Variability of Part TID and DD Response 

 In the field of reliability, cumulative, parametric failure is often described with the 

lognormal distribution [15], [16], [17]. The underlying reason for this behavior is that the failure 

mechanism can often be described by the multiplication of random variables [17], [18]. This 

scenario is also seen in TID and DD degradation and can be used to justify the usage of a lognormal 

distribution to model these failure modes.  

Eq. 3 shows the TID-induced hole yield after initial recombination for the oxide of an 

irradiated device. Nh is the hole yield, f(Eox) is a yield factor as a function of the electric field across 

the oxide, go is the initial charge pair density per rad (material dependent), D is the total dose in 

rads, and tox is the oxide thickness [8]. 

𝑁ℎ = 𝑓(𝐸𝑜𝑥)𝑔𝑜𝐷𝑡𝑜𝑥                                                    (3) 

Many of the terms in this equation are random variables. For instance, go and to will vary 

part-to-part due to process and wafer variation. f(Eox) will also be affected by variation in the 

incident radiation and the production of free charge carriers as the device is being irradiated. As 

such, the hole yield is the product of random variables. Additionally, the parameter go is on the 

order of 1012-1013 pairs/cm3/rad (for SiO2), so as devices are irradiated well into the kilorads, 

charge carriers are multiplied heavily within the oxide. 

The holes will either be annealed out of the oxide (e.g., neutralized by tunneling electrons, 

thermal emission) [19] or become trapped within defects in the oxide or at the oxide/substrate 

interface. Additionally, some holes may perturb the oxide lattice as they transport through, 

dislodging hydrogen ion impurities. Those that become trapped in the oxide form a trap density 

Not, while the traps at the interface (likely a result of the hydrogen ions) form the trap density Nit. 

The threshold voltage shift induced in a part may then be calculated as in (4). The individual 
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voltage shifts in MOS devices due to oxide and interface traps, along with the net threshold voltage 

shift, are shown in Figure 4, taken from [20]. The multiplicative nature of hole formation and of 

underlying variation in this process between devices is what causes TID-induced parametric failure 

to follow a lognormal distribution across different device types. 

 

∆𝑉𝑡ℎ =  𝑞∆𝑁𝑖𝑡 𝐶𝑜𝑥⁄ + 𝑞∆𝑁𝑜𝑡 𝐶𝑜𝑥⁄             (4)  

 

Fig. 4. Voltage shifts in capacitors and transistors due to oxide traps and interface traps, and total 

inversion/threshold shift, as functions of dose. Taken from [20]. 

 

Failure due to DDD can be modelled with the lognormal distribution as well [2], with 

similar justification. NIEL, one of the primary components of DDD, is the energy loss due to 

elastic and nuclear inelastic collisions and is correlated with a device’s damage factor, or the 

amount of device degradation of a particular parameter. It is calculated with the following,  

𝑁𝐼𝐸𝐿 = (
𝑁

𝐴
) [𝜎𝑒𝑇𝑒 + 𝜎𝑖𝑇𝑖]           (5) 

where N is Avogadro’s number, A is the gram atomic weight of the material, σe and σi are the elastic 

and inelastic cross sections, and Te and Ti are the effective average recoil energies (corrected for 

ionization loss) from the elastic and inelastic collisions [11]. Both σ’s and T’s are random variables 
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which vary from device to device, as well as the radiation particle fluence in (1). As such, DDD 

results from the multiplication of random variables and can be modelled with the lognormal 

distribution. 

 The part variability discussed in this section is particularly problematic with COTS parts. 

In general, parts from different lots may exhibit systematically different failure behavior due to 

processing changes, both purposeful and inadvertent. This problem is amplified with COTS parts, 

as the process may not be regulated and may be changed without warning [21], [22]. Additionally, 

the wafer or production lot information for COTS parts may not be available or made public, so 

the very definition of a COTS “lot” becomes ambiguous [21]. A COTS “lot” may simply consist 

of all parts bought in a single purchase.  

 Even within a single wafer, variations in doping, layer thicknesses, and other properties 

across the wafer result in radiation response variation, affecting RHA practices [23], [24], [25], 

[26]. Using small sample sizes to derive the parameters of this distribution may yield substantial 

errors even when testing controlled devices. In the case of COTS parts, where the wafer location 

of a given part is unlikely to be known, it is not possible to know if the sample will encompass the 

full range of the lot failure distribution.  

The harness assurance framework discussed in this thesis accounts for the part performance 

uncertainty in a mathematically rigorous way, as detailed in the following chapter. This work does 

not attempt to account for lot-to-lot variability, in which multi-modal distributions may appear. 

 

Probabilistic Environment Models 

The previous standard models for the trapped particle environment in Earth’s 

magnetosphere were AE8 and AP8. These models provided deterministic, omnidirectional electron 
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and proton fluxes, respectively, based on more than 20 satellite data sources from the 1960s and 

1970s. Versions for solar maximum and solar minimum exist; there are no means for interpolating 

to intermediate points in the solar cycle. Additionally, AP8 models have their most uncertainty at 

low-altitude orbits [27], [28]. 

These models have been the de facto standard for modelling the near-Earth radiation 

environment due to the range of particle energies and radiation belt coverage. Electrons in the 

range of 0.04 MeV-7 MeV and protons in the range of 0.1 MeV-400 MeV are covered. However, 

extrapolation is used to cover some of this range (e.g., arbitrary power law used for <1 MeV). 

Additionally, the models are static, meaning that they do not encompass the dynamic nature of the 

radiation belts (and, strictly speaking, are only valid for the time periods the data was obtained) 

[28].  

The AE9 and AP9 models incorporate new radiation data from 45 satellite sources and 

produce statistics which incorporate both the measurement and space weather uncertainty. 

Confidence intervals are calculated to support system designs at various degrees of criticality [29].  

In terms of coverage, the AE9 covers electrons in the range of 0.04 MeV-10 MeV, a slight 

improvement from AE8. Additionally, for total dose calculations, bremsstrahlung is included in 

the output. For AP9, proton coverage in the range of 0.1 MeV-2 GeV provides a much larger range 

than the AP8 predecessor. Data from a wide range of the solar cycle, not just the solar max and 

min, are used in the models [4]. 

Flux maps are derived from satellite data using the median and 95th percentile of the fitted 

distribution function. Error maps accounting for instrument uncertainties are also produced. 

