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CHAPTER 1

Introduction

In cost-effectiveness analysis, a field dedicated to finding monetarily efficient medical interventions, cost-effectiveness

acceptability curves are often used to provide insight into the optimality of one intervention in comparison to another.

Such a curve is often calculated using standard p-values (though they are not always acknowledged as such), across a

range of possible monetary amounts one could spend. The recent innovation of the second generation p-value, which

incorporates null hypothesis intervals to rectify some of the undesirable properties of the standard p-value (namely, in-

ability to distinguish between lack of evidence and evidence of a lack), will enable us to develop a novel improvement

to cost-effectiveness visualization methods.

In this work, we will introduce the second generation cost-effectiveness acceptability curve, which uses second

generation p-values in lieu of the standard curve’s standard p-values. It will be shown that this second generation

curve provides improvements upon the first generation; the two most important being the ability to identify a range of

values for which two interventions are approximately equivalent in cost-effectiveness, and a range of values for which

the results are strictly inconclusive. This innovation upon the standard cost-effectiveness acceptability curve serves to

improve comprehension and decision making in cost-effectiveness analysis, for the betterment of the field as a whole.

1.1 Existing approaches for cost-effectiveness analysis

In order to determine which medical strategies are the most efficient from an economically focused cost-benefit

perspective, we perform cost-effectiveness analysis (CEA). CEA aids practitioners in allocating limited resources in

an informed manner, and helps determine fiscal policy for medical organizations. Due to the relevance of this subject,

multiple means of CEA have been developed, as described below.

1.1.1 Incremental cost-effectiveness ratios

A simple and commonly used method of CEA is based on the incremental cost-effectiveness ratio (ICER), which

compares the incremental difference in costs and benefits between two medical methods [1]:

ICER =
Mean(βx=1)−Mean(βx=0)

Mean(αx=1)−Mean(αx=0)
(1.1)

Where x = 1 and x = 0 are two unique interventions, βx=1 is the cost of intervention x = 1, and αx=1 is the outcome,

or the “effectiveness” of intervention x = 1. While the mean is the standard method of calculating an average, there is

legitimate and ongoing debate over whether use of the median is more may be more appropriate [2]. Regardless, we
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will make use of the mean in this work.

There are multiple measures for the effectiveness (β ) of an intervention; many involve some means of survival

time, whether that be time survived or time spent without specific ailments, but the most common method is measuring

quality-adjusted life years (QALYs) [3]. QALYs combine the quality of life and life expectancy into a single variable

for easier comprehension. By bootstrapping the sample data and using it to generate multiple ICER’s and then creating

a confidence interval for them (in order to help quantify uncertainty), the results can be compared to provide insight

into the relative effectiveness of two interventions.

1.1.2 Net monetary benefits

While ICER is a useful CEA tool, its methodology fails to account for the reality that resources are finite (and

therefore requires the practitioner to set a limit, and search for the best ICER result within that limit). This flaw

inspired the use of net monetary benefits (NMB) as a metric [4]:

µx=1 = (λ ×αx=1)−βx=1 (1.2)

Where µx=1 is the NMB of x = 1, λ is the set limit of available resources (represented as value in currency), αx=1

is the cost of x = 1, and βx=1 is the effectiveness of x = 1. If one wants to compare two interventions, they simply

calculate the difference of the two NMB’s to form the incremental net monetary benefit [4]:

INMB = µx=1 −µx=0 (1.3)

If the INMB is positive, then intervention x = 1 is superior (in terms of cost-effectiveness) to x = 0 for the pre-specified

λ value; and if it is negative, then x = 0 is the superior intervention.

1.1.3 Cost-effectiveness acceptability curves

The cost-effectiveness acceptability curve (CEAc) was created to address the uncertainty involved in CEA (as well

as create a better alternative to ICER confidence intervals) [5]. The CEAc uses p-values to compare the INMB’s of

two interventions over a range of λ values. The p-value for an intervention at a specified λ is found by bootstrapping

the sample data, calculating the INMB in each bootstrap sample, and finding the percentage of positive values [5].

Figure 1.1 provides an example CEAc.

Interpretation is intuitive: The x-axis marks the range of possible values for λ , the y-axis marks the 1-sided

bootstrapped p-value, and the line color denotes the specific intervention. For example, in figure 1.1, when λ = 0.2,

since intervention x = 1 has a p-value of about 1 (and x = 0 has a p-value of about 0), it can be reasonably claimed

that x = 1 is optimal at λ = 0.2. Further, at the curves’ intersection point, the probability of either intervention being
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Figure 1.1: An example of the standard cost effectiveness acceptability curve.

optimal is equal (at 50%). This effective modeling of uncertainty through the use of probability found in CEAc’s gives

them an advantage over simple ICER confidence intervals in decision making by making the probabilistic nature of the

analysis clear. Of note, the term “probability” needs to be understood in the context of a given sample space—here,

the sample space is over the bootstrapped samples.

1.2 Second generation p-values

P-values have been extensively utilized as a helpful analytical tool (particularly for the purposes of inference and

testing hypotheses), but their imperfections have been characterized [6]. Standard p-values can incur an increased type

I error rate if repeatedly used (requiring the user to restrict use of the tool, typically to a single pre-specified analysis

that is meticulously adhered to), can’t be used to make inferences supporting the null hypothesis, and can be easily

misused to create erroneous results (e.g. “p-hacking”). The second generation p-value was created in order to address

these issues, and in doing so create a alternative to the standard p-value that can be seen as superior in these aspects

[7].