Interpolation algorithms are applied to fill the space between satellite measurements. A Monte 

Carlo model is used to compute a spatiotemporal covariance matrix to account for space weather 
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dynamics. By running the model N times with different random seeds, the user can get N different 

flux profiles and compute desired statistics with the sample profiles [4]. 

The model can be run in three modes: mean, perturbed mean, and Monte Carlo. The mean 

mode acts much like the AP8/AE8 models and only utilizes the mean flux maps. The perturbed 

mean mode includes uncertainty from measurements and data gap extrapolations with the flux 

map. The Monte Carlo mode is similar to the perturbed mean mode with the addition of space 

weather variability [4]. 

Users can interact with the model through a command line interface or a GUI interface. 

The user must input either orbital parameters or an ephemeris file, as well as which statistics to 

compute. Output text files populate the set output directory, and this data can be used to plot flux, 

fluence, and total dose curves. Users can run in mean, perturbed mean, and Monte Carlo modes. 

The software can be downloaded for Windows on the Air Force Research Laboratory’s website 

[30].  

The ESP model, implemented by NASA, incorporates data from the past three solar cycles 

to fit a distribution of proton fluences during solar maximum at a distance of 1 AU from the Sun. 

Other solar proton models, such as the King and JPL models, only incorporate solar cycle 19 and 

20 and are limited in the number of data points used, therefore limiting their statistical validity 

(King more so than JPL). Additionally, these models were largely empirical, and the data fit to 

either a lognormal distribution or a power law distribution. These fits, however, poorly estimated 

the extremes of the fluence distribution (the largest and smallest events) [5].  

One of the key advantages of the ESP model is that the selection of the underlying 

distribution is based on Maximum Entropy Theory – the number of event fluences are fit to a 

truncated power law selected in such a way as to minimize the bias of a fit. From this initial 
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distribution, model parameters for a lognormal distribution predicting the total fluence over a 

desired number of solar active years is found. Not only does this method result in a more accurate 

data fit, but it also adds mathematical rigor to the process of selecting a fit. Moreover, data from 

solar cycles 20-22 are used, incorporating more data points than previous models and expanding 

the proton energy range covered [5].   

The following equations are used to calculate the lognormal parameters for the total 

differential fluence in a single solar active year 1 AU from the Sun,  

Φ𝑚𝑒𝑎𝑛 = 𝑒𝑥𝑝 (𝜇 +
𝜎2

2
)                                                         (6) 

   Φ𝑅𝑉 = exp(𝜎2) − 1                                                               (7) 

where Φmean is the mean fluence, ΦRV is the relative variance of the fluence, and µ and σ are the 

lognormal distribution parameters describing the cumulative fluence over the solar active year. 

The Φmean can be multiplied by T and ΦRV divided by T to adjust the cumulative fluence distribution 

parameters for T active years [5]. 

ESP is implemented in a software package distributed by NASA and can be requested for 

Windows machines [31]. It is also available on SPENVIS [32]. 

To use these models with the probabilistic framework, Monte Carlo simulations were 

performed in order to generate cumulative distribution functions (CDFs) describing the probability 

of encountering a certain amount of TID or DD over the course of a mission in a particular orbit. 

Each trial was ranked from smallest to largest, and the percentile of each trial was found by 

dividing the rank by the number of trials plus one. 
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CHAPTER III 

PROBABILISTIC HARDNESS ASSURANCE FRAMEWORK 

Stress-Strength Analysis in Reliability 

 While stress-strength analysis is often associated with materials science, many other fields, 

including microelectronics reliability, must consider the “stresses” and “strengths” specific to their 

components and systems. Microelectronics engineers may not have to deal with failure due to 

physical wear and friction, but other stressors, such as electric fields, heat, and radiation, may 

result in failure if a part’s tolerance, or “strength”, is surpassed [33], [34], [35].  

 As derived in [34] and [35], when the stress and strength of a part can be described 

probabilistically, the probability of the part’s failure when exposed to the stressor can be written 

as,  

  𝑃(𝑠 > 𝑔) = ∫ (1 − 𝐹𝑠(𝑥))𝑓𝑔(𝑥)𝑑𝑥
∞

𝑥=0
          (8) 

where s is the stress on the part, g is the strength of the part, Fs(x) is the cumulative distribution 

function (CDF) of the stress, and fg(x) is the probability density function (PDF) of the strength. 

The following sections will demonstrate how this formulation can be applied to microelectronics 

vulnerable to TID and DDD. 

 

The following paragraphs and figures are reprinted and modified from C. Champagne et al., “A 

confidence-based approach to including survivors in a probabilistic TID failure assessment,” 

IEEE Trans. Nucl. Sci., Early Access, Nov. 2023. © 2023 IEEE. 
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Accounting for Environment Variability 

 Eq. 9 is used to calculate a failure probability for a device vulnerable to TID or DDD in a 

radiation environment, where x is the total dose, H(x) is the environment dose CDF, g(x) is the 

device failure dose probability density function (PDF), and Pfail is the failure probability [2].  

                      𝑃𝑓𝑎𝑖𝑙 = ∫[1 − 𝐻(𝑥)] ∙ 𝑔(𝑥)𝑑𝑥                        (9) 

To create the TID environment dose distribution, the AP9, AE9, and ESP models are used 

to generate Monte Carlo runs of 1-year geosynchronous earth orbit (GEO) doses. SHIELDOSE2 

was used to transport the dose through 200 mils of Al shielding. Trials were ordered by dose to 

generate a CDF of the total dose distribution for the environment. To achieve a 2-year environment, 

doses were multiplied by 2, shown in Fig. 5. This serves as H(x) in (9). 

 

 

Displacement damage dose CDFs follow a similar routine. However, because 

SHIELDOSE-2 only generates TID as output, another shield transport code needed to be used to 

get transported flux values for the DDD calculation. This will be discussed in detail in Chapter IV. 

 

Fig. 5. The distribution H(x) of environmental doses for a 2-year GEO orbit with 200 mils of Al 

shielding. Doses were generated for a 1-year mission with AP9, AE9, and ESP Monte Carlo trials, 

ranked, and multiplied by 2. 
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The device failure PDF g(x) is generated by fitting failure data found in ground-based 

radiation testing of the device to a lognormal distribution. 