The main innovation of the second generation p-value is its use of an interval null hypothesis, as compared to

the point null hypothesis that a standard p-value uses. Let H0 be the pre-specified null hypothesis interval and Ic be

an interval of hypotheses that properly represents a scalar variable c (typically, although not exclusively, confidence

intervals covering c are used for Ic). Then the second generation p-value, pδ , can be calculated as follows [7]:

pδ =
|Ic ∩H0|

|Ic|
×max

{
|Ic|

2|H0|
,1
}

(1.4)

Since the second generation p-value is simply the ratio of the length of the intersection between Ic and H0 to
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the length of Ic, multiplied by a “correction factor” (max{|Ic|/2|H0|,1}), its interpretation is different than that of a

standard p-value [7]. Namely, pδ represents the ratio of hypotheses that are null hypotheses, so if pδ = 0 then the data

fully supports the alternate hypotheses, while if pδ = 1 the data fully supports the null hypotheses, and if pδ = 0.5 by

any means then the results are wholly inconclusive. In practice, unless pδ is approximately 0 or 1, then the result is

typically interpreted as inconclusive [6].

The second generation p-value avoids many of the problems faced by the standard p-value. By utilizing intervals

for H0, the type I error rate can be reduced. Scientific inferences in support of the null hypothesis interval can be

made (if supported by the data), just as they can for an alternate hypothesis. Finally, forcing researchers to pre-specify

their null hypothesis intervals prevents them from falling into one of the pitfalls seen in erroneous standard p-value

calculation: changing the null hypothesis to produce more favorable results. These benefits can only be realized

however, if Ic (or rather, the process for calculating Ic) and H0 are properly specified before a study starts. If this pre-

specification does not occur, one might erroneously choose intervals based on their desired conclusion. With proper

pre-specification of Ic and H0, second generation p-values prove to be an overall superior alternative to the standard

p-value. Using second generation p-values in the place of standard p-values could produce improvements in other

analytical methods, especially cost-effectiveness acceptability curves.
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CHAPTER 2

Methodology

2.1 Constructing a second generation cost-effectiveness analysis curve

The second generation cost-effectiveness acceptability curve (2CEAc) improves upon the standard CEAc by calcu-

lating the degree of overlap between the cost-effectiveness interval estimate (generated from incremental net monetary

benefit confidence intervals) of an intervention and an interval null represented by the second generation p-value, as

opposed to the standard’s basis on the 1st-generation p-value. The main benefit of implementing of this method is

the improved ability in making meaningful conclusions if the data supports the null hypothesis interval, and a better

characterization of the cost-effectiveness of interventions. This necessitates the calculation of the second generation

p-value, determining graphical depiction, and showing how the 2CEAc is interpreted as compared to a standard CEAc.

2.1.1 Finding the second generation p-value at a λ value

In order to construct a 2CEAc, a sample data-set from a larger population containing two interventions’ costs and

effects must be supplied. Let x = 1 and x = 0 be two distinct interventions, β1 and β0 be the monetary costs of x = 1

and x = 0 respectively, and α1 and α0 the “effectiveness” of x = 1 and x = 0 respectively. Note that as explained in

Section 1.1, there are various measures of effectiveness; the measure picked should fit with contemporary standards.

It would also be helpful for the practitioner to select an acceptable range of resources that are acceptable to be used,

or in other words a range of λ j values represented as Λ. For this paper, all 2CEAc’s will have Λ’s individual λ j values

separated by a thousandth of the value range being analyzed, meaning there will be 1001 unique λ j in Λ. As an

example: if Λ ranges from 1 to 2 million dollars, then the values of λ would be marked in the thousands. More λ j’s in

Λ could be used if the practitioner felt it necessary, the only limitation being the time consumed in calculation.

Another important value must be decided: the null hypothesis interval of incremental net monetary benefit (INMB)

values, represented as H0. A good interpretation of H0 is as an interval of values representing how different the cost-

effectiveness estimates of interventions have to be from each other before being considered substantively different. If

the range is kept too small in an attempt to find minute differences, then the benefits of the second generation p-value’s

interval null hypothesis aren’t being properly utilized, creating a graph that looks very similar to a standard CEAc

(whose null hypothesis is a point instead of an interval). If the null hypothesis interval range is made too large in an

attempt to only identify large differences in cost-effectiveness between interventions, then the 2CEAc fails to capture

ranges of λ values for which one intervention is optimal. Unless otherwise specified, a null hypothesis interval of

(−0.15×max(Λ),0.15×max(Λ)) will be used in examples. One should note that all null hypothesis interval lengths

should be symmetric, in order that the 2CEAc is not predisposed toward either intervention.
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After specifying the null hypothesis interval for the 2CEAc, the level of the confidence intervals generated should

also be selected. The level of a confidence interval, whether it is 90%, 95%, or 99%, can end up changing the calculat-

ing second generation p-value. Choosing the level of a confidence interval after conducting exploratory analyses can

tempt the practitioner to choose an interval that returns desired second generation p-values. For all 2CEAc’s created

in this paper, a 95% confidence interval level is pre-specified.

The first step in creating the 2CEAc is to bootstrap the data and calculate the INMB’s for each bootstrapped sample.