 

Accounting for Error in g(x) 

Due to severe time and budget constraints, the sample sizes of devices used in these tests 

are often small, so the uncertainty for choosing a g(x) to fit failure data can be quite large. 

Examining a family of lognormal g(x) curves within a desired confidence level and selecting the 

worst-case fit that maximizes the failure probability provides some margin against this uncertainty. 

A method was developed in [3] that uses likelihood ratios to achieve a confidence-bounded family 

of curves and assess the worst-case failure probability.  

The likelihood value of a fit describes the probability that the chosen fit will produce the 

data in question [36]. One method for bounding fit parameters to a certain confidence level is to 

use likelihood ratios to create confidence contours. This method is desirable for determining 

confidence as it is independent of the distributions involved, so this approach may be followed 

regardless of assumed device failure distribution [3], [36].  

As described in [3], (10) can be used to define confidence contours in the parameter space, 

           
Λ({𝑥⃗},𝐶𝐿)

Λ({𝑥⃗},𝑀𝐴𝑋)
~exp (−0.5 ∗ 𝐼𝑁𝑉𝜒2(1 − 𝐶𝐿, 𝐷𝑂𝐹)).                               (10) 

Here the Λ functions are the likelihood functions of a parameter set {𝑥⃗} at a desired confidence 

level (CL) and at maximum likelihood (MAX), and DOF represent the degrees of freedom of the 

distribution of {𝑥⃗}. 

With the lognormal distribution, which has two degrees of freedom, any parameter pair 

producing a likelihood within a factor of 10 of the maximum likelihood is within the 90% 

confidence contour. The parameters 𝜇𝑔 and 𝜎𝑔 are the lognormal mean and standard deviation, 
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respectively, and are the parameters of interest. Fig. 6 shows an example of confidence contours 

for lognormal fits to four failure doses of a 2N2222 transistor (taken from [3]) with the 90% 

confidence boundary shown by the dashed oval. Within a 90% confidence level (CL) contour of 

the lognormal parameter space, the worst-case fit is selected as g(x) and used in the integration in 

(9).  

 

Fig. 6. A heatmap of confidence contours for lognormal fits of the following 2N2222 failure doses, 

in krad(Si): 39.1, 47.98, 55.18, 70. The parameter pairs with likelihood ratios >0.1 are within a 

90% confidence contour (dashed oval). Reproduced from [3]. 

 

Accounting for Survivor Data 

The confidence bounds thus far have relied on fitting a set of total-dose failure levels 

obtained in radiation testing of the device. The maximum likelihood for failure distribution 

parameters requires failure data, but survivor data can still be used to exclude unlikely regions of 

the parameter space.  
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To incorporate survivor data, the formulation for type-I censored likelihood is used. Failure 

datasets that contain survivors are known as type-I censored data. NIST provides the following 

definition of type-I censored likelihood [37], 

   Λ = 𝐶(∏ 𝑓(𝑡𝑖)
𝑟
𝑖=1 )[1 − 𝐹(𝑇)]𝑛−𝑟 .                                   (11) 

F and f are the CDF and PDF of the device failure distribution, respectively, ti is the ith failure dose, 

and T is the dose to which the survivors were tested. C is a constant that divides out and plays no 

part in the analysis. The product of the f(ti) values represents the likelihood of the distribution 

generating the r failure data alone. This term is multiplied by the probability of n-r devices 

surviving, generating an overall likelihood of the chosen fit reproducing the recorded data.  This 

definition is used to generate confidence contours for device failure fits of survivor or mixed 

failure-survivor datasets.  

Fig. 7 shows heatmaps of the type-I censored confidence contours for the parameter space 

of the lognormal device failure distribution, with different sized survivor datasets, tested to 40 

krad(Si). The 90% confidence contour consists of regions with a likelihood ratio > 0.1 (above the 

dashed line). Increasing the number of samples in the dataset increases the slope of the confidence 

contours, reducing the spread of the distribution for a given mean. The plot on the far right shows 

the confidence contours for 10 survivors for the four failure doses of the 2N2222. The contours 

have a similar but more skewed shape to the contours derived only from the failure doses in Fig. 

6, further constraining the parameter space.  
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Unlike the cases where failure datapoints are included, the confidence boundary derived 

from survivors does not allow us to define a closed “area of interest” within the parameter space 

by itself. However, not all parameter space constitutes real, physical failure distributions expected 

for parts. For instance, when the standard deviation (or lognormal standard deviation) is extremely 

 

Fig. 7. Lognormal parameter space type-I censored likelihoods with datasets of 5, 10, and 22 

survivors, tested to 40 krad(Si). The results of mixing 10 survivors with the 2N2222 failure doses 

are shown in the far-right image. The 90% confidence contour is emphasized with the white dashed 

line. 
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large, the distribution is so wide that parts become as likely to fail at extremely low doses as at 

extremely high doses. This type of behavior is unusual for electronic parts; in fact, a lognormal 

standard deviation of about 0.5 has been selected as worst-case for silicon bipolar transistor failure 

distributions [38], [39]. Likewise, parts with mean failure doses in the Grad(Si) range are rare and 

typically unnecessary for space applications. To address this, engineering judgement is used to 

assess a realistic upper bound on expected device performance for the mission scenario. The upper 

dose to which a part is expected to survive is selected such that (a) the range of probable 

environment doses are orders of magnitude lower, and (b) the bounded Pfail is relatively insensitive 

to changes in upper dose. For this work, it is assumed that 99% of devices will fail by 1 Mrad(Si), 

so failure distributions describing device performance beyond this limit are not considered for g(x). 

This limits the total parameter space searched and permits bounding of Pfail despite the lack of 

failure data. The largest Pfail within the 90% confidence level is defined as the metric for 

determining part suitability. 
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CHAPTER IV 

DEMONSTRATION OF PROBABILISTIC FRAMEWORK 

TID Example 

The following paragraphs and figures are reprinted and modified from C. Champagne et al., “A 

confidence-based approach to including survivors in a probabilistic TID failure assessment,” 

IEEE Trans. Nucl. Sci., Early Access, Nov. 2023. © 2023 IEEE. 