Let x = 1 and x = 0 represent two unique interventions for which data is collected. Take the data and re-sample it with

replacement (so the same data points can be sampled multiple times). INMB’s need to be calculated for each λ j value,

and since λ j ∈ Λ, Λ will be used for calculation. Calculate the INMB’s for this re-sampled (or bootstrapped) data by

combining equations (1.2) and (1.3):

INMBi = (Λ×α1i)−β1i − ((Λ×α0i)−β0i) = Λ(α1i −α0i)− (β1i −β0i) (2.1)

Where i specifies the specific re-sampled data-set being used, so β1i represents the monetary cost of intervention x = 1

based on the re-sampled data of the i’th iteration, for example. Each INMBi is a vector with as many values as λ j ∈ Λ,

each of which can be specified as INMBi j. Let B denote the number of bootstrap replicates. Making B ≥ 500 often

creates satisfactory and consistent results, but there are studies that warrant more bootstraps based on the nature of

the data. Next, for each individual λ j value, calculate a 95% confidence interval of values, represented by INMBCI j.

This can be performed through a variety of bootstrap confidence interval methods. For example, a studentized interval

can be found by calculating the t-statistic of INMBi j for each individual i, and then calculating the 2.5% and 97.5%

quantile of the results. Another example is the jittered bootstrap, which applies a smoothing function to find an

estimate of INMBi j for each individual i, and then calculates the 2.5% and 97.5% quantile of the results. This paper

will use the quantile-based method, for its simplicity and versatility in use. The method is done by simply finding the

2.5% and 97.5% quantile of INMBi j for each individual i.

With the collection of INMBCI j’s comprising INMBCI, and the null hypothesis interval H0 justified, the second

generation p-value can be calculated. Inputting these values into the formula for second generation p-values (1.4), the

second generation p-value is then given by:

pδλ j
=

|INMBCI j ∩H0|
|INMBCI j|

×max
{
|INMBCI j|

2|H0|
,1
}

(2.2)

Where pδλ j
is the second generation p-value for a specified λ j value. |INMBCI j ∩H0| can be calculated by creating

an interval whose lower bound is the maximum of INMBCI j’s and H0’s lower bounds and whose upper bound is the

minimum of INMBCI j’s and H0’s upper bounds.
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With the collection of all pδλ j
’s, written as pδ , having been calculated, all necessary materials for constructing a

2CEAc have been acquired.

2.1.2 Depicting the curve

Since pδ is calculated in such a way that a value of 1 means that the data supports the interval null hypothesis, and

0 means that the data supports an alternate hypothesis, for the purpose of intuitive comprehension the y-axis will be

1− pδ instead of pδ . It should be noted that the strength of the support for both the null and alternate hypotheses is

proportional to the the percentage of the confidence interval generated. For 1− pδ then, a value of 1 means that the

data supports only the alternate hypothesis, and 0 means that the data supports only the interval null hypothesis.

While it might be tempting to automatically graph the relationship between the λ and 1− pδ values as in a standard

CEAc, doing so will create an unsatisfactory result, as seen in Figure 2.1. This curve fails to tell us the most important

Figure 2.1: A rudimentary example second generation cost effectiveness analysis curve.

piece of information we want to know: that is, the circumstances under which which each intervention optimal.

The reason why Figure 2.1 has this flaw is inherent in the way the null hypothesis interval is specified. Namely,

the null hypothesis being that there is no meaningful difference between the two interventions in cost-effectiveness.

The alternate hypothesis therefore is that there is a meaningful difference between the two interventions in cost-

effectiveness. It is clear some method of distinguishing interventions graphically is necessary, in order to account for

the alternate hypothesis.

We consider two methods for distinguishing between interventions: an overlapping method, and a method using

confidence intervals. Instead of defining the null hypothesis interval as there being no significant difference between

the two interventions in cost-effectiveness, let the null hypothesis interval describe one specified intervention not being
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optimal over the other. Thus, let H0 : (−∞,0.15×max(Λ)), or rather that intervention x = 1 is not optimal in terms of

cost-effectiveness. Using this new H0, and repeating the process described in 2.1.1, the 2CEAc shown in Figure 2.2 is

created.

Figure 2.2: A rudimentary example second generation cost effectiveness analysis curve for individual interventions
x = 1 and x = 0.

If the practitioner is only interested in the optimality of one of the two interventions, then the left graph in Figure

2.2 is a sufficient result. If there is interest in both interventions, however, this graph is insufficient. Making H0 :

(−0.15×max(Λ),∞), or rather that x = 0 is not the optimal intervention in terms of cost-effectiveness, and repeating

the process described in 2.1.1, and overlaying that 2CEAc describing x = 0 with the 2CEAc describing x = 1, the

right-hand graph of Figure 2.2 is produced. Removing the lines where 1− pδ = 0 for only x = 1 or only x = 0, the

generated 2CEAc looks identical in shape to Figure 2.1.

Since the intersection of the 2 H0’s (−0.15×max(Λ),∞) and (−∞,0.15×max(Λ)) is (−0.15×max(Λ), 0.15×

max(Λ)), the base H0 that was being used in Figure 2.1, this graph is the 2CEAc made in Figure 2.1 with interventions

identified. This is the method of calculating two null hypothesis intervals and combing their results graphically, which

is called the overlapping method.

While the overlapping method creates functional 2CEAc’s, it requires twice the amount the calculations made in

Section 2.1.1. A second method, the confidence interval method, can be used instead to achieve the same result with

fewer mathematical processes required. If the INMBCI j has a smaller lower bound than H0, then the 2CEAc should

be marked as favoring intervention x = 0 at that λ j value. If the INMBCI j has a larger upper bound than H0, then the

2CEAc should be marked as favoring intervention x = 1 at that λ j value. In the event that INMBCI j has both a smaller

lower bound and larger upper bound than H0, whichever bound is farther from H0 designates the favored intervention.
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Figure 2.3: An example second generation cost effectiveness analysis curve using the confidence interval method.