To analyze the failure probability in the environment over the parameter space for device 

failure, each parameter pair is iterated over and used to generate the g(x) in (8), i.e., the device 

failure PDF. The failure probability within the environment is calculated with each parameter pair 

and plotted on a heat map. As a demonstration, one of the examples from Fig. 7 is used for a TID 

analysis, 10 survivors at 40 krad(Si). Similar cases are seen frequently in COTS datasets [40], [41], 

[42], [43].  

The failure probabilities Pfail for the 2-year GEO, 200 mils Al shielding environment are 

shown in Fig. 8 over the parameter space of the lognormal g(x). The 1-year environment is not 

shown but is similar. The 10-survivor data at 40 krad(Si) are used as an example for analysis within 

this environment. The 90% confidence contour of this 10-survivor sample is applied as a lower 

bound (line A). The upper dashed line in Fig. 8 (line B) represents the limit on expected part 

performance generated via engineering judgement. In summary, the Pfail contours are unique to the 

environment, dashed line A corresponds to the confidence contour derived from test data, and 

dashed line B corresponds to an upper bound on expected device performance. 

By applying the 90% confidence contour and upper bound as a mask onto the Pfail, obtained 

by considering only the triangular area between the bounds, the failure probability of the device is 

bounded in the environment. The confidence contours for the mixed dataset can be applied as a 
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mask in similar fashion. The 5, 10, and 22 sample survivors in the 2-year environment yield worst-

case failure probabilities of 8.6, 3.1, and 1.4%, respectively, to a 90% confidence level. The 

parameter pair for the worst-case device failure distribution for the 10-survivor example is shown 

by the dot at the intersection of the bounds in Fig. 8. Table II applies the procedure to TID test 

results on other parts found in the literature. 

 

 

TABLE II 
2 YEAR GEO, 200 MILS AL 

Manufacturer 

Part Number 
Test Results 

WC Pfail, 
90% CL 

(%) 

Semicoa 
JANS2N2907AUB 

88 survivors to 30 krad(Si) [41] 1.5 

Semicoa 

JANS2N5339 

10 survivors to 36 krad(Si) [41] 3.7 

Microchip 
SY88422L 

2 survivors to 100 krad(Si) [41] 10.0 

Micropac  

66212-301 

12 survivors to 29.3 krad(Si) [41] 4.4 

Maxim MAX913  5 survivors to 100 krad(Si) [42] 1.4 

Semicoa 

JANSF2N2857 

12 survivors to 300 krad(Si) [43]  1.0 

Microchip 
MIC4427 

1 failure at 20 krad(Si),  
7 survived to 30 krad(Si) [44] 

17.9 

  

 

Fig. 8. Failure probabilities for a 2-year GEO, 200 mils Al shielding environment with the lower 

bound of the 90% confidence interval shown by the dashed line A, based on 10 survivors at 40 

krad(Si). Line B forms an upper bound of realistic parameter pairs. 
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In addition to the environment analyzed in Fig. 8, other orbits and shielding thicknesses 

were analyzed for the lognormal device-failure parameter space. LEO and elliptical orbits showed 

similar failure probability contours to those in Fig. 8 but shifted along the 𝜇𝑔 axis (corresponding 

to increases and decreases in the mean total dose encountered), as did environments with different 

shielding thicknesses. The analysis for these environments remains the same. The resulting Pfail of 

a fixed g(x) and different environments are shown in Fig. 9. As the shielding thickness increases, 

the average dose encountered decreases, thus decreasing Pfail. 

 

 

The effect of the upper bound, set at 99% device failure at 1 Mrad(Si), was investigated by 

modifying the total dose at which 99% of devices fail for the 10-survivor dataset. Halving the dose 

to 500 krad(Si) and doubling the dose to 2 Mrad(Si) only modified the 90% worst-case failure 

probability by roughly ±1%, to 2.2% and 4.1%, respectively. These results indicate that the upper 

bound used to constrain the parameter space does not heavily influence the worst-case failure 

probability generated for this environment. 

 

Fig. 9. The WC failure probability to a 90% CL of a device within different orbits with various 

thicknesses of Al shielding. 
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In addition to the lognormal distribution, the Weibull distribution is commonly used in 

cumulative failure analysis, including TID failure analysis [45], [46]. To ensure the analysis 

accommodates any type of distribution, the examples used previously were fit with Weibull curves 

instead of lognormal curves, and the environment Pfail space was mapped according to the Weibull 

shape and scale parameters. Since the two-parameter Weibull form was used, it has the same degree 

of freedom as the lognormal distribution. Thus, the relationship between the likelihood ratio and 

confidence level dictated by (10) remains the same. Fig. 10 shows the Weibull confidence contours 

for the same data used in the lognormal plots, with the scale parameter 𝜆𝑔 on the y-axis and the 

inverse shape parameter 1/𝑘𝑔 on the x-axis. The inverse shape parameter is plotted in order to be 

able to compare more readily with lognormal heatmaps, as the “area of interest” is unbounded for 

increasing kg. However, as kg increases, the failure probability decreases, so this does not affect 

our process of finding the worst-case failure probability. 

 

 

  

Fig. 10. Confidence contours for Weibull fits of the (a) 2N2222 failure doses and (b) 10 survivor, 

40 krad(Si) data. 

 

 

(a) (b) 
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The failure probabilities for the GEO environment with a Weibull device failure 

distribution are shown in Fig. 11. The 90% worst-case failure probability parameter pair is 

indicated by the dot where the lower (line A) and upper (line B) bounds intersect. Both bounds 

were determined in the same way as the lognormal case. The 90% confidence level, worst-case 

failure probability for a Weibull fit of the data is 7.3%. Note that this Pfail is larger than that 

generated with a lognormal fit of the same data.  

 

 

One should note that an additional restriction on the shape parameter, kg, may also be 

necessary for proper modelling of the TID failure mechanism with Weibull. For kg below 1, the 

Weibull function monotonically decreases rather than increasing to a peak and then decreasing. 

This type of function may be more representative of infant mortality than failure from cumulative 

effects. 

Although the shape of the confidence and Pfail contours differ dramatically from the 

lognormal case, the contours still bound the worst-case Pfail within an area of interest, and the RHA 

 

Fig. 11. Failure probabilities for the 2-year GEO environment mapped with a Weibull device 

failure distribution. Weibull scale and inverse shape parameters are along the y- and x-axis, 

respectively. 
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steps remain the same. As such, if there is uncertainty about the type of distribution that describes 

the device data, multiple different distributions may be examined. Other RHA methods may 

require an assumption of the device failure distribution [39].  