So if there is a larger range between the lower bounds than the upper bounds, then the λ j value is marked as belonging

to x = 0. Further, λ vales where pδ = 0 are marked as showing approximate equivalence between interventions. This

creates Figure 2.3, which looks identical to the left graph of Figure 2.2.

Since Figure 2.3 and 2.2 are identical in intervention designation, and figure 2.2 was shown to be an accurate

2CEAc depiction, it follows that the confidence interval method is valid. This makes sense, as Figure 2.3’s method of

comparing the confidence interval and null hypothesis lengths is how second generation p-values are calculated. All

2CEAc’s shown for the rest of the paper utilize this confidence interval process. With this, all necessary information

for a 2CEAc is shown, and all that remains is interpreting the results.

2.1.3 Interpreting the curve

A 2CEAc cannot be interpreted in the same way one would interpret a standard CEAc, due to the properties held

by the second generation p-value. Using the explanation in Section 1.2 on second generation p-values, 1− pδ can be

defined as the ratio of alternate hypotheses to null hypotheses that are supported by the gathered data [7]. Therefore,

if 1− pδ = 0 the data supports only null hypotheses, and if 1− pδ = 1 the data supports only alternate hypotheses.

Based upon this information, if 1− pδ ≈ 0 on the 2CEAc, then one can claim that the data supports the hypothesis

that neither intervention is strictly optimal at that λ value. Conversely, if 1− pδ ≈ 1 on the 2CEAc, then the statistician

can claim that the data supports the hypothesis that there is an optimal intervention at that λ value. Specifically, the

color of the 2CEAc at that λ value would designate the optimal intervention.

If 0 < 1− pδ < 1, then a more developed explanation is required. When 1− pδ = 1
2 , then we claim that the results
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are altogether inconclusive. That is, neither the null or alternate hypotheses has greater support from the data. The

closer 1− pδ is to 1
2 , the greater the level of how inconclusive the result is. Therefore, if 0 < 1− pδ < 0.5, then the

statistician can claim that the data somewhat supports the hypothesis that neither intervention is strictly optimal at that

λ value, with a level of inconclusiveness inversely related to the distance from 0.5. Similarly, if 0.5 < 1− pδ < 1, then

the statistician can claim that the data somewhat supports the hypothesis that a specified intervention (by whichever

color the 2CEAc line is at that point) is strictly optimal at that λ value, with a level of inconclusiveness inversely

related to the distance from 0.5. As an example, if 1− pδ = 0.6, then the alternate hypothesis is supported with a

high level of inconclusiveness, and if 1− pδ = 0.9, then the alternate hypothesis is supported with a low level of

inconclusiveness.

Taking what has been stated, the method of interpretation can be summarized as thus:

1. If 1− pδ ≈ 0, then the data supports the hypothesis that neither intervention is optimal at that λ value.

2. If 1− pδ ≈ 1, then the data supports the hypothesis that the specified intervention is optimal at that λ value.

3. If 0 < 1− pδ < 0.5, then the data somewhat supports the hypothesis that neither intervention is optimal at that

λ value, with a level of inconclusiveness inversely related to the distance from 0.5.

4. If 0.5 < 1− pδ < 1, then the data somewhat supports the hypothesis that the specified intervention is optimal at

that λ value, with a level of inconclusiveness inversely related to the distance from 0.5.

5. If 1− pδ ≈ 0.5, then the results are inconclusive at that λ value.

2CEAc interpretation can also be better understood by associating it with a graph comparing λ and INMBλ , as

shown in figures 2.4 and 2.5, with a 95% confidence interval included. Each λ vs. INMBλ plot contains a specified

null hypothesis centered on zero, under varying conditions. When the confidence interval is completely below the null

hypothesis, the 2CEAc considers the control (x = 0) optimal, and when it is completely above, the treatment of interest

(x = 1) is optimal. If the confidence interval is contained completely within the null, then the 2CEAc considers the

treatments equivalent in cost-effectiveness. This is shown in “wide interval” graphs, a scenario similar to what was

discussed in Figures 2.1 to 2.3. The proportion of the confidence interval outside the null hypothesis interval is what

is being depicted in the 2CEAc. If the confidence interval’s range contains an area both inside and outside the null

hypothesis interval, then the intervention favored by the confidence interval (that is, the intervention with a larger

range of values covered) is marked in the 2CEAc by that intervention’s color.

In the event that the ratio of coverage of the confidence interval that exists within the null hypothesis interval is 0.5,

as seen in the “narrow interval (which is analogous to the “wide interval” scenario, but with a smaller null hypothesis

interval), then the 2CEAc considers the results strictly inconclusive at that λ value. This is why it is important to set

a reasonable null hypothesis interval, to prevent unnecessary inconclusively. “Widening CI” marks a scenario seen in
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Figure 2.4: NMB vs. λ plots, as compared to 2CEAc’s: wide and narrow null intervals marked by dotted lines.

Figure 2.5: NMB vs. λ plots, as compared to 2CEAc’s: widening and decreasing confience intervals over null intervals
marked by dotted lines.
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cases where either the data spread is extremely high, or the amount of data at hand is low: a confidence interval that

widens as λ increases. When the confidence interval contains the entire null hypothesis, alongside areas above and

below it, the result is naturally inconclusive. Finally, “Decreasing NMB” is presented to better help intuition of the

2CEAc in a different scenario, where the treatment of interest (x = 1) is inferior in cost-effectiveness as compared to

the control (x = 0) as λ → ∞. Since INMBλ starts above the null hypothesis interval, the 2CEAc starts favoring the

treatment of interest. Understanding this relationship between confidence interval and null interval coverage is key to

interpreting the 2CEAc.
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CHAPTER 3

Simulations

3.1 Simulation setup

In order to better understand the 2CEAc, multiple simulation studies will be conducted. Sections 3.1.1-3.1.3

will explore the relationship between changes in data and curve shapes, specifically looking at how changes in costs,

effects, data spreads, and interval null hypothesis lengths affect the shape of the 2CEAc. Sections 3.1.4-3.1.6 will

compare the standard CEAc to the 2CEAc, and showcase how the 2CEAc outperforms the CEAc in certain situations.

All simulations of costs and effectiveness given will be conducted under similar normal distributions in order to

better demonstrate the aspects of the 2CEAc. For each simulation, interventions x = 1 and x = 0 will have N
2 samples

taken, where N is the total number of samples taken for both interventions, and 500 bootstraps will be taken of the

data. αx=0 = N(50,σ), αx=1 = N(50+ µ,σ), βx=0 = N(100,40σ), βx=1 = N(100+ γ),40σ). Λ will consist of λ

values ranging from {0,100}. The null interval will be H0 : {−0.15×100,0.15×100}= {−15,15}, unless otherwise

specified.

All simulations were created using R code. Similarly, all generated standard CEAcs and 2CEAcs were created

using R. An R code outline can be found at the bottom of the paper, in Chapter 6.

3.1.1 Simulation A: exploring how changes in cost and effects affect curve shape

Let σ = 4, N = 20000. Four 2CEAcs will be generated, each with a unique µ and γ combination (so the only

difference between graphs will be the differences in the αx=1 and βx=1 values). The four graphs will consist of µ = 4

γ = 160; µ = 4 γ = 128; µ = 3.2 γ = 160; and µ = 3.2 γ = 128, in order.

3.1.2 Simulation B: exploring how changes in data spread affect curve shape

Let µ = 4, γ = 160, N = 20000. Four 2CEAcs will be generated, each with a unique σ value. The four graphs will

consist of σ = 4; σ = 8; σ = 12; σ = 20, in order.

3.1.3 Simulation C: exploring how changes in null interval lengths affect curve shape

Let σ = 4, µ = 4, γ = 160, N = 20000. Four 2CEAcs will be generated, each with a unique H0 length. As

a reminder, H0 : {interval value×max(Λ)}, where max(Λ) = 100. The four graphs will consist of H0 : {−0.1×

100,0.1×100}= {−10,10}; H0 : {−0.15×100,0.15×100}= {−15,15}; H0 : {−0.2×100,0.2×100}= {−20,20};

H0 : {−0.4×100,0.4×100}= {−40,40}, in order.
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3.1.4 Simulation D: comparing the standard and second generation curves with a low variance, high sample

size example

Let σ = 4, µ = 4, γ = 160 N = 20000. αx=0 = N(50,4), αx=1 = N(50+ 4,4), βx=0 = N(100,160), βx=1 =

N(100+160,160). Both the standard CEAc and the 2CEAc will be generated from this data.

3.1.5 Simulation E: comparing the standard and second generation curves with high data variance

Let σ = 20, µ = 4, γ = 160 N = 20000. αx=0 = N(50,20), αx=1 = N(50+ 4,20), βx=0 = N(100,800), βx=1 =

N(100+160,800). Both the standard CEAc and the 2CEAc will be generated from this data.

3.1.6 Simulation F: comparing the standard and second generation curves with a low sample size

Let σ = 20, µ = 4, γ = 160, N = 800 (so each intervention has 400 samples taken). αx=0 = N(50,4), αx=1 =

N(50+4,4), βx=0 = N(100,160), βx=1 = N(100+160,160). Both the standard CEAc and the 2CEAc will be gener-

ated from this data.

3.2 Simulation results

Note that while Λ ∈ {0,100}, for the sake of better visualization, all 2CEAcs and standard CEAcs show only λ

values ranging from 30 to 60. Figures 3.1 to 3.6 correlate to sections 3.1.1 to 3.1.6 respectively, so Figure 3.3 is the

results for 3.1.3: simulation C for example.
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Figure 3.1: Simulation A: second generation cost effectiveness analysis curves where µ , γ values differ.

Figure 3.2: Simulation B: second generation cost effectiveness analysis curves where σ values differ.
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Figure 3.3: Simulation C: second generation cost effectiveness analysis curves where H0 lengths differ.

Figure 3.4: Simulation D: standard vs. second generation cost effectiveness analysis curves where σ = 4.
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Figure 3.5: Simulation E: standard vs. second generation cost effectiveness analysis curves where σ = 20.

Figure 3.6: Simulation F: standard vs. second generation cost effectiveness analysis curves where σ = 4, N = 800.
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CHAPTER 4

Application

4.1 Cancer treatment application

Beyond the theoretical examples posed in Section 2.2, the benefits of using a 2CEAc can be demonstrated effec-

tively by employing it on an applied example. In Barr et al. (2023), the authors focus on new cancer treatments, and

the statistical uncertainty their datasets sometimes bring [8]. Cancer treatments can range wildly in costs and effects

in terms of both average values and overall spreads. Further, with new treatments having higher costs, long treatment

times, and challenging data-gathering requirements, sample sizes tend to be low. Combining these traits together, stud-

ies of new interventions in the field of cancer treatment tend to hold a high amount of uncertainty. The paper discusses

and analyzes different cost-effectiveness techniques in terms of how they incorporate and depict uncertainty for future

analytical work in the field of cancer. One such analytical method covered is the standard CEAc. The main conclusion

put forth by the authors of the paper is that while the standard CEAc is useful, it fails to represent uncertainty in any

meaningful capacity.