The analysis presented so far has assumed the TID testing is performed in-situ; that is, 

device measurements are made while the device is being irradiated, allowing precise failure doses 

to be determined if failure is encountered. However, step-stress measurements may also be used 

for device characterization and lot testing [1], [47]. In many testing scenarios, step-stress may be 

the only practical test method. For instance, if a large number of devices must be read out, in-situ 

testing may prove too cumbersome. In this situation, device failures will be in dose bins rather 

than exact doses.  

To extend the framework to incorporate interval data, the following likelihood formulation 

for readout data from [37] can be used, 

          Λ = 𝐶(∏ [𝐹(𝑇𝑖) − 𝐹(𝑇𝑖−1)]𝑟𝑖𝑘
𝑖=1 )[1 − 𝐹(𝑇)]𝑛−∑ 𝑟𝑖

𝑘
𝑖=1 .          (12) 

Here Λ, C, F, and n are defined as in (10). (Ti-1, Ti) are the doses bounding the ith interval, with T0 

defined as 0. T is the dose to which the survivors were tested, k is the number of intervals, and ri 

is the number of failure data points in the ith interval. Both survivor and failure data points are 

accounted for. 

To elucidate this formulation with an example, consider the failure data for an AD9050 

converter from [48], shown in Table III. Within a lower dose environment like a 1-year LEO orbit 

with 200 mils of Al shielding, the interval data produces a WC failure probability of 1.8% with 

90% confidence. This method allows for a more rigorous examination of interval data than simply 

assuming failure at the starting dose of each bin, which may be overly conservative.  
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TABLE III 
TID FAILURE FOR AD9050, IN INTERVALS 

Dose Interval (in krad(Si)) Failures per Bin 

0-5 1 

5-10 2 

10-20 0 

20-30 3  

30-50 1 

 

Code Workflow 

 A workflow diagram for the code implementing the TID framework is shown in Fig. 12. 

The data from the environment model is fed into a Python script via a .csv file, where the first 

column is TID and the second column is cumulative probability. Doses are outputted into .txt files 

from IRENE, and a Python script is used to convert the .txt file to a .csv file. Doses are ranked 

smallest to largest (lowest percentile to highest percentile) and multiplied by two to achieve a full 

sphere of dose, as SHIELDOSE2 only outputs calculation over a hemisphere. Orbits over a time 

period of one year were simulated with environment models; for time periods longer than a year, 

doses were multiplied by the number of years desired. Once fed into the script, a linear 

interpolation is performed on the environment doses using the SciPy interp1d function.  

 

Fig. 12. Workflow diagram of the probabilistic TID RHA implementation. 
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One should note that, because a linear interpolation is used to create the environment CDF, 

the number of Monte Carlo trials used to generate the CDF will affect the resolution of the final 

Pfail calculation. In particular, the cumulative probability plateaus after the final inputted 

environment dose; for instance, if the largest simulated dose in the environment is 50 krad(Si) at 

the 99th percentile, then all doses above 50 krad(Si) will correspond to the 99th percentile also. 

Thus, the final Pfail will artificially plateau at 1% across the entire device parameter space. In order 

to achieve greater resolution sufficient for survivability requirements, additional trials from the 

environment models may be needed. 

 All other inputs, such as the device test data, parameter space area, parameter space upper 

bound, and Pfail calculation resolution, are specified in the Python script. If device failure data is 

being used, the failure doses are stored in a Python list object and the ‘failures’ mode is specified. 

If survivor data is used to bound Pfail, the dose survived to and the number of survivors are 

specified, as well as the ‘survivors’ mode. If both failures and survivors are being used to bound 

Pfail, the ‘mixed’ mode is specified.  

 The parameter space area over which calculations are performed is stored in a NumPy 

meshgrid object. Each coordinate in the meshgrid represents a parameter pair describing a device 

failure distribution PDF as a function of total dose. First, the likelihood of each PDF is evaluated 

using the input device test data to generate the parameter space likelihood-based confidence 

contours. Then, the failure probability is calculated with each PDF, and the confidence contours 

and upper bound are used to mask the unlikely or unrealistic of the parameter space. The index of 

the largest Pfail within the masked area is found and used as the worst-case distribution at the 

designated confidence level. 
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Displacement Damage Example 

 Displacement damage RHA follows the same general format as the TID RHA, the main 

difference being in the creation of the environment CDFs. Since DDD is in units of MeV/g and 

SHIELDOSE-2 only outputs rads, an alternative shield transport software was needed for 

transporting IRENE fluxes without the dose conversion. A local copy of the TRANS module in 

CREME96 [49] was used to transport all MC trials of proton fluxes in the orbit of the Hubble 

Space Telescope (HST) through 100 mils of aluminum shielding. The IRENE differential flux 

outputs were averaged over the year and divided by 4π to get in units of steradians. The TRANS 

module does not transport electrons, so only the trapped protons (AP9) were considered. Since 

protons are the dominant particle species for this orbit, neglecting the trapped electrons was 

deemed acceptable for this example. Further, solar protons are not expected to be a large 

contributor to displacement damage at this orbit, so ESP was not used for this example. After 

transporting the proton flux, the values were multiplied by a year (31,536,000 s) and 4π to get the 

omnidirectional differential fluence of each trial at each energy level. The fluence was then 

integrated with NIEL values for GaAs [50] as in (2) to achieve the DDD curve in Fig. 13. 

 

Fig. 13. The DDD curve due to trapped protons for the HST orbit with 100 mils of Al shielding 

over the course of a year.  
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 From there, the framework for displacement damage assurance mirrors that for TID. If, for 

instance, one considers the ACPL-785E optocoupler [51] of which 10 survived to 1.491011 

protons/cm2 at 63 MeV, the NIEL value for that energy level can be calculated to generate the 

equivalent DDD tested to (5.82108 MeV/g). The analysis of this test data in the context of the 1-

year HST orbit is shown in Fig. 14, and a worst-case failure probability of 1.03% is found. While 

the lognormal mean (µg) axis has shifted to higher values compared to TID, the Pfail heatmaps are 

otherwise very similar. 