This is understandable, as the standard CEAc does not directly depict inconclusivity; instead it incorporates it into

its bootstrapped 1-sided p-values, interpreted as the probabilities of an intervention being optimal. It’s hard to draw a

meaningful conclusion on inconclusiveness when the probabilities are below 0.9 or above 0.1, for either intervention.

As discussed previously, however, the 2CEAc rectifies this issue. This section will run a similar simulated dataset as

the one constructed in Barr et al. (2023) over various null interval lengths, in order to showcase its superiority over

the standard CEAc in cost-effectiveness analyses with high levels of uncertainty like cancer treatments.

This simulation will utilize the hypothetical dataset generated by the authors of Barr et al. (2023), and then produce

both a standard CEAc and four 2CEAc’s of different null hypothesis intervals. In this dataset, let x = 0 be the control

treatment, and x = 1 be the new treatment. ᾱx=0 = 0.7036735, with a 95% CI of (0.6719546,0.7353924), ᾱx=1 =

0.7266038, with a 95% CI of (0.6937985,0.7594091), β̄x=0 = 292.1837, with a 95% CI of (82.77,501.60), and β̄x=1 =

8272.3770, with a 95% CI of (5747.35,10,797.40). There are 49 x = 1 data points and 53 x = 0 data points sampled.

λi = {0,1500000} for i ∈ {1,1001}. The four 2CEAc null hypothesis intervals that will be used are: H0 : {−0.001∗

max(λ ),0.001∗max(λ )}= {−1500,1500}, H0 : {−0.005∗max(λ ),0.005∗max(λ )}= {−7500,7500}, H0 : {−0.01∗

max(λ ),0.01∗max(λ )}= {−15000,15000}, H0 : {−0.03∗max(λ ),0.03∗max(λ )}= {−45000,45000}.
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Figure 4.1: Simulated cancer treatment standard CEAc, designed to mirror the results of Barr et al.

Figure 4.2: Simulated cancer treatment 2CEAc with varying null hypothesis lengths.
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CHAPTER 5

Discussion

5.1 Simulation results

Figures 3.1 to 3.3 cover what happens to the 2CEAc under different simulation settings. It is important to under-

stand the relationship between the data and 2CEAc. Figure 3.1’s results for simulation A cover changes in αx=1 and

βx=1, where αx=0 = N(50,4), αx=1 = N(50+ µ,4), βx=0 = N(100,160), βx=1 = N(100+ γ,160). Another way of

viewing simulation A is differences in αx=1 −αx=0 and βx=1 −βx=0. Using the µ = 4, γ = 160 2CEAc as a reference

graph, the relationship found in µ and γ changes is evident. When the difference in means between βx=1 and βx=0 is

reduced as in the µ = 4,γ = 128 graph, the whole curve in the 2CEAc shifts to the left. When the difference in means

between αx=1 and αx=0 is reduced as in the µ = 3.2,γ = 160 graph, the whole curve in the 2CEAc shifts to the right.

Finally, when the difference in means between both the costs and the effects is reduced by the same percentage as in

the µ = 3.2,γ = 128 graph, the whole curve in the 2CEAc does not shift.

The reason for this relationship can be found in the calculations for pδ . As explained in formula 2.1, INMBi =

λ (αx=1i −αx=0i)− (βx=1i −βx=0i). When αx=1i −αx=0i decreases, the INMBi shrinks, which also shrinks the IN-

MBCI used to calculate pδ as seen in formula 2.2. Similarly, if αx=1i −αx=0i increases, the INMBi grows. When

βx=1i −βx=0i decreases, the INMBi grows in value, but if βx=1i −βx=0i increases, INMBi decreases. Since the INMB

is a ratio of differences in effects and costs, if αx=1i −αx=0i and βx=1i −βx=0i decrease or increase at the same rate,

then no change in INMBi is observed.

Figure 3.2’s results for simulation B illustrate what happens to the 2CEAc if σ values change, or rather, what

happens if the variance of the data changes. This is where αx=0 =N(50,σ), αx=1 =N(50+4,σ), βx=0 =N(100,40σ),

βx=1 = N(100+ 160,40σ). As the value of σ increases, the shape of 2CEAc changes in a particular manner. First,

the range of λ values for which 1− pδ = 0 decreases as seen from σ = 4 and σ = 8. Then, once there are no more

1− pδ = 0 values, the minimum of the graph increases up to a maximum of 0.5, as seen from σ = 8 and σ = 12.

Finally, once the minimum of the 2CEAc reaches a value of 0.5, increases in σ result in an increasing range of λ

values for which 1− pδ = 0.5, as seen in σ = 20.

As with many forms of statistical analysis, when the data spread increases, there tends to be more inconclusiveness.

This reality applies to the 2CEAc as well. When the spread in data is small, generated confidence intervals are smaller

in length, allowing for more chances for INMBCI j ∩H0 = INMBCI j. As the spread in data increases, the generated

confidence intervals increase in length, decreasing the chance for this event to occur. Once the data spread becomes too

long for there to be a INMBCI j contained in H0, the minimum for 1− pδ increases in value. Once 1− pδ ’s minimum
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hits 0.5, as the data spread increases, the quantity of generated confidence intervals that cover the null and alternate

hypotheses equally increases in value. This makes intuitive sense, as if the data spread increases, it becomes harder

to identify where interventions x = 1 and x = 0 are equivalent. With increasing data spread, we struggle to make such

conclusions, as represented by the increase in λ values where 1− pδ = 0.5.