 

Fig. 14. The Pfail for the ACPL-785E optocoupler within the HST environment shown in Fig. 13. 
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CHAPTER V 

The following paragraphs and figures are reprinted and modified from C. Champagne et al., “A 

confidence-based approach to including survivors in a probabilistic TID failure assessment,” 

IEEE Trans. Nucl. Sci., Early Access, Nov. 2023. © 2023 IEEE. 

APPLICATIONS 

As mentioned previously and demonstrated in Table II, large databases of TID test data can 

be analyzed with this probabilistic framework to calculate worst-case failure probabilities for 

devices in a given environment. Beyond post-test analysis, the framework can be applied to test 

planning and heritage data applications to reduce testing costs and improve radiation testing 

efficiency. 

 

Test Planning 

When planning TID characterization or lot testing for devices, there are often constraints 

involving cost, beam time, availability of devices to test, etc. With regards to beam time, several 

factors may affect the degree of constraint inflicted on part testing. Test facility time slots can be 

expensive. Since TID is a cumulative effect, higher doses require longer test times unless dose 

rates are increased. However, dose rates often are constrained by available equipment and by 

requirements to match failure mechanisms in ground testing to those expected in use [9], [52]. This 

is a particular challenge for linear bipolar devices that are susceptible to ELDRS and require testing 

at low dose rates to match more closely those encountered in the space environment [10], [53].  

 Another common constraint experienced by test engineers is limited sample size. 

Especially if state-of-the-art or high-performance, individual parts may be expensive or in low 

supply, thereby limiting the number an engineer can test [21]. Additionally, each part represents 
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an additional test run at the radiation facility, increasing the beam time and engineering hours 

needed to complete testing.  

 The sample size and maximum total dose used for testing can be optimized for minimum 

cost or other constraints while meeting mission survival requirements within the probabilistic 

framework. Both testing parameters affect the confidence contours, thus dictating what a 90% 

confidence area of interest will be for a particular sample.  

Fig. 15 demonstrates how the lower bound to the area of interest is affected by both the 

maximum total dose and the sample size. An increase in the maximum tested dose corresponds to 

an increase of the lower bound on the 𝜇𝑔 axis, corresponding to an increase in the estimated 

average failure dose. An increase in sample size increases the slope of the lower bound. In both 

cases, increasing the number of testing parameters, e.g., sample size and total dose level, 

compresses the area of interest and decreases the worst-case failure probability.  

 

 

 

Fig. 15. Changes in the lower bound confidence contour by modifying (a) total dose and (b) sample 

size are shown within the context of the 2-year, 200 mils shielded GEO environment. 

 

 

(b) 

 

(b) 

(a) 

 

(a) 
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To find a relationship between sample size and tested dose for a particular survival 

requirement, the contour for the maximum allowable mission failure probability is analyzed in Fig. 

16. Here a 1% maximum allowable Pfail is used. To ensure qualification if all devices survive 

testing, the area of interest should lie within the 1% failure probability contour. This provides two 

constraints: (1) where the 1% Pfail contour intersects the upper bound, and (2) where the 1% Pfail 

contour intersects the 𝜇𝑔 axis. By holding the device failure parameters constant at the values 

found at the first intersection, a relationship between sample size and tested dose can be found, as 

shown in Fig. 17. The second intersection relays a minimum overtest (regardless of sample size) 

that should be used when testing devices for the 2-year GEO, 200 mils shielding environment. 

This constraint is shown as the horizontal line in Fig. 17. For any pair of dose and sample size 

tested on or above both lines, if no failures occur during testing, the worst-case Pfail for the sample 

will be ≤ 1% at a 90% confidence level, thereby meeting mission requirements. This relationship 

can be used to optimize a test for minimum cost or any other constraint. 
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Fig. 16. A demonstration of how to use the failure probability contours to select a constant 

parameter set and overtest level for test planning. This example assumes an acceptable failure 

probability of 1%. Thus, the area of interest is forced to remain within this contour. The variables 

‘n’ and ‘TID’ represent the sample size and maximum tested dose, respectively. 

 

 

   

Fig. 16. A demonstration of how to use the failure probability contours to select a constant 

parameter set and overtest level for test planning. This example assumes an acceptable failure 

probability of 1%. Thus, the area of interest is forced to remain within this contour. The variables 

‘n’ and ‘TID’ represent the sample size and maximum tested dose, respectively. 
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Heritage Data 

Heritage data can further constrain the area of interest. This is done in [54] with RDM- and 

parameter-based TID RHA and can be incorporated into this framework. In the case where only a 

single device lot is available and the device operated successfully in a previous mission, heritage 

data can be treated as survivor data. The measured dose received on the mission acts as the 

maximum tested dose, and the steps for finding a worst-case failure probability are performed 

exactly as before.  

Some important caveats should be kept in mind when using heritage data to qualify a part 

for a mission. If multiple lots of the device exist and the previously flown device is from a different 

lot, additional measures will need to be taken to account for lot-to-lot variability [55]. This is 

beyond the scope of this work. Additionally, care should be taken with the published dose in 

mission qualification documents. Exact doses from on-board dosimeters may be available, but if 

 

Fig. 17. Total dose-sample size pairs that produce a failure probability of 1% for a device failure 

distribution described by µg=5.45 and σg=0.64 in the 2-year GEO environment. Pairs on or above 

this curve and the minimum dose line will meet survival requirements if no failures are found 

during testing. 
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precise measurements of mission dose are not recorded, an upper bound estimate on what the part 

experienced on-orbit is typically given in mission documentation. For hardness assurance, if a 

precise, measured dose is not available, a lower bound on dose must be used when analyzing 

heritage data. This may involve complex modeling of spacecraft shielding, where one usually 

assumes a lower dose generated by environment models to produce a sufficiently conservative 

lower bound.  
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CHAPTER VI 

COMPARISON TO STANDARD RHA METHODS 

The current military standards for conducting TID characterization and lot testing involve 

the use of the following hardness assurance methods: the radiation design margin (RDM), lot 

tolerance percent defective (LTPD) testing, and overtesting [1]. The new TID hardness assurance 

method presented in this thesis incorporates the variability of the space radiation environment over 

the course of a mission and a part’s radiation response to calculate a metric for assessing part 

suitability. The incorporation of environment variability and mathematical rigor establishes greater 

confidence with fewer constraints than the other hardness assurance methods.  

This chapter will compare the probabilistic TID hardness assurance framework with 

military hardness assurance standards to compare reliability metrics and use cases. All methods 

will be detailed, then an example dataset will be analyzed with the new framework and methods 

from the military standards. Justification for wide-spread adaptation of the new framework will be 

presented. 

 

RDM 

The standard method from [1] utilized by radiation test engineers is the RDM method. The 

RDM is defined as the ratio between a part’s geometric mean failure dose, Dfail, and the expected 

mission environment dose, Denv, as shown in (13). Note that the geometric mean is used rather than 

the arithmetic mean because it is assumed that the part’s failure behavior follows a lognormal 

distribution. If other distributions describe the part failure more accurately, the geometric mean 

may not be appropriate. An alternative metric utilizing critical parameter measurements – the 

parameter design margin, or PDM – is also commonly used. In this case, the ratio is between the 
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designated parametric failure value and the parametric degradation at the expected environment 

dose.  

                                                                 𝑅𝐷𝑀 =  𝐷𝑓𝑎𝑖𝑙 𝐷𝑒𝑛𝑣⁄               (13) 

The hardness of the part is categorized based on how large the RDM is, i.e., how far away 

the failure quantity is from the quantity expected during the mission. This categorization 

determines how often a part needs to be tested for usage in components of a mission (or multiple 

missions if in the same environment). The categories are HCC-1M (somewhat sensitive to TID), 

HCC-2 (less sensitive to TID), and HNC (insensitive to TID). Any part below the HCC-1M 

category is deemed unacceptable for usage in the environment. It should be noted that these 

categories are meant to serve as guidance to testing and procurement policies within a military 

context. An initial screening of parts resulting in an HNC categorization means that the part may 

be used without further screening. With an HCC-1M or HCC-2 categorization, parts may need to 

undergo additional testing as the mission(s) progress or as source control measures, ensuring that 

lot and part variability does not compromise the mission design [1]. These tests are described in 

the sections that follow. 

 In a method known as design margin breakpoint (DMBP), the RDM values which delineate 

the hardness categories are left to radiation effects engineers to define based on the requirements 

of their missions and engineering judgement. However, [1] does offer general guidelines based on 

historical use. The values given in Table IV date back to the Voyager missions [56] and are not 

based on rigorous mathematical analysis, but they are meant to be overly conservative and provide 

such large margins that the chance of TID-induced part failure is minimized.  
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Table IV. DMBP Method for Categorizing Piece Part Hardness 

Category Unacceptable HCC-1M HCC-2 HNC 

RDM Range RDM < 2 or 3 2 or 3 < RDM < 10 10 < RDM < 100 RDM > 100 

 

  

The hardness categories may also be delineated using the part categorization criterion 

(PCC) method. This approach incorporates the spread of part radiation failure, the survival 

requirements, and the sample size of parts tested to determine the category breakpoints. Eq. 14 

shows the PCC calculation, where KTL is the one-sided tolerance limit [3] and s is the lognormal 

standard deviation of the part failure. Again, the part’s failure distribution is assumed to be 

lognormal, hence usage of the lognormal standard deviation. This PCC value becomes the new 

breakpoint between classifications as shown in Table V. The PCC method is more statistical than 

DMBP and accounts for the spread of the test data, typically reducing the requirements for HCC-

2 classification and the amount of required testing [1].  

 

                                                   𝑃𝐶𝐶 = exp (𝐾𝑇𝐿(𝑃𝑠, 𝐶𝐿, 𝑛) ∗ 𝑠)                                              (14) 

 

 

Table V. PCC Method for Categorizing Piece Part Hardness 

Category Unacceptable HCC-1M HCC-2 HNC 

RDM Range RDM < 2 or 3 2 or 3 < RDM < PCC PCC < RDM < 100 RDM > 100 

 

  

While usage of the PCC to delineate hardness classifications adds some mathematical rigor 

to the RDM method, an assumption of part failure distribution must be made, and many of the 

delineating values are still arbitrary. Additionally, usage of RDM may be overly conservative for 

certain applications, and there is no clear way to incorporate survival data at this step. 
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LTPD and Overtesting 

Lot tolerance percent defective (LTPD) testing is one method employed for lot acceptance 

testing for parts falling into HCC-1M or HCC-2. In this scheme, binomial statistics are used to 

establish a required sample size with no failures so that lots with a set percentage of bad parts are 

rejected at a desired confidence level [1]. This method allows part analysis if the failure distribution 

is unknown [39]. A standard test is 11/0, 11 parts tested with no failures. At this sample size, a lot 

will be rejected if more than 20% of the constituent parts will fail at the environment dose at a 

90% confidence level [1], [39]. A 22/0 test reduces the failure probability to 10% at a 90% 

confidence level. If the mission required the failure probability to be less than 1% at a 90% 

confidence level, a 230/0 test would be required.  

To reduce the number of required parts tested to meet survival requirements, overtesting is 

employed, in which parts are tested to a dose level above the expected environment dose. A failure 

distribution must be known or assumed in order to quantify the overtest factor necessary to meet 

survival requirements, as well as a maximum standard deviation the distribution could have. There 

is no check on the effective sample size used during testing – the assumption of a maximized 

standard deviation is intended to make up for this, but this overtest method has been reported being 

overly conservative in rejecting lots and requiring high test doses [39]. As with RDM, both LTPD 

and overtest methods lack consideration of the variability of the environment. 

 

Case Study 

To see how the new probabilistic framework compares to the current hardness assurance 

standards, a CMOS analog switch from Maxim Integrated is considered. Analog switches select 

data paths for analog signals and are important components for many applications, such as multi-
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channel data acquisition and  instrumentation. Their small size, low power consumption, and fast 

switching times make them ideal for space applications [57]. In [58], 10 MAX4651 CMOS analog 

switches were irradiated with TID up to 100 krad(Si) without experiencing parametric failure. For 

the purposes of this case study, mission requirements are set at <1% failure probability at a 90% 

confidence level. A lognormal device failure distribution is also assumed as this distribution is 

commonly used in industry to describe piece part failure. 

 The environment of consideration is a 5-year, sun-synchronous orbit with perigee of 833 

km, an apogee of 870 km, and an inclination of 98.594 degrees (the orbit of the NOAA 10 satellite 

[59]). The environment distribution is generated in AE9/AP9 [4] by ranking 199 Monte Carlo trials 

of total dose after 1 year in orbit, transporting through 100 mils of aluminum shielding, multiplying 

by 2 to achieve a full sphere, and multiplying by 5 to achieve a 5-year orbit, shown in Fig. 18. 