Figure 3.3’s graphs for simulation C illustrate what happens to the 2CEAc when the null interval H0 changes in

length, ranging from H0 : {−0.1×max(Λ),0.1×max(Λ)} to {−0.4×max(Λ),0.4×max(Λ)}, where max(Λ) = 100.

The relationship between H0 length and 2CEAc is simple: as the length of H0 increases, the length of λ values for

which 1− pδ = 0 increases as well.

The reasoning for this relationship is similar to that of Figure 3.2’s. A smaller H0 range means fewer opportunities

for INMBCI j ∩H0 = INMBCI j. This is why it is important to choose a reasonable null interval range (like H0 :

{−0.15×max(Λ),0.15×max(Λ)}) in setting up the 2CEAc. If the interval length is too small, one would miss

out on λ values for which the interventions are nearly equivalent cost-effectiveness wise. If the interval length is

too large, then the 2CEAc constructed would only identify immense cost-effectiveness differences in x = 1 and x = 0.

Ultimately, null interval choice determines how much of a cost-effectiveness difference in x = 1 and x = 0 is necessary

to be considered significant. This is why it is very important to specify the null hypothesis interval (and conversely,

the level of the confidence interval) before creating the 2CEAc. Not doing so runs the risk of the researcher shopping

for intervals to get a better conclusion.

Figures 3.4-3.6 cover differences between the standard CEAc (labeled as First Generation) and the 2CEAc (labeled

as Second Generation) in three separate circumstances. All three figures follow αx=0 =N(50,σ), αx=1 =N(50+4,σ),

βx=0 = N(100,40σ), βx=1 = N(100+160,40σ). Figure 3.4 covers an example using a standard dataset that carries no

significant quirks (where σ = 4). The range of λ values for which 1− pδ = 0 in the 2CEAc are equivalent to the range

of λ values for which the standard CEAc doesn’t have an identified 100% optimal intervention. λ values for which

1− pδ = 1 in the 2CEAc line up with values for which the 1-sided bootstrapped p-value is 1 in the standard CEAc.

With a null interval of H0 : {−0.15×max(Λ),0.15×max(Λ)}= {−15,15}, Figure 3.4 is what we would expect as

result for a 2CEAc. The 2CEAc captures all of the λ values for which we could consider the interventions equivalent

for the standard CEAc. This is one of the advantages of using a 2CEAc over the standard CEAc. The standard CEAc

does answer when one intervention appears to be optimal, but it struggles to identify when both interventions are

equivalent in terms of cost-effectiveness. The 2CEAc does not have this problem, clearly identifying the range of λ

values for which it believes that both interventions are equivalent in terms of cost-effectiveness.

Figures 3.5 and 3.6 cover simulations E and F respectively, which entail using datasets with quirks. Simulation E

covers a scenario where σ = 20, or rather, a scenario where the data spread is high. Simulation F covers a scenario

where instead of each intervention having a sample size of 10000, as seen in the rest of the simulations, each interven-

tion instead has a sample size of N
2 = 400. Both simulations have similar results. The standard CEAc for Figures 3.5

21



and 3.6 have a smaller slope as compared to Figure 3.4’s. The 2CEAc for Figures 3.5 and 3.6 do not have any 1− pδ

values smaller than 0.5, and the λ values for which 1− pδ = 0.5 cover the majority of λ values for which the standard

CEAc does not have a intervention with bootstrapped p-value nearing 1. Finally, it appears that Figure 3.5’s standard

CEAc shifted slightly to the right.

The standard CEAc’s shift to the right in Figure 3.5 is explained by the high data spread. It should be noted that

rather than claiming that there is an equivalent chance between interventions x = 1 and x = 0 being optimal at λ = 45

as seen in the standard CEAc, the 2CEAc states that the results are inconclusive. Both simulations E and F have a

similar problem: the data given forces a wider range of λ values for which either x = 1 or x = 0 could potentially be

the optimal intervention. The standard CEAc handles this problem by decreasing the size of the slope, which increases

the number of λ values for which the choice of intervention necessitates consideration (that is, λ values for which the

bootstrapped p-value is not 0). The 2CEAc handles this problem differently, instead claiming a range of λ values for

which no significant conclusions can be made. This is one of the advantages the 2CEAc has over the standard CEAc:

if the data cannot support a significant conclusion at a λ value, rather than giving a pair of close probabilities like in

the standard CEAc, the 2CEAc outright states the reality at hand.

5.2 Applied cancer results

As explained in Section 2.3, cancer data sets and their analyses can be limited by the lack of a significant quantity

of data, whether it be due to high costs, or the rarity of the specific health scenarios being focused on. Further, the

differences in effects can be minor. These scenarios leave statistical analyses with a high amount of uncertainty, which

as discussed in Barr et al. (2023), are something that is challenging to depict in a digestible manner. This is where the

2CEAc best excels in cost-effectiveness as compared to the standard CEAc, by effictively contextualizing uncertainty

[8].

Figure 3.7 is very similar to the standard CEAc generated in Barr et al. (2023), showing a scenario where there

is no 100% certainty of one treatment being cost-effectively optimal when λ > 0. While the standard CEAc does

incorporate uncertainty into having p-values less than 1, it leaves the reader lacking the comprehension necessary to

make concrete decisions, leading to the following example questions:

• How high (or low) must the p-values be in order to make meaningful conclusions?

• Would it be right for a statistician to suggest the new treatment at λ = 100000, where the p-value is about 0.9?

• Further, for what λ values are the treatments equivalent?