 

With current military standards, further testing of the part would need to be completed in 

order to qualify it for usage. With 1 as the maximum lognormal standard deviation, the 10/0 test, 

and the mission requirements of <1% failure at 90% confidence, the overtest factor equation from 

[39] yields 4.57 as the minimum overtest factor. The 90th percentile dose generated by AE9/AP9 

  
Fig. 18. Ranked Monte Carlo trials for a 5-year, sun-synchronous orbit, transported through 100 

mils of Al shielding. 
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for the environment under consideration is 24.3 krad(Si), so the analog switch should be tested to 

at least 111.1 krad(Si) in order for the part to satisfy requirements using this method. The analog 

switches have only been tested to 100 krad(Si), so further testing, an alternate part, or reassessment 

of engineering assumptions would be necessary to meet mission survival requirements. 

 However, using the probabilistic method, the environment doses from AP9/AE9 are 

ordered to form a cumulative distribution rather than taking the largest result. Assuming a 

lognormal distribution and an upper bound on the parameter space (99% failure at 1 Mrad(Si)), 

the lognormal parameter space can be analyzed within the context of the environment using (9) to 

generate a failure probability at the 90% confidence level. This method yields a failure probability 

of 0.826% to a 90% confidence level. These results satisfy mission requirements and enable part 

usage. 

 

Discussion 

There are multiple points during the standard overtest method in which choices affected 

the outcome of the part qualification. For instance, the part failure distribution was assumed to be 

a well-behaved lognormal distribution, and the maximum lognormal standard deviation for part 

failure distribution was assumed to be 1. A choice of a smaller maximum would have reduced the 

required overtest for the part. This choice may be made with additional analysis of similar parts to 

the analog switch under consideration [38]; however, this also introduces ambiguity regarding 

which parts qualify as “similar” to the part in question. Must the similar parts be of the same 

manufacturer? Or should they be of the same technology generation, but various manufacturers 

may be considered? Can any CMOS technology be classified as “similar”? Especially when 

dealing with COTS parts, the answers may be ambiguous as variability under irradiation may be 
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larger than controlled parts. These choices are left to the radiation effects engineer to decide and 

justify. 

 Additionally, the 90th percentile total dose generated by AE9/AP9 was chosen as the 

environment spec dose. Most military hardness assurance practices stem from a risk-avoidance 

stance, so worst-case constants and overdesign are incorporated into hardness assurance. Engineers 

may elect to choose a smaller or larger percentile dose to use in the overtest analysis, which may 

reduce or increase the overtest margin required significantly. However, as above, this choice is left 

to the radiation effects engineer to justify and can be a somewhat arbitrary choice based on the risk 

posture of the mission.  

 For the probabilistic method, a couple of assumptions were made as well, the biggest one 

being that the part failure distribution is a well-behaved lognormal distribution (also made with 

the overtest method above). An assumption on the upper bound of the parameter space was also 

made, however, this assumption has some justification (see Chapter 3).  

 While the case study discussed above demonstrates how the probabilistic analysis may be 

less conservative than traditional hardness assurance methods in some instances, there are other 

instances where the probabilistic method turned out to be just as conservative, if not more so, than 

traditional methods. Fig. 19 shows (1) overtest factors calculated with the traditional overtest 

method of [39] with a maximum lognormal standard deviation of 1 and 0.5 assumed, and (2) 

overtest factors calculated with the probabilistic method for the sun-synchronous environment 

using the test planning steps outlined in Chapter 5. If the maximum σg is 1, the overtest method 

from [39] is more conservative than the probabilistic method for sample sizes less than or equal to 

15. Beyond this point, because of the lack of environment variability consideration, the traditional 

method overtest factor continues decreasing and becomes less conservative than the probabilistic 
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method. If the maximum σg is 0.5, the probabilistic method is more conservative regardless of 

sample size.  

 

Fig. 19. Overtest factors calculated using the approach from [39] and the probabilistic method for 

the 5-year sun-synchronous orbit. A 1% failure probability to a 90% confidence level is used for 

the overtest calculation. 

 

Overall, the probabilistic method involves less engineering judgement calls which may or 

may not be arbitrary. The method is mathematically rigorous and incorporates both environment 

and device behavior variability, producing a metric for part qualification that is grounded in part 

operation within the environment. 
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CHAPTER VII 

CONCLUSIONS 

 This work expands on a probabilistic TID RHA framework by enabling the use of survivor 

data to bound the device failure probability in a user-specified environment. By using the type-I 

likelihood equation to calculate confidence contours, a lower bound is placed on the parameter 

space. An upper bound on physical device failure distributions is used to further constrain the 

parameter space and calculate a worst-case Pfail at the 90% confidence level. Any environment or 

device failure fit can be analyzed, and both in-situ and interval tests can feed the device failure 

model. Both TID and DD examples were worked through with the framework. The framework can 

be used for test planning purposes, optimizing tested dose and sample size for cost or any other 

testing constraint. Costs may be further reduced with heritage data, which can be treated as 

survivors when devices of the same lot have successfully flown in previous missions. However, 

obstacles and limits exist on the amount of constraint heritage data can impose on Pfail, namely 

from the estimated dose received on the mission.  

 Unlike established hardness assurance methods, the probabilistic framework accounts for 

the variability from both the space environment and the part behavior under irradiation. 

Established methods stem from postures of risk-avoidance, resulting in margins which may be 

more or less conservative than intended and ambiguity when using engineering judgement to relax 

constraints. Less assumptions are required to use the probabilistic method, and there is more 

justification for the assumptions made. As such, existing part data may be used to quantify part 

risk and qualify usage of more parts with the new method, potentially reducing hardness assurance 

constraints. The novel framework allows an engineer to consider all available TID data on a 
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candidate device, resulting in a quantitative assessment of survival in a variable space 

environment.  

The preceding paragraphs are reprinted and modified from C. Champagne et al., “A confidence-

based approach to including survivors in a probabilistic TID failure assessment,” IEEE Trans. 

Nucl. Sci., Early Access, Nov. 2023. © 2023 IEEE. 
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