Certainly there is an intersection point at a single λ value, but beyond that, the answer is unclear. Finally, as said in

Barr et al. (2023), “the CEAC does not quantify how cost effective a new treatment is, it shows only the probability

that a new treatment is cost-effective” [8].
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The 2CEAc addresses all of the problems posed above. The 2CEAc allows the statistician to quantify a minimum

for how better a medical intervention must be than its competitor in cost-effectiveness through the employment of null

hypothesis intervals. As seen in Figure 3.8, changing the width of the null hypothesis interval greatly changes what is

depicted graphically. By widening the null interval, an increasing number of λ values have both treatments equivalent

in cost-effectiveness (as shown in Figure 3.3, and discussed Section 3.1). This addresses the standard CEAc’s flaw in

lacking a clarified range of values for which the treatments are equivalent. Perhaps most importantly for the purposes

of this simulation, the 2CEAc effectively depicts uncertainty and inconclusiveness in an understandable manner. The

horizontal green lines marking pure inconclusiveness give the reader a clear indication that no claim could be made on

the relative cost-effectiveness of the treatments given the data.

Ultimately, the purpose of both the 2CEAc and standard CEAc is to help the statistician determine if a medical

intervention is optimal in cost-effectiveness as compared to a control intervention over a range of λ values. When

the data clearly supports one intervention over another, the graphs are similar in effectiveness. When high degrees

of uncertainty are involved as in this cancer example however, the 2CEAc is superior in depicting equivalence and

inconclusiveness.

5.3 The case for a second generation cost-effectiveness acceptability curve

The main purpose of using a standard CEAc is to identify which intervention is optimal in cost-effectiveness over

a range of possible λ values, which it does by directly calculating standard p-values. While this graph is effective

when looking at λ values for which the probability is either near 1 or 0, when the p-values of both interventions are

closer in value, interpretations become muddled. If intervention x = 1 has a p-value of 0.85, and x = 0 a p-value of

0.15 for example, the question remains as to whether the practitioner could reasonably suggest that intervention x = 1

should be chosen, or if they should say the result is simply inconclusive. More critically, the standard CEAc mostly

fails to identify points where the two interventions are near-equivalent in terms of cost-effectiveness. The intersection

point only returns a single lambda value, which is insufficient.

The 2CEAc does everything the standard CEAc excels at, while rectifying the issues previously discussed. The

2CEAc identifies λ values where one can conclude there is evidence for one intervention being optimal in cost-

effectiveness. If the data is inconclusive at specific λ values, the 2CEAc clearly communicates this reality (as seen

in Figures 3.5 and 3.6). Finally, and most importantly, the 2CEAc identifies λ values for which the interventions are

considered near-equivalent in cost-effectiveness (as seen in Figure 3.4). Further, one can also actively change what

“near-equivalent” means, according to their own needs (as seen in Figure 3.3). Such changes should only occur before

beginning the creation of the 2CEAc.

All of these advantages the 2CEAc has over the standard CEAc descend from the benefits of using a second

generation p-value over a standard p-value. The use of null hypothesis intervals enables a more robust analysis that
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enables results clearer than simply using two standard p-values (which is what the standard CEAc does). Like the

standard CEAc, understanding the 2CEAc is simple, as shown in Section 2.1. Ultimately, when conducted effectively,

the 2CEAc is a superior form of cost-effectiveness analysis as compared to the standard CEAc.
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CHAPTER 6

Appendix

6.1 Second generation acceptability curve psuedocode

The procedure for creating a second generation acceptability curve consists of calculating second generation p-

values, and graphing by comparing it to the lambda values supplied. The steps described will mirror Chapter 2’s

writings. It is assumed that the practitioner would have a data set consisting of sampled costs and benefits for two

distinct interventions.

First, after loading a seed, one would define multiple values based on the numerical scale of the data: the length of

the null hypothesis centered around zero (nullin), the number of bootstraps (B), and the range and quantity of λ val-

ues (ls). With these values determined, the first step is to bootstrap and calculate INMBs. In this paper’s case, a sim-

ple replacement bootstrap resamples the data points and applied formula 2.1: INMBs = ls * (difference in

mean effects) - (difference in mean costs). This produces one INMB for each unique λ value,

which is stored in INMBs. This process is repeated B times.

A 95% confidence interval is then calculated for the bootstrapped INMBs by finding the 2.5% and 97.5% quantile

for each lambda value. The lengths of the null hypothesis (length.null), range of λ values (length.inters),

and confidence intervals (length.CI) are then calculated. For each INMB confidence interval for a λ value in ls,

the second generation p-value is calculated by formula 2.2: pdeltas = (length.inters/length.CI) *

pmax(length.CI/(2 * length.null), 1). All needed variables are now calculated, and all that remains

is depicting the curve.

Following the process described in 2.1.2, each λ ’s INMB confidence interval is compared to the null hypoth-

esis. Using a categorical variable whichtrt, each λ is assigned a group. This assignment process can be ac-

complished in a variety of ways. This paper first assigned each λ value’s whichtrt to an intervention, based on

whether the confidence interval ranges more below or above the null hypothesis interval. Then, the second gener-

ation p-values pdeltas is taken into account as follows: if 1- pdeltas = 0, then that λ ’s whichtrt is set

to approximate equivalence; if 1- pdeltas = 0.5, then that λ ’s whichtrt is set to inconclusiveness; and if

1> 1- pdeltas > 0, then that λ ’s whichtrt is set to inconclusiveness favoring the previously assigned inter-

vention.

The final step is graphing the second generation analysis curve, by plotting ls vs 1 - pdeltas, with the line

being colored according to whichtrt, and a legend being supplied for comprehension.
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